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Abstract
In this paper, we determine the sharp estimates for Toeplitz determinants of a subclass
of close-to-convex harmonic mappings. Moreover, we obtain an improved version
of Bohr’s inequalities for a subclass of close-to-convex harmonic mappings, whose
analytic parts are Ma-Minda convex functions.
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1 Introduction

A complex-valued function f in the unit disk D = {z : |z| < 1} is called a harmonic
mapping if � f = 4 fzz = 0. Let H denote the class of sense-preserving harmonic
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mappings f = h + g in D, where

h(z) = z +
∞∑

n=2

anz
n and g(z) =

∞∑

n=1

bnz
n (1.1)

are analytic functions in D. Let SH be the subclass of H consisting of univalent
mappings. We observe that SH reduces to the class S of normalized univalent analytic
functions, if the co-analytic part g ≡ 0. Denote by KH the close-to-convex subclass
of SH. If b1 = 0, then the class KH reduces to K0

H.
Lewy [37] proved that f = h+g is locally univalent inD if and only if the Jacobian

J f = ∣∣h′∣∣2− ∣∣g′∣∣2 �= 0 inD. Noting that the harmonic mapping f is sense-preserving,
i.e. J f > 0 or

∣∣h′∣∣ >
∣∣g′∣∣ inD. At this point, its dilatation ω f = g′/h′ has the property∣∣ω f

∣∣ < 1 inD. The reader can findmuch information about planar harmonicmappings
from [18,22,46].

Let P denote the class of analytic functions p in D of the form

p(z) = 1 +
∞∑

n=1

pnz
n (1.2)

such that Re(p(z)) > 0 in D.

Denote by A the class of analytic functions in D with f (0) = f ′(0) − 1 = 0, and
K(α) denotes the class of functions f ∈ A such that

Re

(
1 + z f ′′(z)

f ′(z)

)
> α

(
−1

2
≤ α < 1; z ∈ D

)
. (1.3)

Particularly, the elements in K(−1/2) are close-to-convex but are not necessarily
starlike in D. For 0 ≤ α < 1, the elements in K(α) are known to be convex functions
of order α in D. For more properties of starlike and convex functions, the reader can
refer to the monographs [23,53].

By making use of the subordination in analytic functions, Ma and Minda [42]
introduced a more general class C(φ), consisting of functions in S for which

1 + z f ′′(z)
f ′(z)

≺ φ(z).

Here the function φ : D → C, called Ma-Minda function, is analytic and univalent
in D such that φ(D) has positive real part, symmetric with respect to the real axis,
starlike with respect to φ(0) = 1 and φ′(0) > 0 (for more details, see [50,57]). A
Ma-Minda function has the form

φ(z) = 1 +
∞∑

n=1

Bnz
n .
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The extremal function K for the class C(φ) is given by

K (z) =
∫ z

0
exp

(∫ ζ

0

φ(t) − 1

t
dt

)
dζ (z ∈ D), (1.4)

which satisfies the condition

1 + zK ′′(z)
K ′(z)

= φ(z).

We recall the following natural class of close-to-convex harmonic mappings
M(α, ζ, n), due to Wang et al. [56] (see also [47,55]).

Definition 1.1 A harmonic mapping f = h + g ∈ H is said to be in the class
M(α, ζ, n) if h ∈ K(α), for some α ∈ [−1/2, 1), given by (1.3) and g satisfies
the condition

g′(z) = ζ znh′(z)
(

ζ ∈ C with |ζ | ≤ 1

2n − 1
; n ∈ N := {1, 2, 3, · · · }

)
. (1.5)

For n = 1, α = −1/2 and |ζ | = 1, the class M(−1/2, ζ, 1) was introduced by
Bharanedhar and Ponnusamy [12]. For n = 1, the class M(α, ζ, 1) was studied in
[9,52].

In 2021, Allu and Halder [9] introduced and investigated the following subclass
HC(φ) of close-to-convex harmonic mappings.

Definition 1.2 For ζ ∈ C with |ζ | ≤ 1, let HC(φ) denote the class of harmonic
mappings f = h + g in D of the form (1.1), whose analytic part h belongs to C(φ)

and h′(0) �= 0, along with the condition g′(z) = ζ zh′(z).

Motivated essentially by the classesM(α, ζ, n) andHC(φ), we define a new sub-
classHCn(φ) of close-to-convex harmonic mappings as follows:

Definition 1.3 A harmonic mapping f = h + g ∈ H is said to be in the classHCn(φ)

if h ∈ C(φ) and g satisfies the condition (1.5).

In 2019, Sun et al. [51] investigated upper bounds of the third Hankel determinants
for the class M(α, 1, 1) of close-to-convex harmonic mappings. In recent years, the
Toeplitz determinants and Hankel determinants of functions in the class S or its sub-
classes have attracted many researchers’ attention (see [11,17,19,20,28,29,33–36]).
Among them, the symmetric Toeplitz determinant |Tq(n)| for subclasses of S with
small values of n and q, are investigated by [2,7,10,49,54,58].

The symmetric Toeplitz determinant Tq(n) for analytic functions f is defined as
follows:

Tq(n)[ f ] :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣

,
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where n, q ∈ N and a1 = 1. In particular, for functions in starlike and convex classes,
T2(2)[ f ], T3(1)[ f ] and T3(2)[ f ] were studied by Ali et al. [7].

Let B be the class of analytic functions f in D such that | f (z)| < 1 for all z ∈ D,
and let B0 = { f ∈ B : f (0) = 0}. In 1914, Bohr [16] proved that if f ∈ B is of
the form f (z) = ∑∞

n=0 anz
n , then the majorant series M f (r) = ∑∞

n=0 |an||z|n of f
satisfies

M f0(r) =
∞∑

n=1

|an||z|n ≤ 1 − |a0| = d( f (0), ∂ f (D)) (1.6)

for all z ∈ Dwith |z| = r ≤ 1/3, where f0(z) = f (z)− f (0). Bohr actually obtained
the inequality (1.6) for |z| ≤ 1/6. Moreover, Wiener, Riesz and Schur, independently,
established the Bohr inequality (1.6) for |z| ≤ 1/3 (known as Bohr radius for the class
B) and proved that 1/3 is the best possible.

TheBohr phenomenonwas reappeared in the 1990s due toDixon [21]. Furthermore,
Boas and Khavinson [15] found bounds for Bohr’s radius in any complete Reinhard
domains. Other works one can see [3,4,14,44,45]. In recent years, Bohr inequality
and Bohr radius have become an active research field in geometric function theory
(see [6,8,27,31,38,40,43]). Furthermore, initiated by the work of [32], the Bohr’s
phenomenon for the complex-valued harmonic mappings have been widely studied
(see [1,9,25,26,30,41]).

In this paper, we aim at determining the sharp estimates for Toeplitz determinants
of the class M(α, ζ, n). Moreover, we will derive an improved version of Bohr’s
inequalities for the classHCn(φ).

2 Preliminary results

To prove our main results, we need the following lemmas.

Lemma 2.1 ([23, p. 41]) For a function p ∈ P of the form (1.2), the sharp inequality
|pn| ≤ 2 holds for each n ≥ 1. Equality holds for the function

p(z) = 1 + z

1 − z
.

Lemma 2.2 ([24, Theorem 1]) Let p ∈ P be of the form (1.2) and μ ∈ C. Then

|pn − μpk pn−k | ≤ 2max{1, |2μ − 1|} (1 ≤ k ≤ n − 1).

If |2μ − 1| ≥ 1, then the inequality is sharp for the function

p(z) = 1 + z

1 − z

or its rotations. If |2μ − 1| < 1, then the inequality is sharp for

p(z) = 1 + zn

1 − zn
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or its rotations.

Lemma 2.3 ([56]) Let f = h+g ∈ M(α, ζ, n). Then the coefficients ak (k ∈ N\{1})
of h satisfy

|ak | ≤ 1

k!
k∏

j=2

( j − 2α) (k ∈ N \ {1}). (2.1)

Moreover, the coefficients bk (k = n + 1, n + 2, . . . ; n ∈ N) of g satisfy

|bn+1| ≤ |ζ |
n + 1

and |bk+n| ≤ |ζ |
(k + n)(k − 1)!

k∏

j=2

( j − 2α) (k ∈ N \ {1}; n ∈ N).

(2.2)
The bounds are sharp for the extremal function given by

f (z) =
∫ z

0

dt

(1 − δt)2−2α +
∫ z

0

ζ tn

(1 − δt)2−2α dt (|δ| = 1; z ∈ D). (2.3)

Lemma 2.4 ([56]) Let f ∈ M(α, ζ, n) with 0 ≤ α < 1 and 0 ≤ ζ < 1
2n−1 (n ∈ N).

Then
	(r;α, ζ, n) ≤ | f (z)| ≤ 
(r;α, ζ, n) (r = |z| < 1), (2.4)

where

	(r;α, ζ, n)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log(1 + r) − ζ rn+1
2F1(1, n + 1; n + 2; −r)

n + 1
(α = 1/2),

(1 + r)2α−1 − 1

2α − 1
− ζ rn+1

2F1(n + 1, 2 − 2α; n + 2; −r)

n + 1
(α �= 1/2),

and


(r;α, ζ, n)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− log(1 − r) + ζ rn+1
2F1(1, n + 1; n + 2; r)

n + 1
(α = 1/2),

1 − (1 − r)2α−1

2α − 1
+ ζ rn+1

2F1(n + 1, 2 − 2α; n + 2; r)
n + 1

(α �= 1/2).
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All these bounds are sharp, the extremal function is fα,ζ,n = hα+gα,ζ,n or its rotations,
where

fα,ζ,n(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− log(1 − z) + ζ zn+1
2F1(1, n + 1; n + 2; z)

n + 1
(α = 1/2),

1 − (1 − z)2α−1

2α − 1
+ ζ zn+1

2F1(n + 1, 2 − 2α; n + 2; z)

n + 1
(α �= 1/2).

(2.5)

The following two results are due to Ma and Minda [42].

Lemma 2.5 Let f ∈ C(φ). Then z f ′′(z)/ f ′(z) ≺ zK ′′(z)/K ′(z) and f ′(z) ≺ K ′(z),
where K is given by (1.4).

Lemma 2.6 Assume that f ∈ C(φ) and |z| = r < 1. Then

K ′(−r) ≤ | f ′(z)| ≤ K ′(r), (2.6)

where K is given by (1.4). Equality holds for some z �= 0 if and only if f is a rotation
of K .

Lemma 2.7 ([13]) Let f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n be two analytic
functions in D and g ≺ f . Then

∞∑

n=0

|bn|rn ≤
∞∑

n=0

|an|rn (2.7)

for |z| = r ≤ 1/3.

Remark 2.1 Lemma 2.7 continues to hold for quasi-subordination (cf. [5]). Moreover,
the bound 1/3 is optimal as shown by [48, Lemma 1].

3 Toeplitz determinants for the classM(˛, �,n)

In this section, wewill give several sharp estimates for Toeplitz determinants |Tq (n)[·]|
of functions in the class M(α, ζ, n).

Theorem 3.1 Let f ∈ M(α, ζ, n). Then

|T2(n)[h]| ≤
⎛

⎝ 1

n!
n∏

j=2

( j − 2α)

⎞

⎠
2

+
⎛

⎝ 1

(n + 1)!
n+1∏

j=2

( j − 2α)

⎞

⎠
2

(n ∈ N\{1}),
(3.1)

and

|T2(n)[g]| ≤ 1

[(2n − 1)(n + 1)]2 . (3.2)

The inequalities in (3.1) and (3.2) are sharp for the extremal function given by (2.3).
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Proof Suppose that f ∈ M(α, ζ, n). By Lemma 2.3, we see that

|T2(n)[h]| = |a2n − a2n+1| ≤ |a2n | + |a2n+1| (3.3)

yields (3.1). Equality in (3.3) holds for the function h given by

h(z) =
∫ z

0

dt

(1 − δt)2−2α

= z + 1

2
(2 − 2α)δ2z2 + 1

6
(2 − 2α)(3 − 2α)δ3z3

+ 1

24
(2 − 2α)(3 − 2α)(4 − 2α)δ4z4

+ 1

120
(2 − 2α)(3 − 2α)(4 − 2α)(5 − 2α)δ5z5 + · · · (|δ| = 1; z ∈ D).

(3.4)
By virtue of (2.2), we get the assertion (3.2). The proof of Theorem 3.1 is thus com-
pleted. ��
Corollary 3.1 Let f ∈ M(α, ζ, 2). Then

|T2(2)[h]| ≤ 2

9
(1 − α)2

(
2α2 − 6α + 9

)
, (3.5)

and

|T2(2)[g]| ≤ 1

81
. (3.6)

The inequalities in (3.5) and (3.6) are sharp for the extremal function given by (2.3)
with n = 2.

Theorem 3.2 Let f ∈ M(α, ζ, 1). Then

|T3(1)[h]| ≤
{

1
9

(
8α4 − 34α3 + 71α2 − 72α + 36

)
(− 1

2 ≤ α ≤ 1
2 ),

1
9

(−2α3 + 25α2 − 44α + 30
)

( 12 ≤ α < 1),
(3.7)

and

|T3(1)[g]| ≤ 1

3
(1 − α). (3.8)

The inequality in (3.7) is sharp for the function h given by (3.4), and the inequality in
(3.8) is sharp for the function g defined by

g(z) =
∫ z

0

ζ t

(1 − δt)2−2α dt (|δ| = 1; |ζ | ≤ 1; z ∈ D). (3.9)

Proof For f ∈ M(α, ζ, 1), we see that

p(z) = 1

1 − α

(
1 + zh′′(z)

h′(z)
− α

)
∈ P

(
−1

2
≤ α < 1; z ∈ D

)
.
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It follows that

n(n − 1)an = (1 − α)

n−1∑

k=1

kak pn−k (n ≥ 2). (3.10)

From (3.10), we obtain

⎧
⎪⎨

⎪⎩

a2 = 1
2 (1 − α)p1,

a3 = 1
6 (1 − α)

[
(1 − α)p21 + p2

]
,

a4 = 1
24 (1 − α)

[
(1 − α)2 p31 + 3(1 − α)p1 p2 + 2p3

]
.

(3.11)

By virtue of Lemma 2.2 and (3.11), we get

|T3(1)[h]| =
∣∣∣1 − 2a22 + 2a22a3 − a23

∣∣∣

≤ 1 + 2
∣∣∣a22

∣∣∣ + |a3|
∣∣∣a3 − 2a22

∣∣∣

≤ 1 + 1

2
(1 − α)2 p21 + 1

36
(1 − α)2|(1 − α)p21 + p2||p2 − 2(1 − α)p21|

≤
{

1
9

(
8α4 − 34α3 + 71α2 − 72α + 36

)
(− 1

2 ≤ α ≤ 1
2 ),

1
9

( − 2α3 + 25α2 − 44α + 30
)

( 12 ≤ α < 1).
(3.12)

In what follows, we shall prove that the equality in (3.12) holds for the function h
given by (3.4). It follows from (3.4) that

{
|a2| = 1 − α,

|a3| = 1
3 (1 − α)(3 − 2α).

(3.13)

Therefore, we obtain

|T3(1)[h]| =
∣∣∣1 − 2a22 + 2a22a3 − a23

∣∣∣

≤ 1 + 2
∣∣∣a22

∣∣∣ + |a3|
∣∣∣a3 − 2a22

∣∣∣

= 1 + 2(1 − α)2 + 1

3
(1 − α)(3 − 2α)

∣∣∣∣
1

3
(1 − α)(3 − 2α) − 2(1 − α)2

∣∣∣∣

=
{

1
9

(
8α4 − 34α3 + 71α2 − 72α + 36

)
(− 1

2 ≤ α ≤ 1
2 ),

1
9

( − 2α3 + 25α2 − 44α + 30
)

( 12 ≤ α < 1).
(3.14)

The graph of |T3(1)[h]| with α ∈ [−1/2, 1) is presented as Fig. 1.
By the power series representations of h and g for f = h + g ∈ M(α, ζ, 1), we

find that

(k + 1)bk+1 = ζkak (k ∈ N; |ζ | ≤ 1; a1 = 1),
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Fig. 1 The left graph is |T3(1)[h]| of 1
9
(
8α4−34α3+71α2−72α+36

)
and 1

9
(−2α3+25α2−44α+30

)
,

respectively; The right graph is a locally enlarged version

which implies that {
b2 = 1

2ζa1,

b3 = 2
3ζa2.

(3.15)

Thus, by Lemma 2.1, (3.11) and (3.15), we deduce that the assertion (3.8) of Theorem
3.2 is true. The sharpness of (3.8) follows from (3.7). ��

Theorem 3.3 Let f ∈ M(α, ζ, 2). Then

|T3(2)[h]| ≤
{

1
108

(
1 − α)3(2α2 − 7α + 12)(10α2 − 27α + 36

)
(− 1

2 ≤ α ≤ 1
7 ),

5
108

(
1 − α)3(2α2 − 7α + 12)(2α2 − 4α + 7

)
( 17 ≤ α < 1),

(3.16)
and

|T3(2)[g]| = |2b23b4| ≤ 1

243
(1 − α) . (3.17)

The inequality in (3.16) is sharp for the function h given by (3.4), and the inequality
in (3.17) is sharp for the function g defined by

g(z) =
∫ z

0

ζ t2

(1 − δt)2−2α dt

(
|δ| = 1; |ζ | ≤ 1

3
; z ∈ D

)
. (3.18)

.

Proof Suppose that f ∈ M(α, ζ, 2). It follows that

T3(2)[h] = (a2 − a4)
(
a22 − 2a23 + a2a4

)
.
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In view of (3.11) and Lemma 2.1, we find that

|a2 − a4| ≤ |a2| + |a4|
≤

∣∣∣∣
1

2
(1 − α)p1

∣∣∣∣ +
∣∣∣∣
1

24
(1 − α)

[
(1 − α)2 p31 + 3(1 − α)p1 p2 + 2p3

]∣∣∣∣

≤ 1

6

(
1 − α)(2α2 − 7α + 12

)
.

(3.19)
Next, we shall maximize

∣∣a22 − 2a23 + a2a4
∣∣. With the help of (3.11), Lemma 2.1 and

Lemma 2.2, we get

|a22 − 2a23 + a2a4|

= (1 − α)2

144
| − 5(1 − α)2 p41 + 36p21 − 7(1 − α)p21 p2 − 8p22 + 6p1 p3|

≤ (1 − α)2

144

[
5(1 − α)2|p1|4 + 36|p1|2 + 8|p2|2 + 6|p1|

∣∣∣∣p3 − 7

6
(1 − α)p1 p2

∣∣∣∣

]

≤
{

1
18

(
1 − α)2

(
10α2 − 27α + 36

)
(− 1

2 ≤ α ≤ 1
7 ),

5
18

(
1 − α)2

(
2α2 − 4α + 7

)
( 17 ≤ α < 1).

(3.20)
Therefore, combining (3.19) with (3.20), we obtain (3.16). By noting that for f ∈
M(α, ζ, 2), we have {

b3 = 1
3ζa1,

b4 = 1
2ζa2.

(3.21)

By means of Lemma 2.1, we get the assertion (3.17). The sharpness of (3.16) and
(3.17) are similar to that of Theorem 3.2, we choose to omit the details here. ��
Remark 3.1 By setting α = 0 in Corollary 3.1, Theorem 3.2 and Theorem 3.3, respec-
tively, we get |T2(2)[h]| ≤ 2, |T3(1)[h]| ≤ 4 and |T3(2)[h]| ≤ 4. The bounds for
convex functions were recently proved by Ali et al. [7, Theorem 2.11].

4 Bohr inequality for the classHCn(�)

In this section, we firstly give the sharp growth estimate for the classHCn(φ).

Proposition 4.1 Let f ∈ HCn(φ). Then

L(ζ, n, r) ≤ | f (z)| ≤ R(ζ, n, r), (4.1)

where

L(ζ, n, r) = −K (−r) − |ζ |
∫ r

0
tnK ′(−t)dt, (4.2)

and

R(ζ, n, r) = K (r) + |ζ |
∫ r

0
tnK ′(t)dt . (4.3)
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The bounds are sharp for the extremal function fζ = hζ + gζ with hζ = K, where K
satisfies (1.4) or its rotations and gζ satisfies g′

ζ = ζ znh′
ζ .

Proof Let f = h + g ∈ HCn(φ). By Lemma 2.6, we know that

K ′(−r) ≤ |h′(z)| ≤ K ′(r) (|z| = r). (4.4)

Let γ be the linear segment joining 0 to z in D. Then, we see that

| f (z)| =
∣∣∣∣
∫

γ

∂ f

∂θ
dθ + ∂ f

∂θ
dθ

∣∣∣∣ ≤
∫

γ

(|h′(θ)| + |g′(θ)|) |dθ |

=
∫

γ

(
1 + |ζ ||θ |n) |h′(θ)| |dθ |. (4.5)

Combining (4.4) and (4.5), we obtain

| f (z)| ≤
∫ r

0

(
1 + |ζ |tn) K ′(t) dt = K (r) + |ζ |

∫ r

0
tnK ′(t) dt = R(ζ, n, r). (4.6)

Let  be the preimage of the line segment joining 0 to f (z) under the function f . It
follows that

| f (z)| =
∣∣∣∣
∫



∂ f

∂θ
dθ + ∂ f

∂θ
dθ

∣∣∣∣ ≥
∫



(|h′(θ)| − |g′(θ)|) |dθ |

=
∫



(
1 − |ζ ||θ |n) |h′(θ)| |dθ |.

(4.7)

From (4.4) and (4.7), we have

| f (z)| ≥
∫ r

0

(
1 − |ζ |tn) K ′(−t) dt = −K (−r) − |ζ |

∫ r

0
tnK ′(−t) dt = L(ζ, n, r).

(4.8)
In view of (4.6) and (4.8), we deduce that

L(ζ, n, r) ≤ | f (z)| ≤ R(ζ, n, r). (4.9)

To show the sharpness, we consider the function fζ = hζ + gζ with hζ = K or
its rotations. It is easy to see that hζ = K ∈ C(φ) and gζ satisfies g′

ζ (z) = ζ znh′
ζ (z),

which shows that fζ ∈ HCn(φ). The equality holds on both sides of (4.4) for suitable
rotations of K . For 0 ≤ ζ < 1/(2n − 1), we see that fζ (r) = R(ζ, n, r) and fζ (−r) =
−L(ζ, n, r). Hence | fζ (r)| = R(ζ, n, r) and | fζ (−r)| = L(ζ, n, r). This completes
the proof of Proposition 4.1. ��



28 Page 12 of 21 X.-Y. Wang et al.

Proposition 4.2 Let f ∈ HCn(φ) and Sr be the area of the image f (Dr ) (Dr := {z ∈
C : |z| < r ≤ 1}). Then

2π
∫ r

0
t
(
1 − |ζ |2t2n

)
(K ′(−t))2 dt ≤ Sr ≤ 2π

∫ r

0
t
(
1 − |ζ |2t2n

)
(K ′(t))2 dt .

(4.10)

Proof Let f = h + g ∈ HCn(φ). Then, the area of image of Dr under a harmonic
mapping f is given by

Sr =
∫∫

Dr

(
|h′(z)|2 − |g′(z)|2

)
dxdy =

∫∫

Dr

(
1 − |ζ |2|z|2n

)
|h′(z)|2dxdy.

(4.11)
Since h ∈ C(φ), in view of (4.4) and (4.11), we have

∫ r

0

∫ 2π

0
t
(
1 − |α|2t2

)
(K ′(−t))2dθdt ≤ Sr ≤

∫ r

0

∫ 2π

0
t
(
1 − |α|2t2

)
(K ′(t))2dθdt .

(4.12)
Therefore, the assertion (4.10) of Proposition 4.2 follows directly from (4.12). ��

In what follows, we derive the Bohr inequality for the classHCn(φ).

Theorem 4.1 Let f ∈ HCn(φ). Then the majorant series of f satisfies the inequality

|z| +
∞∑

n=2

(|an| + |bn|)|z|n ≤ d( f (0), ∂ f (D)) (4.13)

for |z| = r ≤ min{1/3, r f }, where r f is the smallest positive root in (0, 1) of

L(ζ, n, 1) = MK (r) + |ζ |
∫ r

0
tnMK ′(t) dt,

and L(ζ, n, 1) is given by (4.2) with r = 1.

Proof Let f = h + g ∈ HCn(φ). Since h ∈ C(φ), from Lemma 2.5, we know that

h′ ≺ K ′. (4.14)

Let K (z) = z +
∞∑
n=2

knzn . In view of Lemma 2.7 and (4.14), we have

1 +
∞∑

n=2

n|an|rn−1 = Mh′(r) ≤ MK ′(r) = 1 +
∞∑

n=2

n|kn|rn−1 (4.15)

for |z| = r ≤ 1/3. By integrating (4.15) with respect to r from 0 to r , we get

Mh(r) = r +
∞∑

n=2

|an|rn ≤ r +
∞∑

n=2

|kn|rn = MK (r) (r ≤ 1/3). (4.16)
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From the definition of HCn(φ), we know that

g′(z) = ζ znh′(z).

This relationship along with (4.15) yields

∞∑

n=2

n|bn|rn−1 = Mg′(r) = |ζ |rnMh′(r) ≤ |ζ |rnMK ′(r) (r ≤ 1/3). (4.17)

By integrating (4.17) with respect to r from 0 to r , it follows that

Mg(r) =
∞∑

n=2

|bn|rn ≤ |ζ |
∫ r

0
tnMK ′(t)dt (r ≤ 1/3). (4.18)

Therefore, for |z| = r ≤ 1/3, from (4.16) and (4.18), we obtain

M f (r) = |z|+
∞∑

n=2

(|an|+|bn|)rn ≤ MK (r)+|ζ |
∫ r

0
tnMK ′(t)dt = RC(n, r). (4.19)

In viewof (4.1), it is evident that theEuclideandistance between f (0) and the boundary
of f (D) is given by

d( f (0), ∂ f (D)) = lim inf|z|→1
| f (z) − f (0)| ≥ L(ζ, n, 1). (4.20)

We note that RC(n, r) ≤ L(ζ, n, 1)whenever r ≤ r f , where r f is the smallest positive
root of RC(n, r) = L(ζ, n, 1) in (0, 1). Let

H1(n, r) = RC(n, r) − L(ζ, n, 1).

Then H1(n, r) is a continuous function in [0, 1]. Since

MK (r) ≥ K (r) > −K (−r),

it follows that

H1(n, 1) = RC(n, 1) − L(ζ, n, 1)

= MK (1) + K (−1) + |ζ |
∫ r

0
tn

(
MK ′(t) + K ′(t)

)
dt

≥ K (1) + K (−1) + |ζ |
∫ r

0
tn

(
MK ′(t) + K ′(t)

)
dt > 0.

(4.21)

On the other hand,

H1(n, 0) = −L(ζ, n, 1) = K (−1)(1 − |ζ |) + n|ζ |
∫ 1

0
tn−1K (−t) dt < 0. (4.22)
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Therefore, H1 has a root in (0, 1). Let r f be the smallest root of H1 in (0, 1). Then
RC(n, r) ≤ L(ζ, n, 1) for r ≤ r f . Now, in view of the inequalities (4.19) and (4.20)
with the relationship RC(n, r) ≤ L(ζ, n, 1) for r ≤ r f , we obtain

|z| +
∞∑

n=2

(|an| + |bn|)rn ≤ d( f (0), ∂ f (D))

for |z| = r ≤ min{1/3, r f }. ��
For a particular choice of φ in Theorem 4.1, we get the following result.

Corollary 4.1 Let f ∈ M(α, ζ, n) with 0 ≤ α < 1 and 0 ≤ ζ < 1/(2n− 1). Then the
inequality (4.13) holds for |z| = r ≤ r f , where r f is the smallest root in (0, 1) of

Fn(r) := R(α, ζ, n, r) − L(α, ζ, n, 1) = 0.

The radius r f is sharp.

Proof From Lemma 2.4, the Euclidean distance between f (0) and the boundary of
f (D) shows that

d( f (0), ∂ f (D)) = lim inf|z|→1
| f (z) − f (0)| ≥ L(α, ζ, n, 1). (4.23)

We note that r f is the root of the equation R(α, ζ, n, r) = L(α, ζ, n, 1) in (0, 1). The
existence of the root is ensured by the relation R(α, ζ, n, 1) > L(α, ζ, n, 1)with (2.4).
For 0 < r ≤ r f , it is evident that R(α, ζ, n, r) ≤ L(α, ζ, n, 1). In view of Lemma 2.3
and (4.23), for |z| = r ≤ r f , we have

|z| +
∞∑

n=2

(|an| + |bn|)|z|n ≤ r f + (|a2| + |b2|)r2f +
∞∑

n=3

(|an| + |bn|)rnf
= R(α, ζ, n, r f ) ≤ L(α, ζ, n, 1) ≤ d( f (0), ∂ f (D)).

To show the sharpness of the radius r f , we consider the function f = fα,ζ,n , which
is defined in Lemma 2.4. We see that fα,ζ,n belongs toM(α, ζ, n). Since the left side
of the growth inequality in Lemma 2.4 holds for f = fα,ζ,n or its rotations, we have
d( f (0), ∂ f (D)) = L(α, ζ, n, 1). Therefore, the function f = fα,ζ,n for |z| = r f
gives

|z| +
∞∑

n=2

(|an| + |bn|)|z|n = r f + (|a2| + |b2|)r2f +
∞∑

n=3

(|an| + |bn|)rnf
= R(α, ζ, n, r f ) = L(α, ζ, n, 1) = d( f (0), ∂ f (D)),

which reveals that the radius r f is the best possible. ��
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Fig. 2 The graphs of Fn(r), respectively, for α = 0.5 and α = 0.9 when n = 1, 2, 3, 4, 5

The roots r f of Fn(r) = 0 for different values of α, ζ and n have been shown in
Tables 1, 2 and Fig. 2, respectively.

Remark 4.1 For n = 1 and |ζ | ≤ 1, r f can be found in [9]. For α = 0.5, when n → ∞,
the sharp radius is 0.500000. For α = 0.9, when n → ∞, the sharp radius is 0.815323.
For n = 1, when α → 1, the sharp radius is 0.645751.

Now, we give an improved version of Bohr inequality for the class HCn(φ). By
adding area quantity Sr/(2π)with the majorant series of f ∈ HCn(φ), the sum is still
less than d( f (0), ∂ f (D)) for some radius r ≤ min{1/3, r̃ f } < 1.

Note that the additional term such as Sr/(2π) to the majorant sum was first mooted
by Kayumov and Ponnusamy [31] to refine and improve the Bohr inequality. This
variation of Bohr inequality was proved for harmonic mappings in [25]. Subsequently,
several extensions were made by many authors (cf. [39]).

Theorem 4.2 Let f ∈ HCn(φ) and Sr be the area of the image f (Dr ). Then the
inequality

M f (r) + Sr
2π

≤ d( f (0), ∂ f (D))

holds for |z| = r ≤ min{1/3, r̃ f }, where r̃ f is the smallest positive root in (0, 1) of

L(ζ, n, 1) = MK (r) + |ζ |
∫ r

0
tnMK ′(t) dt +

∫ r

0
t
(
1 − |ζ |2t2n

)
(K ′(t))2dt,

and L(ζ, n, 1) is given by (4.2) with r = 1.

Proof Let f ∈ HCn(φ) be of the form (1.1). Then, from the right hand inequality in
(4.10) and (4.19), we obtain

M f (r) + Sr
2π

≤ MK (r) + |ζ |
∫ r

0
tnMK ′(t) dt +

∫ r

0
t
(
1 − |ζ |2t2n

)
(K ′(t))2 dt

= RC(n, r) +
∫ r

0
t
(
1 − |ζ |2nt2

)
(K ′(t))2 dt = R̃ f (n, r)

(4.24)
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for r ≤ 1/3. Suppose that H2(n, r) = R̃ f (n, r)−L(ζ, n, 1). Then H2(n, r) is a contin-
uous function in [0, 1]. The inequality (4.22) yields that H2(n, 0) = −L(ζ, n, 1) < 0.
By virtue of (4.21), we get

RC(n, 1) − L(ζ, n, 1) > 0. (4.25)

For |ζ | ≤ 1/(2n − 1), we observe that

t
(
1 − |ζ |2t2n

)
(K ′(t))2 ≥ 0,

and hence ∫ r

0
t
(
1 − |ζ |2t2n

)
(K ′(t))2dt ≥ 0. (4.26)

From (4.24) and (4.25), we obtain

H2(n, 1) = RC(n, 1) − L(ζ, n, 1) +
∫ 1

0
t
(
1 − |ζ |2t2n

)
(K ′(t))2 dt > 0.

Since H2(n, 0) < 0 and H2(n, 1) > 0, H2 has a root in (0, 1) and choose r̃ f to be the
smallest root in (0, 1), we know that R̃ f (n, r) ≤ L(ζ, n, 1) for r ≤ r̃ f . Therefore, by
virtue of (4.20) and (4.24), we conclude that

M f (r) + Sr
2π

≤ d( f (0), ∂ f (D))

for r ≤ min{1/3, r̃ f }. ��
Remark 4.2 By setting n = 1 in Theorems 4.1 and 4.2, we get the corresponding
results obtained in [9].
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