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Abstract
Let D be the unit disc in C. If μ is a finite positive Borel measure on the interval [0, 1)
and f is an analytic function in D, f (z) = ∑∞

n=0 anz
n (z ∈ D), we define

Cμ( f )(z) =
∞∑

n=0

μn

(
n∑

k=0

ak

)

zn, z ∈ D,

where, for n ≥ 0, μn denotes the n-th moment of the measure μ, that is,
μn = ∫

[0,1) t
ndμ(t). In this way, Cμ becomes a linear operator defined on the space

Hol(D) of all analytic functions in D. We study the action of the operators Cμ on
distinct spaces of analytic functions in D, such as the Hardy spaces H p, the weighted
Bergman spaces Ap

α , BMOA, and the Bloch space B.
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1 Introduction andmain results

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane C and
let Hol(D) be the space of all analytic functions in D endowed with the topology of
uniform convergence in compact subsets.

If 0 < r < 1 and f ∈ Hol(D), we set

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reit )|p dt

)1/p

, 0 < p < ∞,

M∞(r , f ) = sup
|z|=r

| f (z)|.

For 0 < p ≤ ∞, the Hardy space H p consists of those f ∈ Hol(D) such that

‖ f ‖H p
def= sup

0<r<1
Mp(r , f ) < ∞.

We refer to [13] for the notation and results regarding Hardy spaces.
Let d A denote the area measure on D, normalized so that the area of D is 1. Thus

d A(z) = 1
π
dx dy = 1

π
r dr dθ . For 0 < p < ∞ andα > −1 theweightedBergman

space Ap
α consists of those f ∈ Hol(D) such that

‖ f ‖Ap
α

def=
(∫

D

| f (z)|p d Aα(z)

)1/p

< ∞,

where d Aα(z) = (α +1)(1−|z|2)αd A(z). We refer to [14,25,39] for the notation and
results about Bergman spaces.

The space BMOA consists of those functions f ∈ H1 whose boundary values have
bounded mean oscillation on ∂D. We refer to [16] for the theory of BMOA-functions.

Finally, we recall that a function f ∈ Hol(D) is said to be a Bloch function if

‖ f ‖B def= | f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)| < ∞.

The space of all Bloch functions is denoted by B. A classical reference for the theory
of Bloch functions is [2]. Let us recall that

H∞
� BMOA � B, BMOA �

⋂

0<p<∞
H p, B � Ap

α (p > 0, α > −1).

TheCesàro operator C is defined over the space of all complex sequences as follows:
If (a) = {ak}∞k=0 is a sequence of complex numbers then

C ((a)) =
{

1

n + 1

n∑

k=0

ak

}∞

n=0

.
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The operator C is known to be bounded from �p to �p for 1 < p < ∞. In fact, the
sharp inequalities

‖C ((a)) ‖p ≤ p

p − 1
‖(a)‖p, (a) ∈ �p, 1 < p < ∞,

were proved by Hardy [21] and Landau [29] (see also [24, Theorem 326, p.239 ]).
Identifying any given function f ∈ Hol(D) with the sequence {ak}∞k=0 of its Taylor

coefficients, the Cesàro operator C becomes a linear operator from Hol(D) into itself
as follows:

If f ∈ Hol(D), f (z) = ∑∞
k=0 akz

k (z ∈ D), then

C( f )(z) =
∞∑

n=0

(
1

n + 1

n∑

k=0

ak

)

zn, z ∈ D.

The Cesàro operator is bounded on H p for 0 < p < ∞. For 1 < p < ∞, this
follows from a result of Hardy on Fourier series [22] together with the M. Riesz’s
theorem on the conjugate function [13, Theorem 4.1]. Siskakis [33] used semigroups
of composition operators to give an alternative proof of this result and to extend it to
p = 1. A direct proof of the boundedness on H1 was given by Siskakis in [34]. Miao
[31] dealt with the case 0 < p < 1. Stempak [36] gave a proof valid for 0 < p ≤ 2
and Andersen [1] provided another proof valid for all p < ∞.

In this paper we associate to every positive finite Borel measure on [0, 1) a certain
operator Cμ acting on Hol(D) which is a natural generalization of the classical Cesàro
operator C.

If μ is a positive finite Borel measure on [0, 1) and n is a non-negative integer, we
let μn denote the moment of order n of μ, that is,

μn =
∫

[0,1)
tn dμ(t), n = 0, 1, 2, . . . .

If f ∈ Hol(D), f (z) = ∑∞
n=0 anz

n (z ∈ D), we define Cμ( f ) as follows

Cμ( f )(z) =
∞∑

n=0

(

μn

n∑

k=0

ak

)

zn, z ∈ D.

It is clear that Cμ is a well defined linear operator Cμ : Hol(D) → Hol(D). When
μ is the Lebesgue measure on [0, 1), the operator Cμ reduces to the classical Cesàro
operator C.

Our main objective in this work is to characterize those positive finite Borel mea-
suresμon [0, 1) such that the operatorCμ is boundedor compact on classical subspaces
of Hol(D) such as the Hardy spaces H p, the weighted Bergman spaces Ap

α , and the
spaces BMOA and B.
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Measures of Carleson type will play a basic role in the sequel. If I ⊂ ∂D is an
interval, |I | will denote the length of I . The Carleson square S(I ) is defined as

S(I ) =
{

reit : eit ∈ I , 1 − |I |
2π

≤ r < 1

}

.

If s > 0 andμ is a positive Borel measure onD, we shall say thatμ is an s-Carleson
measure if there exists a positive constant C such that

μ (S(I )) ≤ C |I |s, for any intervalI ⊂ ∂D.

If μ satisfies μ (S(I )) = o (|I |s), as |I | → 0, then we say that μ is a vanishing
s-Carleson measure.

A 1-Carlesonmeasure, respectively, a vanishing 1-Carlesonmeasure,will be simply
called a Carleson measure, respectively, a vanishing Carleson measure.

We recall that Carleson [7] proved that H p ⊂ L p(dμ) (0 < p < ∞), if and only
if μ is a Carleson measure (see [13, Chapter 9]).

Following [38], ifμ is a positive Borel measure onD, 0 ≤ α < ∞, and 0 < s < ∞,
we say thatμ is an α-logarithmic s-Carlesonmeasure if there exists a positive constant
C such that

μ (S(I ))
(
log 2

|I |
)α

|I |s ≤ C, for any intervalI ⊂ ∂D.

If μ (S(I ))
(
log 2

|I |
)α = o (|I |s), as |I | → 0, we say that μ is a vanishing α-

logarithmic s-Carleson measure.
A measure μ on [0, 1) can be seen as a measure on D with support contained in

the radius [0, 1). In this way, a positive Borel measure μ on [0, 1) is an s-Carleson
measure if and only if there exists a positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s, 0 ≤ t < 1,

and we have similar statements for vanishing s-Carleson measures, for α-logarithmic
s-Carleson measures, and for vanishing α-logarithmic s-Carleson measures.

Among other, we shall prove the following results.

Theorem 1 Suppose that 1 ≤ p < ∞ and let μ be a positive finite Borel measure on
[0, 1). Then the following conditions are equivalent.

(i) The measure μ is a Carleson measure.
(ii) The operator Cμ is bounded from H p into itself.

Theorem 2 Suppose that 1 ≤ p < ∞ and let μ be a positive finite Borel measure on
[0, 1). Then the following conditions are equivalent.

(i) The measure μ is a vanishing Carleson measure.
(ii) The operator Cμ is compact from H p into itself.
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Danikas and Siskakis [12] observed that C(H∞) 
⊂ H∞ and C(BMOA) 
⊂
BMOA and studied the action of the the Cesàro operator on these spaces. We will
devote Sects. 3.3 and 5 to study the Cesàro-like operators Cμ acting on these spaces.
Let us just mention here the following result.

Theorem 3 Let μ be a positive finite Borel measure on [0, 1). Then the following
conditions are equivalent.

(i) The measure μ is a 1-logarithmic 1-Carleson measure.
(ii) The operator Cμ is bounded from BMOA into itself.
(iii) The operator Cμ is bounded from the Bloch space B into itself.

Section 3 will be devoted to present the proofs of Theorem 1 and Theorem 2 as well
as some further results concerning the action of the operators Cμ on Hardy spaces.
Section 4 will deal with the action of the operators Cμ on Bergman spaces and, as we
have already mentioned, Sect. 5 will be devoted to study the operators Cμ acting on
BMOA, the Bloch space, and some related spaces. In particular, Sect. 5 will include
a proof of Theorem 3 and the substitute of this result concerning compactness.

In Sect. 2 we shall give two alternative representations of the operator Cμ, one of
them is an integral representation and the other one involves the convolution with a
fixed analytic function in D. We shall also introduce a related operator which will be
denoted Tμ and which will play a basic role in the proofs of some of our results.

Throughout the paper, if μ is a finite positive Borel measure on [0, 1), for n ≥ 0,
μn will denote the moment of order n ofμ. Also, we shall be using the convention that
C = C(p, α, q, β, . . . ) will denote a positive constant which depends only upon the
displayed parameters p, α, q, β . . . (which sometimes will be omitted) but not nec-
essarily the same at different occurrences. Furthermore, for two real-valued functions
K1, K2 we write K1 � K2, or K1 � K2, if there exists a positive constant C inde-
pendent of the arguments such that K1 ≤ CK2, respectively K1 ≥ CK2. If we have
K1 � K2 and K1 � K2 simultaneously, then we say that K1 and K2 are equivalent
and we write K1 � K2.

Let us close this section noticing that, since the subspaces X of Hol(D) we shall
be dealing with are Banach spaces continuously embedded in Hol(D), to prove that
the operator Cμ (or Tμ, to be defined below) is bounded on X it suffices to show that
it maps X into X by appealing to the closed graph theorem.

2 Alternative representations of C� and a related operator

A simple calculation with power series gives the following integral representation of
the operators Cμ.

Proposition 1 If μ is a positive finite Borel measure on [0, 1) and f ∈ Hol(D) then

Cμ( f )(z) =
∫

[0,1)
f (t z)

1 − t z
dμ(t), z ∈ D. (1)
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Next we shall give another expression for Cμ( f ) involving the convolution of ana-
lytic functions. If f and g are two analytic functions in the unit disc,

f (z) =
∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n, z ∈ D,

the convolution f �g of f and g is defined by

f �g(z) =
∞∑

n=0

anbnz
n, z ∈ D.

Lemma 1 Let μ be a positive finite Borel measure on [0, 1) and set

F(z) =
∞∑

n=0

μnz
n, z ∈ D.

If f ∈ Hol(D) and

g(z) = f (z)

1 − z
, z ∈ D,

then Cμ( f ) = F�g.

The proof is elementary and will be omitted.
The following result regarding the radial measures μ we are considering will be

used in our work.

Lemma 2 Letμ be a finite positive Borel measure on the interval [0, 1) and, for n ≥ 0,
let μn denote the moment of order n of μ.

(i) μ is a Carleson measure if and only if μn = O( 1n ).
(ii) μ is a vanishing Carleson measure if and only if μn = o( 1n ).
(iii) μ is a 1-logarithmic 1-Carleson measure if and only if μn = O( 1

n log n ).

(iv) μ is a vanishing 1 logarithmic 1-Carleson measure if and only if μn = o( 1
n log n ).

Proof (i) is Proposition 8 of [8] and (ii) follows with a similar argument. Lemma 2. 7
of [19] gives one implication of (iii) and the other one follows from the from the simple
inequality

μ

([

1 − 1

n
, 1

))

�
∫

[
1− 1

n ,1
) tndμ(t) ≤ μn .

Finally, (iv) can be proved with an argument similar the the one used to prove
(iii). �
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Now we define a new operator operator Tμ associated to μ which will be important
in our work because it will become the adjoint of Cμ in distinct instances.

Ifμ is a finite positive Borelmeasure on [0, 1) and f ∈ Hol(D), f (z) = ∑∞
n=0 anz

n

(z ∈ D) we set

Tμ( f )(z) =
∞∑

n=0

( ∞∑

k=n

μkak

)

zn,

whenever the right hand side makes sense and defines an analytic function in D.
Clearly, the operator Tμ is not defined over the whole space Hol(D). We have the

following result.

Proposition 2 Let μ is a finite positive Borel measure on [0, 1).
(a) If P is a polynomial then Tμ(P) is well defined and it also a polynomial.
(b) If μ is a Carleson measure then Tμ is well defined on H1.

Proof (a) is clear. To prove (b) we use the fact that if μ is a Carleson measure then
μn = O

(
n−1

)
(see Lemma 2). This and Hardy’s inequality [13, p. 48] shows that if

f ∈ H1, f (z) = ∑∞
k=1 akz

k , then there exists C > 0 such that

∞∑

k=n

μk |ak | ≤ C
∞∑

k=n

|ak |
k + 1

≤ Cπ‖ f ‖H1

for all n. Clearly, this implies (b). �
It is well known that, for 1 < p < ∞, the dual of H p is identifiable with Hq ,

1
p + 1

q = 1, with the pairing

< f , g >H p = 1

2π

∫ 2π

0
f (eiθ )g(eiθ )dθ =

∞∑

n=0

anbn

where f (z) = ∑∞
n=0 anz

n ∈ H p and g(z) = ∑∞
n=0 bnz

n ∈ Hq (see [13, Theo-
rem 7.3]).

Similarly, if 1 < p < ∞ and α > 1, the dual of Ap
α is identifiable with Aq

α with
the pairing

< f , g >p,α =
∫

D

f (z)g(z)d Aα(z) =
∞∑

n=0

cn,αanbn,

where

cn,α = n! Γ (2 + α)

Γ (n + 2 + α)
, n = 0, 1, 2, . . . ,

and f (z) = ∑∞
n=0 anz

n ∈ Ap
α , g(z) = ∑∞

n=0 bnz
n ∈ Aq

α (see [25, Theorem 1.16 and
p. 5]). A simple calculation gives the following result.
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Proposition 3 Let μ be a positive finite Borel measure on [0, 1).
(i) If 1 < p < ∞, f ∈ H p, and g is a polynomial then

< Cμ( f ), g >H p =< f , Tμ(g) >H p .

(ii) If 1 < p < ∞, α > −1, f ∈ Ap
α , and g is a polynomial then

< Cμ( f ), g >p,α =< f , Tμ(g) >p,α .

Proposition 3, together with the fact that the polynomials are dense in all the spaces
H p (p < ∞) and Ap

α (p < ∞, α > −1), readily implies the following result.

Proposition 4 Suppose that 1 < p < ∞ and let μ be a positive finite Borel measure
on [0, 1). Let q be the conjugate exponent of p, that is, 1

p + 1
q = 1.

(i) If Cμ is a bounded operator from H p into itself, then there exists a positive constant
C such that

‖Tμ(P)‖Hq ≤ C‖P‖Hq

for every polynomial P. Consequently, Tμ extends to a bounded linear operator
from Hq into itself. This extension, which will be also denoted by Tμ, is the adjoint
of Cμ.

(ii) Suppose that α > −1. If Cμ is a bounded operator from Ap
α into itself, then there

exists a positive constant C such that

‖Tμ(P)‖Aq
α

≤ C‖P‖Aq
α

for every polynomial P. Consequently, Tμ extends to a bounded linear operator
from Aq

α into itself. This extension, which will be also denoted by Tμ, is the adjoint
of Cμ.

3 The operators C� acting on Hardy spaces

In this section we shall study the action of the operators Cμ on Hardy spaces.
We shall use complex interpolation to prove some of our results. Let us refer to [39,

Chapter 2] for the terminology and basic results concerning complex interpolation.
If X0 and X1 are two compatible Banach spaces then, for 0 < θ < 1, (X0, X1)θ

stands for the space obtained by the complex method of interpolation of Calderón
[5]. It is well known (see [6,26,32]) that if 1 ≤ p0, p1 ≤ ∞, 0 < θ < 1, and
1/p = (1 − θ)/p0 + θ/p1, then

(H p0 , H p1)θ = H p. (2)
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In particular,

H p = (H2, H1)θ , if 1 < p < 2 and θ = 2

p
− 1. (3)

3.1 Proof of Theorem 1

We shall split it in several cases.
Proof of the implication (i) ⇒ (ii) when p = 1. Assume that μ is a Carleson measure
and take f ∈ H1. Set

g(z) = f (z)

1 − z
, z ∈ D,

and

tk = 1 − 1

2k
, k = 0, 1, 2, . . .

Using the integral representation on Cμ, we see that, for 0 < r < 1,

M1
(
r , Cμ( f )

) = 1

2π

∫ 2π

0

∣
∣
∣
∣

∫

[0,1)
f (r teiθ )

1 − r teiθ
dμ(t)

∣
∣
∣
∣ dθ

≤ 1

2π

∫ 2π

0

∫

[0,1)

∣
∣
∣g(r teiθ )

∣
∣
∣ dμ(t) dθ

= 1

2π

∫ 2π

0

( ∞∑

k=1

∫

[tk−1,tk )

∣
∣
∣g(r teiθ )

∣
∣
∣ dμ(t)

)

dθ

≤ 1

2π

∫ 2π

0

( ∞∑

k=1

[

sup
0≤t≤tk

∣
∣
∣g(r teiθ )

∣
∣
∣

])

μ ([tk−1, tk]) dθ.

Since μ is a Carleson measure, μ ([tk−1, tk]) � 1
2k
. Using this, the Hardy-

Littlewood maximal theorem [13, Theorem 1.9], the fact that integral means M1(s, g)
increase with s, and the Cauchy-Schwarz inequality, we obtain

M1
(
r , Cμ( f )

) ≤
∞∑

k=1

1

2k

(
1

2π

∫ 2π

0

[

sup
0≤t≤tk

∣
∣
∣g(r teiθ )

∣
∣
∣

]

dθ

)

�
∞∑

k=1

1

2k
M1(r tk, g)

�
∞∑

k=1

1

2k
2k

∫ tk+1

tk
M1(r t, g) dt
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�
∫ r

0

1

2π

∫ 2π

0

∣
∣
∣g(teiθ )

∣
∣
∣ dθ dt

�
∫ r

0

1

2π

∫ 2π

0

∣
∣
∣
∣
f (teiθ )

1 − teiθ

∣
∣
∣
∣ dθ dt

�
∫ r

0
M2(t, f )

(
1

2π

∫ 2π

0

dθ

|1 − teiθ |2 dθ

)1/2

dt

�
∫ r

0
M2(t, f )(1 − t)−1/2 dt .

Making the change of variables t = rs in the last integral and setting fr (z) = f (r z)
(z ∈ D), it follows that

M1
(
r , Cμ( f )

)
�

∫ 1

0
M2(sr , f )(1 − sr)−1/2 ds

=
∫ 1

0
M2(s, fr )(1 − sr)−1/2 ds ≤

∫ 1

0
M2(s, fr )(1 − s)−1/2 ds.

Using a result of Hardy and Littlewood [23] (see also [34]) we see that

∫ 1

0
M2(s, fr )(1 − s)−1/2 dt � ‖ fr‖H1 .

Then it follows that

M1
(
r , Cμ( f )

)
� M1(r , f ). (4)

This implies that Cμ( f ) ∈ H1 and that ‖Cμ( f )‖H1 � ‖ f ‖H1 . �
Proof of the implication (i) ⇒ (ii) when p = 2. Assume that μ is a Carleson measure
and take f ∈ H2, f (z) = ∑∞

n=0 anz
n (z ∈ D). Using [8, Proposition 1] we see that

|μn| � 1
n+1 . Using this, the definition of Cμ( f ), and the fact that the Cesàro operator

is bounded on H2, it follows that

‖Cμ( f )‖2H2 =
∞∑

n=0

μ2
n

∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣

2

�
∞∑

n=0

1

(n + 1)2

∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣

2

= ‖C( f )‖2H2 � ‖ f ‖2H2 .

�
Proof of the implication (i) ⇒ (ii) for 1 < p < 2. Since (i) ⇒ (ii) when p = 1 and
p = 2, the fact that (i) ⇒ (ii) when 1 < p < 2 follows using (3) and Theorem 2. 4
of [39]. �

To prove the remaining case, that is, the implication (i) ⇒ (ii) for 2 < p < ∞ we
shall use ideas of Andersen [1]. Actually, our next argument works for 1 < p < ∞.
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Proof of the implication (i) ⇒ (ii) for 1 < p < ∞. Assume that μ is a Carleson
measure, 1 < p < ∞, and f ∈ H p.

For 0 < r < 1, set

Kr ,μ(θ, ϕ) =
∫

[0,1)
(1 + t)(1 − t)

|1 − teiϕ |2(1 − treiθ )
dμ(t), θ, ϕ ∈ [−π, π ].

Arguing just as in [1, p. 621], using Fubini’s theorem, we have that

Cμ( f )(reiθ ) =
∫ π

−π

Kr ,μ(θ, ϕ) f (rei(θ+ϕ)) dϕ. (5)

Now, letting {tk}∞k=0 be as above, using the fact that μ([tk, tk+1)) � 1
2k
, and simple

estimates, we obatin

|Kr ,μ(θ, ϕ)| ≤ 2
∫

[0,1)
1 − t

|1 − teiϕ |2|1 − treiθ | dμ(t)

�
∫

[0,1)
1 − t

[(1 − t)2 + ϕ2][(1 − t)2 + θ2]1/2 dμ(t)

�
∞∑

k=0

∫ tk+1

tk

1 − t

[(1 − t)2 + ϕ2][(1 − t)2 + θ ]1/2 dμ(t)

�
∞∑

k=0

1

2k

1
2k

[(
1

2k+1

)2 + ϕ2

] [(
1

2k+1

)2 + θ2
]1/2

�
∞∑

k=0

∫ tk+1

tk

1
2k

[(
1

2k+1

)2 + ϕ2

] [(
1

2k+1

)2 + θ2
]1/2 dt

�
∫ 1

0

1 − t

[(1 − t)2 + ϕ2][(1 − t)2 + θ2]1/2 dt

=
∫ 1

0

x

[x2 + ϕ2][x2 + θ2]1/2 dx

Then, using Lemma 2.1 of [1], we see that for all θ, ϕ ∈ (−π, π) \ {0} and r ∈ (0, 1),
we have

|Kr ,μ(θ, ϕ)| � H(ϕ/θ)

|θ | ,

where

H(s) = log(2 + 1/|s|)
1 + |s| , s 
= 0.
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Using this and (5) it follows that

|Cμ( f )(reiθ )| �
∫ π

−π

H(ϕ/θ)

|θ | | f (rei(θ+ϕ))| dϕ, θ ∈ (−π, π) \ {0}, 0 < r < 1.

Then the argument in p. 622 of [1] yields that

Mp(r , Cμ( f )) � Mp(r , f ) (6)

and, hence ‖Cμ( f )‖H p � ‖ f ‖H p . �
Proof of the implication (ii) ⇒ (i) for 1 ≤ p ≤ 2. Suppose that 1 ≤ p ≤ 2 and that
Cμ is bounded on H p. Recall that, for α > 0,

1

(1 − z)α
=

∞∑

n=0

an(α)zn, z ∈ D

where

an(α) � nα−1. (7)

For 0 < a < 1, set

fa(z) =
(

1 − a2

(1 − az)2

)1/p

= (1 − a2)1/p
∞∑

n=0

an(2/p)a
nzn, z ∈ D.

We have that

fa ∈ H p and ‖ fa‖H p = 1, 0 < a < 1.

Since Cμ is bounded on H p, we have

‖Cμ( fa)‖p
H p � 1. (8)

Now

Cμ( fa)(z) = (1 − a2)1/p
∞∑

n=0

μn

(
n∑

k=0

ak(2/p)a
k

)

zn, z ∈ D.

Using the fact that 1 ≤ p ≤ 2, [13, Theorem 6.2], (7), and the fact that the sequence
{μn} is decreasing, we obtain
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(1 − a)μ
p
N

N∑

n=0

(n + 1)p−2

(
n∑

k=0

k
2
p −1ak

)p

≤ (1 − a)

N∑

n=0

(n + 1)p−2μ
p
n

(
n∑

k=0

k
2
p −1ak

)p

≤ (1 − a)

∞∑

n=0

(n + 1)p−2μ
p
n

(
n∑

k=0

k
2
p −1ak

)p

� (1 − a2)
∞∑

n=0

(n + 1)p−2μ
p
n

(
n∑

k=0

ak(2/p)a
k

)p

� ‖Cμ( fa)‖p
H p ,

for every positive integer N and every a ∈ (0, 1). Taking a = 1 − 1
N and using the

fact that Cμ is bounded on H p, we obtain

μ
p
N

N

N∑

n=0

(n + 1)p−2

(
n∑

k=0

k
2
p −1

)p

� μ
p
N N

p � ‖Cμ( fa)‖p
H p � ‖ fa‖H p . (9)

This and (8) imply thatμN � 1
N . Using again Lemma 2, this yields thatμ is a Carleson

measure. �
Proof of the implication (ii) ⇒ (i) for 2 ≤ p < ∞. Suppose that 2 < p < ∞ and
that Cμ is a bounded operator on H p. Let q be the conjugate exponent of p, that is,
1
p + 1

q = 1. Bearing in mind Proposition 2 and Proposition 3, we see that the operator
Tμ, initially defined over polynomials, extends to a bounded operator on Hq .

For 0 < a < 1 and N ∈ N, set

fa(z) =
(

1 − a2

(1 − az)2

)1/q

= (1 − a2)1/q
∞∑

n=0

an(2/q)anzn, z ∈ D,

fa,N (z) = (1 − a2)1/q
N∑

n=0

an(2/q)anzn, z ∈ D.

We have that for all a ∈ (0, 1), fa ∈ Hq and ‖ fa‖Hq = 1. Since Tμ is bounded on
Hq , it follows that

‖Tμ( fa)‖Hq � 1 (10)

Also, for every a, fa,N → fa , as N → ∞ in Hq and uniformly on compact subsets

of D. Now, Tμ

(
fa,N

)
(z) = (1− a2)1/q

∑N
n=0

(∑N
k=n μkak(2/q)ak

)
zn (z ∈ D) and

then, using that 1 < q < 2 and [13, Theorem 6.2], we have that
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(1 − a)

N∑

n=1

(n + 1)q−2

(
N∑

k=n

μkak(2/q)ak
)q

� ‖Tμ

(
fa,N

) ‖qHq .

Letting N tend to ∞, we obtain

(1 − a)

∞∑

n=1

(n + 1)q−2

( ∞∑

k=n

μkak(2/q)ak
)q

� ‖Tμ ( fa) ‖qHq .

Taking a = 1 − 1
N and letting [N/2] denote the largest integer less than or equal to

N/2, we obtain

‖Tμ ( fa) ‖qHq � (1 − a)

N∑

n=1

(n + 1)q−2

(
N∑

k=n

μkak(2/q)ak
)q

�
μ
q
N

N

N∑

n=1

nq−2

(
N∑

k=n

k
2
q −1

)q

�
μ
q
N

N

[N/2]∑

n=1

nq−2

⎛

⎝
N∑

k=[N/2]
k

2
q −1

⎞

⎠

q

� μ
q
N

N

[N/2]∑

n=1

nq−2
(
N 2/q

)q � μ
q
N N

q . (11)

Using (10), it follows that μN � 1
N and then Lemma 2 implies that μ is a Carleson

measure. �

3.2 Proof of Theorem 2

Proof Let us start with the implication (ii) ⇒ (i). We shall consider the cases
1 ≤ p ≤ 2 and 2 < p < ∞ separately.

Suppose first that 1 ≤ p ≤ 2 and Cμ is compact from H p into itself. As in the
proof of Theorem 1, for 0 < a < 1, set

fa(z) =
(

1 − a2

(1 − az)2

)1/p

, z ∈ D.

We have that ‖ fa‖H p = 1 for all a and, also, fa → 0, as a → 1, uniformly on
compact subsets of D. Hence, ‖Cμ( fa)‖H p → 0, as a → 1. But in the course of
the proof of the implication (ii) ⇒ (i) of Theorem 1, we obtained that μN N �
‖Cμ( fa)‖H p for a = 1 − 1

N (see (9)). Then it follows that μN = o
( 1
N

)
and this

implies that μ is a vanishing Carleson measure.
Supposenow that 2 < p < ∞ andCμ is compact from H p into itself.ByTheorem1,

μ is a Carleson measure and then it follows that the operator Tμ is well defined on Hq

( 1p + 1
q = 1) and it is the adjoint of Cμ. For 0 < a < 1, set fa(z) =

(
1−a2

(1−az)2

)1/q
,

(z ∈ D). We have that ‖ fa‖Hq = 1 for all a and, also, fa → 0, as a → 1, uniformly
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on compact subsets ofD. By Schauder’s theorem [10, p. 174], Tμ is a compact operator
from Hq into itself and, hence, ‖Tμ( fa)‖Hq → 0. In the course of the proof of the
implication (ii) ⇒ (i) of Theorem 1, we obtained that μN N � ‖Tμ( fa)‖Hq for
a = 1 − 1

N (see (11)). Then it follows that μN = o
( 1
N

)
and, hence, μ is a vanishing

Carleson measure.
To prove the other implicationwe shall consider the cases p = 2, p = 1, 1 < p < 2,

and 2 < p < ∞ separately.
Let us start with the case p = 2. So assume that μ is a vanishing Carleson measure

and let { fn} be a sequence of functions in H2 with ‖ fn‖H2 ≤ 1, for all n, and such
that fn → 0, uniformly on compact subsets of D.

Since μ is a vanishing Carleson measure μk = o
( 1
k

)
, as k → ∞. Say

μk = εk

k + 1
, k = 0, 1, 2, . . . .

Then {εk} → 0. Say that, for every n,

fn(z) =
∞∑

k=0

a(n)
k zk, z ∈ D.

Since the Cesàro operator C is bounded on H2, there exists M > 0 such that

‖C( fn)‖2H2 ≤ M, for all n. (12)

Take ε > 0 and next take a natural number N such that

k ≥ N ⇒ ε2k <
ε

2M
.

We have

‖Cμ( fn)‖2H2 =
∞∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

=
N∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

+
∞∑

k=N+1

ε2k

(k + 1)2

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

≤
N∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

+ ε

2M

∞∑

k=0

1

(k + 1)2

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

=
N∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

+ ε

2M
‖C( fn)‖2H2
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≤
N∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

+ ε

2
.

Now, since fn → 0, uniformly on compact subsets of D, it follows that

N∑

k=0

μ2
k

∣
∣
∣
∣
∣
∣

k∑

j=0

a(n)
j

∣
∣
∣
∣
∣
∣

2

→ 0, as n → ∞.

Then it follows that that there exist n0 ∈ N such that ‖Cμ( fn)‖2H2 < ε for all n ≥ n0.

So, we have proved that ‖Cμ( fn)‖2H2 → 0. The compactness of Cμ on H2 follows.
Let us move to the case p = 1. Assume that μ is a vanishing Carleson measure and

let { fn} be a sequence of functions in H1 with ‖ fn‖H1 ≤ 1, for all n, and such that
fn → 0, uniformly on compact subsets of D.
Set

gn(z) = fn(z)

1 − z
, z ∈ D, n ∈ N,

and

tk = 1 − 1

2k
, k = 0, 1, 2, . . .

As in the proof of the implication (i) ⇒ (ii) in Theorem 1 when p = 1 we see that,
for 0 < r < 1 and n ∈ N,

M1
(
r , Cμ( fn)

) ≤ 1

2π

∫ 2π

0

( ∞∑

k=1

[

sup
0≤t≤tk

∣
∣
∣gn(r te

iθ )

∣
∣
∣

])

μ ([tk−1, tk]) dθ

and, hence,

‖Cμ( fn)‖H1 ≤ 1

2π

∫ 2π

0

( ∞∑

k=1

[

sup
0≤t≤tk

∣
∣
∣gn(te

iθ )

∣
∣
∣

])

μ ([tk−1, tk]) dθ. (13)

Since μ is a vanishing Carleson measure μ ([tk−1, tk]) = o(2−k) and, hence, we have

μ ([tk−1, tk]) = εk

2k
, where εk ≥ 0and {εk} → 0.

On the other hand, looking at the proof of Theorem 1, we see that there exists C > 0
such that

∞∑

k=1

∫ tk+1

tk
M1(t, gn)dt ≤ C‖ fn‖H1 ≤ C, n ∈ N. (14)
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Take ε > 0 and then take N ∈ N so that εk ≤ ε
2CK , for all k ≥ N , where K is the

constant in the Hardy-Littlewood maximal estimate

1

2π

∫ 2π

0

[

sup
0<t<1

|F(teiθ )

]

dθ ≤ K‖F‖H1 .

Using (13) we see that

‖Cμ( fn)‖H1 ≤ I (n) + I I (n),

where

I (n) = 1

2π

∫ 2π

0

(
N∑

k=1

[

sup
0≤t≤tk

∣
∣
∣gn(te

iθ )

∣
∣
∣

])

μ ([tk−1, tk]) dθ,

I I (n) = 1

2π

∫ 2π

0

( ∞∑

k=N+1

[

sup
0≤t≤tk

∣
∣
∣gn(te

iθ )

∣
∣
∣

])

μ ([tk−1, tk]) dθ.

Using (14), we obtain

I I (n) ≤
∞∑

k=N+1

εk

2k
1

2π

∫ 2π

0

[

sup
0≤t≤tk

∣
∣
∣gn(te

iθ )

∣
∣
∣

]

dθ

≤ ε

2C

∞∑

k=1

1

2k
M1(tk, gn)

≤ ε

2C

∞∑

k=1

1

2k

∫ tk+1

tk
M1(t, gn)dt

≤ ε

2
.

Since fn → 0, uniformly on compact subsets of D, it is clear that I (n) → 0, as
n → ∞. Then it follows that there exists n0 ∈ N such that ‖Cμ( fn)‖H1 < ε whenever
n ≥ n0. Thus,we have shown that ‖Cμ( fn)‖H1 → 0, as n → ∞ and the compactness
of Cμ on H1 follows.

To deal with the cases 1 < p < 2 and 2 < p < ∞, we use again complex
interpolation.

Suppose first that 1 < p < 2 and μ is a vanishing Carleson measure. Recall that

H p = (H2, H1)θ , with θ = 2

p
− 1.

We have also that if 2 < s < ∞ then

H2 =
(
Hs, H1

)

α
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for a certain α ∈ (0, 1), namely, α = ( 1
2 − 1

s

)
/
(
1 − 1

s

)
. Since H2 is reflexive, and

Cμ is compact from H2 into H2 and from H1 into H1, Theorem 10 of [11] gives that
and Cμ is compact from H p into H p.

Suppose now that 2 < p < ∞ and μ is a vanishing Carleson measure. Let q be
conjugate exponent of p. Take q1 with 1 < q1 < q < 2. We have that Tμ is compact
from H2 into itself and continuous from Hq1 into Hq1 . Also, Hq = (H2, Hq1)θ for
a certain θ ∈ (0, 1). Then, Theorem 10 of [11] gives that and Tμ is compact from Hq

into Hq and, hence, Cμ is compact from H p into itself. �

3.3 The operators C� acting on H∞

For the constant function 1 we have

C(1)(z) = 1

z
log

1

1 − z
=

∞∑

n=0

zn

n + 1
, z ∈ D.

Consequently, C(H∞) 
⊂ H∞.
If μ is positive finite Borel measure on [0, 1) then

Cμ(1)(z) =
∫

[0,1)
dμ(t)

1 − t z
=

∞∑

n=0

μnz
n, z ∈ D.

So, it follows that

Cμ(1) ∈ H∞ ⇔
∫

[0,1]
dμ(t)

1 − t
< ∞ ⇔

∞∑

n=0

μn < ∞.

This easily implies the following result.

Theorem 4 Let μ be positive finite Borel measure on [0, 1). Then the following con-
ditions are equivalent.

(i) Cμ is a bounded operator from H∞ into itself.

(ii)
∫
[0,1]

dμ(t)
1−t < ∞.

(iii)
∑∞

n=0 μn < ∞.

Danikas and Siskakis [12] proved that

C(H∞) ⊂ BMOA ⊂ B.

Weextend this result obtaining a characterization of those positive finite Borelmeasure
μ on [0, 1) for which Cμ(H∞) ⊂ B.
Theorem 5 Let μ be positive finite Borel measure on [0, 1). Then the following con-
ditions are equivalent
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(i) Cμ is a bounded operator from H∞ into the Bloch space B.
(ii) μ is a Carleson measure.

Proof Let us start with the implication (i) ⇒ (ii). So, assume that Cμ(H∞) ⊂ B.
Then Cμ(1) ∈ B, but, as we have seen above

Cμ(1)(z) =
∞∑

n=0

μnz
n, z ∈ D,

and then, using the fact that the sequence {μn} is a decreasing sequence of nonnegative
numbers and Lemma B, we see that μn = O

( 1
n

)
which is equivalent to saying that μ

is a Carleson measure.
Let us turn now to prove the other implication. So, assume that μ is a Carleson

measure and take f ∈ H∞. Using the integral representation of Cμ we see that

Cμ( f )′(z) =
∫

[0,1)
t f ′(t z)
1 − t z

dμ(t) +
∫

[0,1)
t f (t z)

(1 − t z)2
dμ(t), z ∈ D.

Hence, using that f ∈ H∞ ⊂ B, we obtain

∣
∣Cμ( f )′(z)

∣
∣ ≤

∫

[0,1)
| f ′(t z)|
|1 − t z| dμ(t) +

∫

[0,1)
| f (t z)|

|1 − t z|2 dμ(t)

�
∫

[0,1)
dμ(t)

(1 − |t z|)2 , z ∈ D. (15)

Take z ∈ D and set r = |z|. Set also

φ(t) = μ([0, t)) − μ([0, 1)) = −μ([t, 1)), 0 ≤ t < 1.

Integrating by parts and using the fact that μ is a Carleson measure, we obtain

∫

[0,1)
dμ(t)

(1 − |t z|)2 =
∫

[0,1)
dμ(t)

(1 − tr)2
= μ([0, 1)) + 2r

∫ 1

0

μ([t, 1))
(1 − tr)3

dt

� μ([0, 1)) +
∫ 1

0

1 − t

(1 − tr)3
dt

= μ([0, 1)) +
∫ r

0

1 − t

(1 − tr)3
dt +

∫ 1

r

1 − t

(1 − tr)3
dt

� μ([0, 1)) +
∫ r

0

1

(1 − t)2
dt + 1

(1 − r)3

∫ 1

r
(1 − t) dt

� 1

1 − r
.

This and (15) yield that Cμ( f ) ∈ B. �
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It is natural to ask whether or not μ being a Carleson measure implies that
Cμ(H∞) ⊂ BMOA. We do not know the answer to this question.

4 The operators C� acting on Bergman spaces

The boundedness of the Cesàro operator on Bergman spaces was studied in [1] and
[35] where the following result was proved.

Theorem A If p > 0 and α > −1, then the Cesàro operator is bounded from Ap
α into

itself.

In the course of our proof of Theorem 1, we proved that if μ is a Carleson measure,
1 ≤ p < ∞, and f ∈ H p, then Mp(r , Cμ( f ) � Mp(r , f ) (see (4) and (6)). This
readily yields that that if μ is a Carleson measure, 1 ≤ p < ∞, and α > −1, then Cμ

is bounded from Ap
α into itself.

For p > 1 we shall give a different proof of this result and we shall also prove
that the converse is true. Hence, our work in particular will lead to a new proof of
the boundedness of the classical Cesàro operator on the spaces Ap

α (1 < p < ∞,
α > −1).

Theorem 6 Suppose that 1 < p < ∞ and α > −1. Let μ be a positive finite Borel
measure on [0, 1).Then the following conditions are equivalent.

(i) The measure μ is a Carleson measure.
(ii) The operator Cμ is bounded from Ap

α into itself.

Let us collect several results which will be needed in the proof of Theorem 6.
Let us start recalling the given 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the mean Lipschitz

space Λ
p
α consists of those functions f analytic in D having a non-tangential limit

almost everywhere for which ωp(δ, f ) = O(δα), as δ → 0, where ωp(., f ) is the
integral modulus of continuity of order p of the boundary values f (eiθ ) of f . A
classical result of Hardy and Littlewood [23] (see also Chapter 5 of [13]) asserts that
for 1 ≤ p ≤ ∞ and 0 < α ≤ 1, we have that Λp

α ⊂ H p and

Λp
α =

{

f analytic in D : Mp(r , f ′) = O

(
1

(1 − r)1−α

)

, as r → 1

}

.

The space Λ
p
α is a Banach space with the norm ‖ · ‖p,α given by

‖ f ‖p,α = | f (0)| + sup
0≤r<1

(1 − r)1−αMp(r , f ′).

Of special interest are the spacesΛ
p
1/p since they lie in the border of continuity. Indeed,

if 1 < p < ∞ and α > 1
p then each f ∈ Λ

p
α has a continuous extension to the closed

unit disc. This is not true for α = 1
p . This follows easily noticing that the function

f (z) = log(1 − z) belongs to Λ
p
1/p for all p ∈ (1,∞). Cima and Petersen proved
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in [9] that Λ2
1/2 ⊂ BMOA and this result was generalized by Bourdon, Shapiro and

Sledd who proved in [4] that

Λ
p
1/p ⊂ BMOA, 1 < p < ∞.

This was shown to be sharp in a very strong sense in [3].
The following result of Merchán [30, Lemma 1] (see also [18, Theorem 2] and [17,

Theorem 2]) will be needed in our work.

Lemma B Let f ∈ Hol(D), f (z) = ∑∞
n=0 anz

n (z ∈ D). Suppose that 1 < p < ∞
and that the sequence {an} is a decreasing sequence of nonnegative numbers. If 1 <

p < ∞ and X is a subspace of Hol(D) with Λ
p
1/p ⊂ X ⊂ B, then

f ∈ X ⇔ an = O

(
1

n

)

.

We shall also use some results on pointwise multipliers and coefficient multipliers
of Bergman spaces and Hardy spaces.

Let us start recalling that for g ∈ Hol(D), the multiplication operator Mg is defined
by

Mg( f )(z)
def= g(z) f (z), f ∈ Hol(D), z ∈ D.

If X and Y are two spaces of analytic functions in D (which will always be assumed
to be Banach or F-spaces continuously embedded in Hol(D)) and g ∈ Hol(D) then
g is said to be a pointwise multiplier from X to Y if Mg(X) ⊂ Y . The space of all
multipliers from X to Y will be denoted by M(X ,Y ). Using the closed graph theorem
we see that if g ∈ M(X ,Y ) then Mg is a bounded operator from X into Y . The
following result is a particular case of Theorem C of [37].

Theorem C Suppose that 1 < p < ∞ and α > −1. Then

M
(
Ap

α, Ap/(p+1)
α

)
= A1

α.

If X and Y are two spaces of analytic functions in D, a function F ∈ Hol(D) is said
to be a coefficient multiplier (or a convolution multiplier) from X to Y if

f ∈ X ⇒ F� f ∈ Y .

The following result is due to Duren and Shields, it is a particular case of [15, Theo-
rem 4].

Theorem D Suppose that 1 < p < ∞ and F ∈ Hol(D). Let m be a positive integer
such that (m + 1)−1 ≤ p

p+1 < m−1. Then F is a coefficient multiplier from H p/(p+1)

to H p if and only if the (m + 1)-th derivative F (m+1) of F satisfies

Mp

(
r , F (m+1)

)
= O

(
(1 − r)

1
p −1−m

)
.



51 Page 22 of 29 P. Galanopoulos et al.

We can now proceed to prove Theorem 6.
Proof of the implication (i) ⇒ (ii) in Theorem 6. Assume thatμ is a Carleson measure
and set

F(z) =
∞∑

n=0

μnz
n, z ∈ D.

Since μ is a Carleson measure μn = O
( 1
n

)
. This, the simple fact that {μn} is a

deceasing sequence of nonnegative numbers, and Lemma B imply that F ∈ Λ
p
1/p and,

hence

Mp(r , F
′) = O

(
(1 − r)

1
p−1

)
.

Using [13, Theorem 5.5], we see that this implies

Mp(r , F
(m+1)) = O

(
(1 − r)

1
p−1−m

)
, m = 1, 2, 3, . . . ,

and then Theorem D gives that F is a coefficient multiplier from H p/(p+1) into H p.
Trivially, this implies that

F is also a coefficient multiplier from Ap/(p+1)
α into Ap

α . (16)

Take f ∈ Ap
α . We have to prove that Cμ( f ) ∈ Ap

α . Set g(z) = f (z)
1−z (z ∈ D). A

simple computation shows that 1
1−z ∈ A1

α . Then, using Theorem C we deduce that

g ∈ Ap/(p+1)
α . This and (16) imply that F�g ∈ Ap

α . By Lemma 1 this is equivalent to
saying that Cμ( f ) ∈ Ap

α . �
Proof of the implication (ii) ⇒ (i) in Theorem 6. Suppose that Cμ is a bounded operator
on Ap

α . Let q be the exponent conjugate to p, that is, 1
p + 1

q = 1. Let Tμ be the adjoint

of Cμ, it is a bounded operator on Aq
α .

For 0 < b < 1, set

fb(z) = (1 − b)1−
1
q

(1 − bz)1+
α+1
q

=
∞∑

k=0

ak,bz
k, z ∈ D.

Using [39, Lemma 3.10], we see that

‖ fb‖qAq
α

� 1. (17)

Also,

ak,b � (1 − b)1−
1
q k(α+1)/qbk .
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For N ∈ N, set

fb,N (z) =
N∑

k=0

ak,bz
k, z ∈ D.

Bearing in mind Proposition 2 and Proposition 3, we see that

Tμ( fb,N )(z) =
N∑

n=0

(
N∑

k=n

μkak,b

)

zn .

Since the coefficients ak,b are nonnegative, it follows that the sequence of the Taylor
coefficients of Tμ( fb,N ) is a decreasing sequence of nonnegative numbers, then (see,
e. g., [20, Proposition 1])

‖Tμ( fb,N )‖q
Aq

α
�

N∑

n=1

nq−α−3

(
N∑

k=n

μkak,b

)q

� (1 − b)q−1
N∑

n=1

nq−α−3

(
N∑

k=n

k
α+1
q bk

∫

[b,1)
tk dμ(t)

)q

� (1 − b)q−1μ ([b, 1))q
N∑

n=1

nq−α−3

(
N∑

k=n

k
α+1
q b2k

)q

.

Since fb,N → fb in Aq
α as N → ∞, using the fact that Tμ is bounded on Aq

α , (17),
and simple estimations, we deduce that

1 � (1 − b)q−1μ ([b, 1))q
∞∑

n=1

nq−α−3

( ∞∑

k=n

k
α+1
q b2k

)q

� (1 − b)q−1μ ([b, 1))q
∞∑

n=1

nq−α−3nα+1

( ∞∑

k=n

b2k
)q

� (1 − b)q−1μ ([b, 1))q
∞∑

n=1

nq−2 b2nq

(1 − b)q

�
(

μ ([b, 1))
1 − b

)q

.

Hence, μ is a Carleson measure. �
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5 The operators C� acting on BMOA and on the Bloch space

Let λ be defined by λ(z) = log 1
1−z (z ∈ D). Then λ ∈ BMOA. In fact, it is true that

λ ∈ Λ
p
1/p for all p > 1. Danikas and Siskakis [12] observed that C(λ) /∈ BMOA.

This implies that the Cesàro operator does not map BMOA into itself. Our Theorem 3
includes a characterization of those μ so that Cμ maps BMOA into itself.

Since Λ2
1/2 ⊂ BMOA ⊂ B, Theorem 3 follows from the following result.

Theorem 7 Let μ be a positive finite Borel measure on [0, 1) and let X and Y be two
Banach subspaces of Hol(D) with Λ2

1/2 ⊂ X ⊂ B and Λ2
1/2 ⊂ Y ⊂ B. Then the

following conditions are equivalent.

(i) The measure μ is a 1-logarithmic 1-Carleson measure.
(ii) The operator Cμ is bounded from X into Y .

Proof Let us start showing that (i) ⇒ (ii). So assume that μ is a 1-logarithmic 1-
Carleson measure and take f ∈ X . We recall that μ being a 1-logarithmic 1-Carleson
measure is equivalent to

μn = O

(
1

n log(n + 1)

)

. (18)

Take f ∈ X , f (z) = ∑∞
n=0 anz

n (z ∈ D). Since X ⊂ B, we have that f ∈ B. Then,
using a result of Kayumov and Wirths (see [27, Corollary 4] or [28, Corollary D]), we
have

∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣
� ‖ f ‖B log(n + 1). (19)

The estimates (18) and (19) yield

M2
2 (r , Cμ( f )′) =

∞∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣

2

r2n−2 �
∞∑

n=1

r2n−2 � 1

1 − r
.

Hence Cμ( f ) ∈ Λ2
1/2 ⊂ Y .

Suppose now that Cμ(X) ⊂ Y . As above, set λ(z) = log 1
1−z =

∞∑
n=1

zn
n (z ∈ D).

We have that λ ∈ X and then Cμ(λ) ∈ Y ⊂ B. Now, Cμ(λ)(z) =
∞∑
n=1

μn

(
n∑

k=1

1
k

)

zn

and then it follows that

∞∑

n=1

nμn

(
n∑

k=1

1

k

)

rn � 1

1 − r
, r ∈ (0, 1).
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For N ≥ 2 take rN = 1 − 1
N . Bearing in mind that the sequence {μn} is decreasing,

simple estimations lead us to the following

N 2μN log N � μN

N∑

n=1

n log n

�
N∑

n=1

nμn(log n)rnN

�
N∑

n=1

nμn

(
n∑

k=1

1

k

)

rnN

�
∞∑

n=1

nμn

(
n∑

k=1

1

k

)

rnN

� N .

Hence μN � 1
N log N which implies that μ is a 1-logarithmic 1-Carleson measure. �

We have the following result concerning compactness.

Theorem 8 Let μ be a positive finite Borel measure on [0, 1) and let X and Y be two
Banach subspaces of Hol(D) with Λ2

1/2 ⊂ X ⊂ B and Λ2
1/2 ⊂ Y ⊂ B. Then the

following four conditions are equivalent.

(i) μ is a vanishing 1-logarithmic 1-Carleson measure.
(ii) The operator Cμ is a compact operator from X into Y .
(iii) The operator Cμ is a compact operator from the Bloch space B into itself.
(iv) The operator Cμ is a compact operator from the BMOA into itself.

Proof Clearly, it suffices to prove that (i) and (ii) are equivalent. Let us prove first that
(i) implies (ii). So, assume that μ is a vanishing 1-logarithmic 1-Carleson measure
and Λ2

1/2 ⊂ X ,Y ⊂ B.
Take { f j } ⊂ X with ‖ f j‖X ≤ 1, for all j , and f j → 0, as j → ∞, uniformly on

compact subsets of D. Since X is continuously embedded in B, { f j } ⊂ B and there
exists K1 > 0 such that ‖ f ‖B ≤ K1, for all j .

Say f j (z) = ∑∞
k=0 a

( j)
k zk (z ∈ D). Using the result of Kayumov and Wirths that

we have mentioned above, we see that there exists K2 > 0 such that

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣
≤ K2‖ f j‖B log(n + 1) ≤ K1K2 log(n + 1), for all n and j .

Set K = K1K2.

Sinceμ is a vanishing 1-logarithmic 1-Carleson measure,μn = o
(

1
n log(n+1)

)
. Say

μn = εn
n log(n+1) , with {εn} → 0. Take ε > 0. Take N ∈ N such that ε2nK

2 < ε
2 if
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n ≥ N . We have, for all j ∈ N and 0 < r < 1,

M2
2

(
r , Cμ( f j )

′) =
∞∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣

2

r2n−2

≤
N∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣

2

+
∞∑

n=N+1

n2μ2
nK

2[log(n + 1)]2r2n−2

≤
N∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣

2

+ ε/2

1 − r
.

Thus,

sup
0≤r<1

(1 − r)M2
2

(
r , Cμ( f j )

′) ≤ ε

2
+

N∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣

2

, j ∈ N.

Now, since
∑N

n=1 n
2μ2

n

∣
∣
∣
∑n

k=0 a
( j)
k

∣
∣
∣
2 → 0 and f j (0) → 0, as j → ∞, it follows that

there exists j0 ∈ N such that

| f j (0)| +
N∑

n=1

n2μ2
n

∣
∣
∣
∣
∣

n∑

k=0

a( j)
k

∣
∣
∣
∣
∣

2

<
ε

2

for all j ≥ j0. With this we have proved that Cμ( f j ) → 0 in Λ2
1/2. Since Λ2

1/2 is
continuously embedded in Y , it follows that Cμ( f j ) → 0 in Y .

Let us prove now that (ii) implies (i). Assume that Λ2
1/2 ⊂ X ,Y ⊂ B and that Cμ

is compact from X into Y . For 0 < a < 1, set

fa(z) =
(

log
2

1 − a

)−1 (

log
2

1 − az

)2

, z ∈ D.

We have that

f ′
a(z) =

(

log
2

1 − a

)−1 (

log
2

1 − az

)
2a

1 − az
, z ∈ D, 0 < a < 1.

Then it is clear that fa ∈ Λ2
1/2 for all a ∈ [0, 1) and that there exists a constant M1 > 0

such that ‖ fa‖2,1/2 ≤ M1, for all a ∈ (0, 1). Since Λ2
1/2 is continuously embedded

in X , it follows that fa ∈ X for all a ∈ [0, 1) and that there exists M > 0 such that
‖ fa‖X ≤ M, for all a ∈ (0, 1). Also, fa → 0, as a → 1, uniformly on compact
subsets of D. Since Cμ is compact from X into Y , we have that ‖Cμ( fa)‖Y → 0, as
a → 1. This, together with the fact that Y is continuously embedded in B, implies



Cesàro-like operators acting on spaces of... Page 27 of 29 51

that

‖Cμ( fa)‖B → 0, as a → 1. (20)

A simple calculation gives that for 0 < a < 1 and z ∈ D,

Cμ( fa)
′(z) =

∫

[0,1)

[
t f ′

a(t z)

1 − t z
+ t fa(t z)

(1 − t z)2

]

dμ(t).

Then it follows that, for 0 < a < 1,

∣
∣Cμ( fa)

′(a)
∣
∣ = Cμ( fa)

′(a)

≥
∫

[0,1)
t fa(ta)

(1 − ta)2
dμ(t)

=
(

log
2

1 − a

)−1 ∫

[0,1)

t
(
log 2

1−ta

)2

(1 − ta)2
dμ(t)

≥
(

log
2

1 − a

)−1 ∫

[a,1)

t
(
log 2

1−ta

)2

(1 − ta)2
dμ(t)

≥
(

log
2

1 − a

)−1

μ ([a, 1))
a

(
log 2

1−a2

)2

(1 − a2)2
.

This gives that

μ ([a, 1)) � (1 − a)

(

log
2

1 − a

)−1

‖Cμ( fa)‖B.

This and (20) imply that μ is a vanishing 1-logarithmic 1-Carleson measure. �
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