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Abstract

In this paper, using the recently discovered notion of the S-spectrum, we prove the
spectral theorem for a bounded or unbounded normal operator on a Clifford module
(i.e., a two-sided Hilbert module over a Clifford algebra based on units that all square
to be —1). Moreover, we establish the existence of a Borel functional calculus for
bounded or unbounded normal operators on a Clifford module. Towards this end,
we have developed many results on functional analysis, operator theory, integration
theory and measure theory in a Clifford setting which may be of an independent
interest. Our spectral theory is the natural spectral theory for the Dirac operator on
manifolds in the non-self adjoint case. Moreover, our results provide a new notion of
spectral theory and a Borel functional calculus for a class of n-tuples of commuting or
non-commuting operators on a real or complex Hilbert space. Moreover, for a special
class of n-tuples of operators on a Hilbert space our results provide a complementary
functional calculus to the functional calculus of J. L. Taylor.
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1 Introduction

The spectral theorem for a normal operator on a complex Hilbert space is an incred-
ibly elegant result which lies at the heart of operator theory, harmonic analysis and
mathematical physics. In this paper we endeavour to generalise the spectral theorem
to a noncommutative setting where a complex Hilbert space is replaced by a Hilbert
module over a Clifford algebra H, := 'H ® R,, where H is a real Hilbert space and
R, := Ro,, is a Clifford algebra which is generated by units ep = 1 and ey, ..., ey,
where ei2 = —lande;e; = —eje; fori, j =1,...,n withn > 0 (we will favour the
term Clifford module for brevity) and the notion of spectrum is replaced by the recently
discovered notion of S-spectrum. We wish to stress that given the well-known classi-
fication of Clifford algebras R, forn = 1, 2, ... (see, e.g., [50]), our results can easily
be translated to handle spectral theory for a linear operator on any Hilbert module over
a finitely generated unital algebra.

The S-spectrum can be characterised by the invertibility of a second order oper-
ator and it is defined to be a subset of the set of paravectors in R,, (where one can
instil a natural complex structure corresponding to any paravector). More precisely,
corresponding to a right linear operator 7 on a Clifford module #,, over R,,, we define

os(T) = {s = Zs.,ej S(T? = 250T+(s3+...4+sHD V¢ BH,) b, (1.1)
j=0

where B(H,,) denotes the set of bounded linear operators on H,,. The S-spectrum was
discovered by the first author and I. Sabadini in the context of arbitrary operators on a
quaternionic Banach space (i.e., a Clifford module over R,) and paravector operators
T on a Banach module over a Clifford algebra 2, = 2" ® R,,, where 2" is a real
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Banach space and R,, is as above with n > 2, i.e., right linear operators of the form

n
T =Ty +ZejTj’
j=1

where Ty, ..., T, are linear operators on the real Banach space 2 (see “Appendix 1”
for more details).

Recently we realised that we can dispense with the restriction that 7' is a paravector
operator, i.e., the S-spectrum can be defined for an arbitrary right linear operator on
Z,. This observation will turn out to be critical for this manuscript. Moreover, the
consequences of this observation on the S-functional calculus and the slice hyperholo-
morphic function theory have been investigated in [17,18], respectively.

It turns out that Clifford numbers of the form s = Z’;zo s jej embed naturally into
a complex plane and hence

os(T) < | Cs,
Jes

where C5 = (A + 1T : A, A € Rland S = {s = Z?=1 sjej : s2=—1}. A
moment’s consideration of (1.1) will reveal that the upper half plane o5(7) N (C; can
identified in a natural way with o5(7) N (C‘ijr for any choice of J, J € S. Thus, one may
think of the S-spectrum as a complex notion of spectrum with an elegant symmetry.
For a concise background of the history of the S-spectrum, related function theory and
known results in the quaternionic case see “Appendix 1.

We shall see that corresponding to every densely defined normal operator 7 on a
Clifford module H,,, there exists an imaginary operator J (i.e., J*J = [ and J* = —J)
and a uniquely determined spectral measure £ := E75 such that

T = /+ Re(M)dE(A) + /+ Im(A)dJEM)J for JeS. (1.2)
C

J (Cﬁ

We shall also see that
supp E = o5(T) N C3. (1.3)

Moreover, we establish a full analogue of spectral integrals corresponding to a spectral
measure E, the Borel functional calculus associated with 7" and the spectral mapping
theorem in the bounded and unbounded case. The fact that J is an imaginary operator
on H, allows one to think of J as an operator-valued analogue of an imaginary unit.
It is worth pointing out that in the present setting the spectral measure E gives rise
to a family of R,-valued measures which are positive as elements of the Clifford
algebra IR,,. This creates a significant technical difficulty when building the requisite
machinery to prove (1.2) and the Borel functional calculus.
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Motivation
We mention some of the main motivations to study the spectral theorem on a Clifford
module.

(D) Spectral theory for vector operators.

The spectral theory on the S-spectrum is a very natural tool for studying vector oper-
ators that come from vector analysis such as the gradient operators with nonconstant
coefficients

n
T=Y ejaj(x)d;, x=(x.....x,) €R" (1.4)
j=1

where ¢; is an orthonormal basis in R" and a; : @ — R, j = 1,...,n are given
functions with suitable regularity and € € R” is an open set. With our spectral
theory we can define, for example, the fractional powers of operators of the form (1.4)
which can be used to represent fractional Fourier’s law for the propagation of the heat
in nonhomogeneous materials contained in 2. In the quaternionic setting, fractional
Fourier’s law, the has been considered in various papers, see for example [15,19], and
the references therein.

(I) Dirac operator on manifolds.

In a great preponderance of the papers on spectral theory for the Dirac operators
the self-adjoint case is considered. This is most likely the cause due to the associated
difficulties of defining in an appropriate way the spectrum of the non self-adjoint Dirac
operator. However, the Dirac operator is just a particular case of a Clifford operator,
and on manifolds, it has in general non-constant coefficients, so its natural notion
of spectrum is the S-spectrum. The S-spectrum of a self-adjoint Clifford operator
(in particular the Dirac operator) is real. Let us explain with more details the above
motivation. Assume that g : U — R"*", given by

g(x) = (8ij (X))7 j1,

is a smooth matrix-valued function defined on the open set U in R" where g(x) will
always be taken to be positive-definite and symmetric. Then

n
gxE.m= > gj(E&n;. £ neR" (1.5)
i,j=1
is a positive-definite inner product on R” and

n n n
g(X, V) = Y gij(®abj, where X =Y ai(x)dy, ¥ =) bj(x)d,
i j=1 i=1 j=1

(1.6)
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defines a positive-definite inner product space on the tangent space 7,(U) to U at
x. So U can be seen as a coordinate neighbourhood for the Riemannian manifold M
taking x = (x1, ..., x,) as coordinates and (1.6) as inner product, making it possible
to study the Dirac operator on M, by introducing it as a nonconstant coefficients
nonhomogeneous first-order systems of differential operators on C*°(U, H). To give
a precise definition of the spectrum of the Dirac operator on M, (i..e, the S-spectrum),
we need to perform the following steps.

(a) We need to give the definition of the Dirac operator D on M.
(b) Next, we need to write D? explicitly in terms of a second-order Laplacian and a
curvature operator, via the Bochner—Weitzenbock theorem.

The precise expression of the operator D? is of crucial importance in order to define
the S-spectrum because it is associated with the operator

Qs(D) := D* — 250D + |s* I,

here s is a paravector in the Clifford algebra R,. Before we can define the Dirac
operator, we require some additional notions. Let g : R"*" — U be an invertible
function on R"*" and write

g U R g7 ) = (@Y ()]} - (1.7)

Next, let
y () = (i )} = v @) = @)} oy U - R,

be the unique square roots of g and g~ !, respectively. Let ey, . . . , e, be the skew-adjoint

operators satisfying the Clifford relations ejey + exej = —24 ji, set
n
ei(x) =Y yY(ej, xeU,
j=1

foreveryi =1, ..., n. By definition we have that
ej(x)ep(x) +er(x)ej(x) = —2gjk(x), xeU. (1.8)

Let dt : spin(n) — U(H) be the representation of the Lie algebra of spin(n) derived
from the representation t : spin(n) — U (H). For more details see [39].

As a differential operator on C*°(U, H) the standard Dirac operator D on (U, g)
is defined by

D= Xn:ei (x)(axi + dt(w; (X))>

i=1

where w1, ..., w, : U — spin(n) are smooth functions uniquely determined by g.
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Some more work is necessary to define D?, but clearly the spectral theory on the
S-spectrum allows one to consider non-self adjoint Dirac operators. We recall that the
scalar curvature of (U, g) is defined by

K(x) == > Rijij(x) (1.9)

i j=1

where R;jie(x) is the Riemann curvature tensor. As an example we recall Spinor
Laplacian, that is we assume H = ©,, and 7 is the Spin representation of S of spin(n)
on®,,n = 2m, (see [39]) the second order operator D? is often called spinor Laplacian
is given by the Lichnerowicz’s formula

D= —Ag+
= 5—1-4/(()6).

So in similar cases the S-spectrum can be written explicitly. Several results, such as
[11,32,47,48,52] and also [31,43,49,56,60,61] in spectral theory for the Dirac operators
can now be seen in a new light using the spectral theory on the S-spectrum for the
Dirac operator, also using the S-functional calculus [3,7,24,35] and the function theory
[2,21-23] on which this calculus is based on for n-tuples of operators.

(IIT) Complementarity to the Taylor spectrum for a class of tuples of commuting oper-
ators or non-commuting operators and harmonic analysis.

Given an n-tuple of bounded or unbounded operators (71, ..., T,) on a real Hilbert
space H, we can form the right linear operator

n
r= Zea/TJ"
j=1

where a1, ..., a, € 6/9({1, ..., n}). Now if there exists a configuration of units such
that 7 is normal, then one may define the spectrum of (71, ..., 7,) to be the S-
spectrum of 7', i.e., os(T). Moreover, one has a Borel functional calculus at hand for
a reasonably large class of functions of 7', which is helpful in problems in harmonic
analysis and partial differential equations. It is worth mentioning that one can find the
relations between the monogenic functional calculus, Taylor functional calculus and
the Weyl functional calculus (see, [45,46,53,54,63]). In harmonic analysis in higher
dimensions, singular integrals and in the study of the Fourier transform one can find
various connections with Clifford analysis in the recent book [64]. Boundary value
problems treated with quaternionic techniques can be found in [41]. Clifford wavelets,
singular integrals, and Hardy spaces are studied in [55].

(IV) Spectral theory for linear operators on a Hilbert module over a finitely generated
unital algebra.

We first note that we may use the classification of Clifford modules (see, e.g., [50])
and the fact that every finitely generated unital algebra is isomorphic to a subalgebra
of R™>*™ for some m, to see that there is an embedding of any Hilbert module over a
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finitely generated unital algebra into a Clifford module H,, for an appropriate choice
of n. Thus, given a normal right linear operator 7 on a Hilbert module over a finitely
generated unital algebra, we may view T as a being a right linear operator on a
Clifford module H, for a suitable choice of n. We can then utilise the spectral theory
and functional calculi in the Clifford setting and translate back to the Hilbert module
setting in a straight forward manner.

For the function theory of slice hyperholomorphic functions the main books are
[5,25-27,33,36], while for the spectral theory on the S-spectrum we mention [6,12,
14,16,27]. For the Fueter and monogenic function theory and related topics see the
books [10,20,29,39,40,44,65].

Strategy

We wish to summarise our strategy for proving the spectral theorem for a normal
operator on a Clifford module.

(D) It turns out that the S-spectrum and S-resolvent set can be defined for all bounded
or unbounded operators (not necessarily paravector operators). This is the first crucial
intuition for the decomposition of normal operators and we show that the S-spectrum of
a bounded operator is a non-empty compact subsetof {s € R, : s = 59+ Z?:l sjej}.
(IT) We define a spectral measure on a Clifford module and spectral integrals I( f),
where f belongs to a suitable class of functions (see Sect. 4).

Moreover, we point out that an absolutely key result is Theorem 5.3.14 which
connects os(I(f)) to supp E. Dealing with the S-spectrum requires to overcome sub-
stantially different difficulties with respect to the classical complex or quaternionic
Hilbert space case (where the spectral measure E gives rise to a family of positive
measures in the usual sense).

(IIT) We prove a spectral theorem for a bounded self-adjoint operator (see Theo-
rem 6.0.1) where the important result given in Theorem 5.3.14 is being used to show
that the spectral measure E has the property that supp £ = os(T).

(IV) We prove a polar decomposition for a bounded Clifford operator T and specialise
the result to the case when T is normal (see Theorem 7.0.1). This then enables one
to prove that every bounded normal operator can be written as T = A + BJ, where
A = A* € B(H,), B € B(H,) is positive, JJ* = [ and J* = —J and A, B and J
all mutually commute (see Theorem 8.0.4).

(V) To prove the spectral theorem for bounded normal operators (see Theorem 9.0.2),
one needs to apply a technical result (see Theorem 5.3.17) to manufacture a uniquely
determined spectral measure E which lives on o5(A) x o5(B) which will be identified
with the complex plane Cy, where J € S.

One applies the key result Theorem 5.3.14 with the identity function f(A) = A to
see that o5(T) N C5 = supp £ N C5. One can get a suitable integral representation
for T which resembles the quaternionic case.

(VI) We use the bounded case of the spectral theorem (see Theorem 9.0.2) to prove
the unbounded case (see Theorem 10.0.4).

For the convenience of the reader we have compiled a list of commonly used notation

that appears throughout this manuscript.
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Notation
R, := Rp, will denote the Cifford algebra generated by the units ¢p := 1 and
e, ..., ey, Where eje; = —eje; fori # j. Anelementa € R, can be written as
a= Zaaea = Z Ay,
* acb({1...n))
where () can be identified with 0 and & # {J can be interpreted as a n-tuple (i1, . . ., i,)

withi; < ... < iy).

S:={3=1(0,71,...,3,) € R*™1 3" 3, = 1}. A typical element of S will be
denoted by J or J.

Forany J € S, we shall let Cy = {Ao + A1 T : X0, A1 € R} and (C}' ={A+1T:
ro € R, A1 > 0}

G (R,,) will denote the set of self-adjoint Clifford numbers in R, i.e., alla € R, such
thata = a.

P(R,) will denote the set of positive semidefinite Clifford numbers in R, i.e., all
a € R, such thata = bb for some b € R;,. In this case, we will write a > 0.

x : R, — R¥*Z" will denote the injective x-homomorphism from the Clifford
algebra R, to the set of real matrices of size 2" (see Definition 2.1.7).

H, = H ® R, will denote a two-sided Clifford module over R,,, where H is a real
Hilbert space (see Definition 2.1.6).

(,+) : Hy x H, — R, given by (2.9) and || x| := +/Re {x, x) for x € H,,.

For any closed submodule Y C H,,, we shall let

vyt .= {yveH,:(x,y)=0forall x € H,}.

L(H,,) will denote the set of right linear operators on H,,. The domain of an operator
T € L(H,) will be denoted by D(T') (see Definition 3.0.1).

Ran T and Ker T will denote the range and kernel of T € L(H,,), respectively (see
Definition 3.0.3).

B(H,) will denote the set of bounded linear operators on H,, (see Definition 3.0.4.
We shall let

IT|l:= sup |Tx] = lim [Tx]|.
llxll=1

Ixli=<1

G(T) will denote the graph of a linear operator (see Definition 3.0.6).

For T € L(H,), we shall let (x, y)7 := (x,y) + (Tx, Ty) and ||x||7 := (x|l +
1 7x]1*)/? for x € D(T).

For S, T € L(H,), wewill write S C T if D(S) € D(T) and Sx = Tx for x € D(S).
|T| := (T*T)"/? (see Theorem 7.0.1).

For any closable operator ' € L(H,), we shall let T denote the closure of 7 (see
Definition 3.0.14).

We shall let Q,(T) := T2 — 2Re(s)T + |s|*1.

ps(T) denotes the S-resolvent set of T and o5(7T) denotes the S-spectrum of T (see
Definition 3.1.1).
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We shall let SZI (s, T) and SEI (s, T) denote the left S-resolvent operator and right
S-resolvent operator of T at s, respectively (see Definition 3.1.4).

For T € B(H,), we shall let r¢(T') denote the spectral radius of 7" with respect to the
S-spectrum (see (3.22)).

ForT € B(H,),weshallletops(T),ops(T) and ocs(T) denote the point S-spectrum
of T, residual S-spectrum of 7 and continuous S-spectrum of 7', respectively (see
Definition 3.1.11).

For T € B(H,), we shall let I15(T) and I'g(T) denote the approximate point S-
spectrum of 7" and compression S-spectrum of 7', respectively (see Definition 3.1).
T € L(H,) will be called normal if T is densely defined, closed, D(T) = D(T*) and
TT*=T*T.

T € L(H,) will be called self-adjoint if D(T) = D(T*) and Tx = T*x for all
x € D(T).

T € L(H,) will be called positive if T is D(T) = D(T*) and (Tx, x) > 0 for all
x € D(T),1ie., (Tx,x) € P[R,) forall x € D(T).

T € L(H,) will called anti self-adjoint if D(T) = D(T*) and T = —T* for x €
D(T).

T € B(H,) will be called unitary if TT* = 1.

J € B(H,) will be called imaginary if J is anti self-adjoint and J is unitary.

P(H,,) will denote the set of orthogonal projections on H,,.

s — lim;_, o, T; will denote the limit of a sequence of operators (Ti)?il’ where T; €
B(Hy) fori = 1,2, ..., in the strong operator topology.

E will denote a spectral measure on (€2, /), where .o is a o -algebra of sets generated
by €.

The set of Borel sets generated by Q2 will be denoted by Z(£2).

Given a spectral measure E on (2, %(£2)), supp E will denote the support of E (see
Definition 5.1.9).

Given an R, -valued measure v the total variation of v will be denoted by |v]| (see
(5.5)).

Given an imaginary operator J € B(H,), we will say that J is associated with a
spectral measure E on (2, o) if E(M)J = JE(M) for all M € </ (see Definition
5.2.1).

B(Q2, o, Cy) will denote the Banach space of all bounded .«7-measurable functions
f : Q — Cy equipped with the norm

[l flloo = sup | f ()]
reQ

B, (2, .o/, Cy) will denote the subspace of B(L2, <7, Cy) of all simple functions.
Given f € B(Q, 7, Cy) and a spectral measure E on (2, 7), we shall let I( f)
denote the spectral measure of f with respect to E (see Definition 5.2.3).

Given a spectral measure E on (€2, /), we shall let §(€2, <7, C5, E) denote the set
of all «7-measurable functions f : @ — C5 U {oo} which are E-a.e. finite, i.e.,
EreQ: f(A) =o0}) =0.

Given f € §(Q2, o7, Cy, E) and a spectral measure E on (2, <7), we shall let I( f)
denote the spectral measure of f with respect to E (see Theorem 5.3.4(ii)).
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Given an imaginary operator J € B(H,) andJ € S, H+(J,J) = {x € H, : Jx =
x(£3J)} is a complex subspace of H,, (see (8.5)).

Given a densely defined operator 7 € L(H,), we shall let C7 := (I + T*T)~! and
Zr := TC})/? (see Definition 10.0.1).

2 Preliminaries

In this section we will formulate a number of definitions and results on Clifford alge-
bras, Clifford modules, linear operators on Clifford modules, the S-spectrum and
measure theory and integration theory with respect to a Clifford algebra-valued mea-
sure. While the topic of Clifford algebras is very classical and well-known, the theory
of linear operators on Clifford modules and measure theory and integration theory
with respect to a Clifford algebra-valued measure are not so well developed. We have
furnished proofs for Clifford algebra/module analogues of results whenever the proof
differs from the classical case with the aim of making the present manuscript as self
contained as possible.

2.1 Clifford algebras

Definition 2.1.1 A collection of n elements ey, ..., ¢,, withn = p+gq and p, g € Ny
will be called imaginary units if

e = +1 for i=1,...,p

~N TN

e;=—1 for j=p+1,...,n

ejep+eej =0 for j#k

and
er...ep # 1. 2.1
We shall denote the real algebra generated by the imaginary units eg, ..., e, the

universal Clifford algebra and denote it by R, ;. An element of R, , is called a
Clifford number.

Remark 2.1.2 'We note that it is only necessary to assume (2.1) if p — ¢ = 1(mod 4).
It is easy to check that {e“}ae 1)) is linearly independent and hence R, ; has

dimension 2" (as a real vector space).

Leto € §2({1,...,n}) and if « # ), then we may write ¢ = {i, ..., i}, with
i1 <...<ir. Then we may let

ey = €y, i =€...e, if a=1{i,...,i},

ep:=ep=1 if a=0
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and write an arbitrary Clifford number a € R, 4 as

where the sum is taken over ¢ and subsets {ij, ..., i} withi| < ... < i,.

Remark 2.1.3 The only Clifford algebra considered in the remainder of this paper will
be R, :=Ro .

We will let
=) yby =Y  da(—Cs)
o o
and

172
la] == (Z aé) for a = Zaaea e R,.

o o

Hence one can easily check that for all a, b € R,,, we have

S

ab =

a
a+b=a-+b
la+0b| < la] + |b] (22)
lab| = |a||b|  whenever bb = |b|2
and (2.3)
lab| < 2" al |b]. (2.4)
Definition 2.1.4 Given s = (so, $1, ..., 5,) € R*TL we may identify the vector s €

R"+! with the paravector s = Z?:o sie; € R,,. With a slight abuse of notation, for
the remainder of this paper, we will use s in place of s.
Let S denote the unit sphere of vectors in R+, i.e.,

n
S:= ij:(o,jl,...,jn)eR"“:Zj,?:l}.
i=1

It is easy to see that S is an (n — 1)-sphere in R” and J € S implies that 3% = —1.
Note that the real two-dimensional subspace of R"*! generated by 1 and J is complex
plane C5 := R+ R J. It is not hard to see that Cy is isomorphic to the usual complex
plane C.
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Given a paravector s = Z?:o siei € R it is possible to find J; € S such that
s € Cy,. Indeed, if s # 0, then we may write

n . .
s =50+ (—Zi:l slez) |s].

||

Thus, if we let J, := 24199

Definition 2.1.5 (Self-adjoint Clifford numbers) We will call a € R, self-adjoint if
a = a. The set of all self-adjoint Clifford numbers in R,, shall be denoted by G(RR,,).
We note that S(R,) is a real vector space.

, then one can check that J; € S and hence s € Cy,.

Definition 2.1.6 (Positive semidefinite Clifford numbers) We will calla € R, positive
semidefinite if there exists b € R,, such that @ = bb. In this case, we shall write a > 0.
The set of all positive semidefinite Clifford numbers in R,, shall be denoted by P(R,,).

We will need to recall a well-known injective %-homomorphism yx : R, — R%"*%"

which can be found, e.g., in [55].

Definition 2.1.7 Let x : R, — RZ'*2" be the injective *-homomorphism given by
the following inductive construction. We will first give meaning to x (e;) for j =
0,1,...,n.Let x(eg) = Ir» and x(e;) := E;’ for j = 1,...,n, where {Ej‘.}lj‘.:l are
inductively defined via

k
1._ (0 —1 k. (B0 1 _ (0 —Ix
E| = (1 O>’ E; '_(O —E]]‘. and E; 7| = Iy 0

forj=1,...,kandk =1,...,n— 1. Next, we let
x(eq) == x(eiy) -+ x(ey) for a={i,..., i},
where iy < ... < it. Finally fora = )", aseq € Ry, we let

x(@) =" agx(eq)-

Remark 2.1.8 Leta € R,,. Itis easy to check that x (a) is a positive semidefinite matrix
in R?"*2" if and only if a is a positive semidefinite Clifford number.

2.2 Clifford modules

Definition 2.2.1 (Clifford modules over R,)) Let H be a real Hilbert space with an
inner product (-, -)3y and a natural norm ||x|% := (x, x)%2 for x € 'H. Then by H,
we mean the two-sided Clifford module generated by H and R,, withn > 0, i.e., Hj
consists of all vectors of the form

X = Zxa ® ey, (2.5)
o
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with
X+yi= Y (e + Vo) ® ea. 2.6)
xa = Zxa ® (eqa) = Z(xaa,s) ® (eqep) 2.7
and ) !
ax:= ) 1 ® (aca) = ) _(vadp) ® (epea) 28)
o wp

fory =73, va®eyanda = ), ageq. We will employ the short-hand x = )", xqeq
in place of x = ), xo ® eo. We may then endow a Clifford module H,, with the
R, -valued “inner product” (-, -) given by

(x.y) =) ealp(xa, yp)1  for x,y€Hy. 2.9)
o.p

Remark 2.2.2 For the great preponderance of this work, we will not need the fact that
‘H,, is a two-sided module. Thus, whenever possible we will make use of the fact that
'H,, is a right module. However, for Theorem 3.1.10 we will need to use the two-sided
which will be utilised when proving the spectral theorem for a bounded self-adjoint
operator in Sect. 6.

Remark 2.2.3 1t is easy to check that the following facts hold:

(x,x) >0 and (x,x)=0<=x=0 (2.10)

(x+y,2)= (x, )+ (¥, 2), (2.11)

(x,y) = (y,x) (2.12)
and

(xa,y) = (x,y)a for x,y,z€H, and a € R,. (2.13)

Furthermore, if we define

1/2
]l := (Z ||xa||%) for x =7 xeeq. (2.14)
o o

then || - || is a “norm” on H,,, i.e., for all x, y € H, and a € R,,, we have
x| >0 whenever x is nonzero, (2.15)
Ixall = llax| = la| - |x|| for aeR"! (2.16)
Ixal = lax|| < 2" al|lx|| for a€R, (2.17)

and
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x4yl < llxll + Iyl (2.18)

Remark 2.2.4 In view of (2.15), (2.16) and (2.18), the fact that H is complete and the
definition of a Clifford module (see Definition 2.1.6), it is very easy to see that H,
together with || - || can be viewed as a complex Banach space over C5 for any choice
of J €S.

Definition 2.2.5 (Orthonormal basis in H,) We will call (§;);ez € Hy linearly inde-
pendent if for any finite subset Z C 7, we have that the equation

Z §ia; =0,
ief

where (ai); 7 < R,,, only has the trivial solution, i.e., a; = 0 for all i € 7. Next,
we will say that B := (§;);cz € H, is an orthonormal basis for H,, if B is linearly
independent, the closed right linear span of B is H,,, i.e., every x € H,, belongs to the
closure (with respect to the norm topology on H,) of the set

Zéiai ca; € R, foralli € 7 with 7 finite
ief

(in this case, we will utilise the short-hand x = ), 7 &;a;) and

(i E:) = 1 if i=j,
PEET0 i i £
While, it is not true that
x|l = (x, x)1/2  for x € H,,

we do have the following facts which are reminiscent of the classical Hilbert space
setting.

Lemma 2.2.6 Let H, be a Clifford module over R,,. Then the following facts hold:

@) [x]|*> =Re (x, x) for x € Hp.

1) ¢, I = lxl Iyl for x, y € Hy.

(iii) Every Clifford module H,, has an orthonormal basis. Moreover, if B .= (&;);c71 is
a basis for H, then B is an orthonormal basis for 'H,,.

(iv) For any orthonormal basis (§;);c1, we have

x=) E(x &) (2.19)

i€l
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Proof See, e.g., Proposition 1.9 in [55] for (i) and (ii). We will now prove (iii). Let
B := (&;);e7 be an orthonormal basis for the real Hilbert space H. Then, in view of
(2.5), B is a basis for H,,. In view of (2.9), we have

1if i=

(Ei,é'j)=($i,$j)H={0 it i,

Thus, B is an orthonormal basis of H,,.
Let B be as above. Since B is a basis for the real Hilbert basis H, we may use the
classical orthonormal expansion for a real Hilbert space to obtain

x = Zxaea
5 (zm, sn) N

o4 ieZ

DO Eilxa. Ei)es

iel «

DY Eilxaen, &)

iel o

D &ilx, &),

ieZ

O

In the following lemma, by dim G(R,,), we mean the dimension of the real vector
space of self-adjoint Clifford numbers in R, (see Definition 2.1.5). For example,
dim G(Rp) = dim G(R;) = dim &(R,) = 1 and dim G(R3) = 4.

Lemma 2.2.7 ([38], Polarisation formula for a Clifford module) Let H,, be a Clifford
module over R,,. Then

4dim SR, (x, y) = Y _({x + yea, X + yea) — (X — yeu, X — yea))ea (2.20)

forall x,y € H,.

Lemma 2.2.8 (Parallelogram law) Let H,, be a Clifford module. Then for any x,y €
Hy, we have

Il + Iy l? = 20x0? + 201y1%, (2.21)

where || - || is defined by (2.14).

Proof Since

Ix + YII* + llx + yI7 = Re({x, x) + (x, ) + (v, x) + (3, ¥))
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+ Re((-xsx) - (%)’) - (y,x>+<y’)’>)
= 2Re (x, x) + 2Re (y, y)

20111 + 2lylI%,

we have (2.21). O

Definition 2.2.9 Let K C H,. We will call K convex if for any choice of x,y € K,
we have

cx+(1—-c)yek for 0<c<1.

The next lemma provides a natural generalisation of the closed point in a closed
convex subset property that holds for any complex Hilbert space.

Lemma 2.2.10 Let K be a non-empty, closed and convex subset of a Clifford module
‘Hp. For any x € K, there exists a unique vector y € K such that ||x — y|| is as small
as possible.

Proof We begin by letting

m = inf ||x — z][.
zeK

Let (y;)72, be any minimising sequence for x, i.e.,

Iim m; =m  for m; = ||x — y;|l. (2.22)
1—> 00

Next, if we apply (2.21) to the vectors x = (x —y;)/2and y = (x — y;)/2, we obtain

2 dl+d;
=5 (2.23)

Yi —Yj
2

+

Hx ity

2
] <]

Since K is a convex set, we must have that (y; + y;)/2 € K. Consequently, we
have ||x — (y; +¥;)/2|l = m. Thus, (2.22) and (2.23) imply that (y;)7 is a Cauchy
sequence in H,. Thus, as K is closed, we have that

y:= lim y; € K.
11— 00

Notice that y has the property that || x — y|| is as small as possible, since

lx =yl = lim [lx — y;[| =m.
1—> 00

Finally, suppose y' € K such that |x — y’|| = m. Then simply use (2.21) with
x — yand x — y’ to deduce that y = y’. O
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Theorem 2.2.11 Let Y be a closed right submodule of a Clifford module 'H,, and
Yt:={x eH,:(x,y)=0forally € Y}.

Then the following statement hold:

() YL isa closed right submodule of H,,.
(i) H, =Y @Yt
(i) (¥Ht.
Proof We will first show (i). Fix any y € Y and suppose x, z € Y+ anda € R,. Then

(xa+z,y) = (x,y)a+(z,y)

=04+0=0.
Thus, Y is a right submodule of 7,,. Next, suppose (xi)72, is a convergent sequence,
where x; € Yl fori =0,1,...andlet
x = lim x;.
1—> 00
Then

(X»)’> = (x_xi»)’>+<xi»)’) = (-x_-xivy>

and hence for any € > 0, we have

e, =[x —xi, ) =< llx —xill - Dyl
< ¢ for i sufficiently large.

But then we have |(x, y)| = 0, in which case x € Y. Thus, (i) holds.

We will now prove (ii). Suppose x € H, is arbitrary. Then by Lemma 2.2.10, we
can find a unique vector y € Y such that ||x — y|| is as small as possible. Consequently,
if we put z := x — y, then for any v € Y and r € R, we have

2 2
lzIlI© < llz +t vl
Thus,

Iz < Re(z+tv,z+10)
= Re(z.2) +1(Re(z, v) + Re (v, 2)) + ’Re (v, v)
= |lz)1® 4 21 Re(z, v) + £2[v])?,

in which case we have

Re(z,v)=0 for veVY. (2.24)
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Since Y is a submodule, we can replace y by ye, in (2.24) and realise that (z, v) =0
forall y € Y. Thus, z € Y1 and we have the decomposition H,, = Y & YL,

To prove that the decomposition H,, = Y @ Y= is unique, suppose x € H,,
can be written as x = y +zand x = y’ 4+ 7/, where y,y’ € Y and 7,7/ € Y.
But then y — y’ = z — 7/ will simultaneously belong to ¥ and Y. Consequently,
(y—1y',y—y") = 0forces y = y’ (see Definition 2.2.1) and hence z = 7’.

Finally, we note that (iii) is a direct consequence of (ii). m]

3 Linear operators on Clifford modules

Definition 3.0.1 (Linear operator on a Clifford module) Let L(H,) denote the set of
linear operators T : D(T) —_'H, where D(T) < 'H,. The subspace D(T) < Hy
will be called the domain of T € L(H,). We shall let L(H,) denote the set of all
operators T : D(T) — Hy of theform T = )", eq Ty, where T, € L(H,,) which acts
onD(T) =), D(To) € H, via

Tx =Y Ty(xplesep for x = xyeq € D(T). (3.1)
avﬁ o

Remark 3.0.2 Let T € L(H,). One can use (3.1) to check that for all x, y € D(T)
and a € R,,, we have

T(xa+y)= (Tx)a+Ty 3.2)

Thus, in view of (3.2), L(H,) consists of right linear operators.

Definition 3.0.3 (Kernel and range) Given T € L(H,), with domain of 7" denoted
by D(T). Then the range and kernel of 7" will be given by

Ran T ={yeH,:Tx =yforx € D(T)}
and
Ker T ={x € D(T) : Tx = 0},

respectively.

Definition 3.0.4 (Bounded linear operator on a Clifford module) We will call an
operator T € L(H,,) bounded if

D(T) = H, (3.3)
and

IT| := sup ||[Tx|| <oco for x € H,. 3.4)

xl=1
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We will let B(H,,) denote the set of all operators T € L(H,,) such that (3.3) and (3.4)
hold.

Remark 3.0.5 One can use (2.15), (2.16) and (2.18) and the definition of the operator
norm on B(H,) (see (3.4)) to see that §(T, W) = ||T — W|| is a metric on B(H,,).
One can proceed as in the classical case when H,, is a complex Hilbert space to see
that B(H,,) is complete with respect to the metric §.

Definition 3.0.6 (Graph of a linear operator) Suppose T € L(H,,). The graph of T
is the set

G(T) :={(x,Tx):x € D(T)}.

Lemma 3.0.7 Let H,, be a Clifford module over R,,. A right submodule IC of H,, ® H,,
satisfies

K={(x,Tx):x € D(T)}, 3.5
for some T € L(H,) if and only if
©0,y) e K= y = 0. (3.6)

Proof If [ is as in (3.5), then (3.6) obviously holds. Conversely, if (3.6) holds, then
(x,y) and (x, z) belonging to [C implies that y = z, i.e., there exists a function
T : D(T) — Hpy. The fact that T € L(H,) follows easily from the right linearity of
K. Thus, (3.5) holds. O

A very simple consequence of the polarisation formula (2.20) is the following
lemma.

Lemma 3.0.8 Suppose T € L(H,) is a densely defined operator. If (Tx, x) = 0 for
all x € D(T), then Tx =0 for all x € D(T).

Lemma 3.0.9 Suppose S, T € L(H,) such that S C T, S is surjective and T is
injective. Then S = T.

Proof Fix x € D(T). Thus, as S is surjective, we can find y € D(S) such that
Sy = Tx.Since S € T, we have Ty = Tx. By the injectivity of T, we have x = y.
Thus, D(T) € D(S) and hence D(T) = D(S), in whichcase S = T. ]

Definition 3.0.10 (Graph norm) Suppose T € L(H,,). Itis easy to check that D(T) is
a right submodule of H,, which can be endowed with (-, -)7 : D(T) x D(T) - R,
given by

(x, )7t = (x,y)+(Tx,Ty)y for x,y e D(T), 3.7
where (-, -)7 obeys (2.10)-(2.13) and the corresponding norm

Ixllz == (Ixl? + ITxHY?  for x € D(T). (3.9)
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Definition 3.0.11 (Closed operator) An operator T € L(H,) is called closed if the
set {(x, Tx) : x € Hy} is a closed subset of H,, x H, (endowed with the product
topology). Let S and T both belong L(H,). We will write S = T if D(S) = D(T)
and Sx = Tx for all x € D(S) = D(T). We will write S C T if D(S) € D(T) and
Sx = Tx for all x € D(S). Clearly, S = T ifand only if S € T and T C S. An
operator T € L(H,) is called closable if there exists a closed operator X € L(H,,) so
that T C X.

Theorem 3.0.12 Let T € L(H,). The follow statements are equivalent:
(1) T is closed.
(ii) For any sequence (xi)?il, with x; € D(T) fori = 1,2, ..., such that

lim x; = x,
i—00

where x € D(T), and
‘lim T(x,) =y,
1—>00

where y € H,, we have Tx = y.
(iii) D(T) together with |-, -||T (see (3.11)) is a complete normed right module over
R,.

Proof In view of Definition 3.0.11, (i) <= (ii) is immediate. We will now show
(1) <= (iii). In view of (3.8), D(T) together with || - |7 is a complete normed right
module over R,, if and only if G(T') is complete, i.e., G(T) is a closed. O

Theorem 3.0.13 Let T € L(H,). The following statements are equivalent:

(1) T is closable.
@) {(x,Tx):x € D(T)} = {(x, Wx) : for some operator W € L(H,)}.

(iii) For any sequence (x,-)l?'il, where x; € D(T) fori = 1,2, ..., such that
lim x; =0
1—> 00
and
lim T(x) = y,
11— 00

where y € Hp, then'y = 0.

Proof We will first show (i) = (ii). If § € L(H},) is any closed operator such that
T C S, then

{(x,Tx): x € D(T)} C {(x, Sx) : x € D(S)}.
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Hence, as S is closed,

{(x, Tx) : x e D(T)} C {(x,Sx) : x e D(S)}.

Therefore, in view of Lemma 3.0.7, (ii) holds.
We will now show (ii)) = (i). If (ii) holds, then T C W and hence W is closed
since

{(x,Wx) : x e D(W)}
is closed. Thus, T is closable.

The proof of (ii = (iii) follows immediately from the Lemma 3.0.7 and the fact
that (0, y) € G(T') implying that y = 0.

O
Definition 3.0.14 Let T € L(H,,) be closable. We let
Tx := lim T(x;)
i—00
denote the operator in £(H,) with domain

D(T) = {x € Hy : x = lim i, for(x;)7>q € D(T) and {T (x;)}2,
1—> 00

converges in H,, }

In view of Theorem 3.0.13, the definition of T is independent of the choice of
sequence (xl-);?io. Note that for any closed operator W € L(H,,) suchthat T C W,

T CW.

Definition 3.0.15 (Continuous operator) Let T € L(H,). T will be called continuous

if for any sequence (x; fil, where x; € D(T) fori = 1,2, ..., such that
lim x; =x,
11— 00

where x € D(T), we have

Iim Tx; =Tx.
11— 00

Theorem 3.0.16 Let T € L(H,). Then T is continuous if and only if T € B(H,,).

Proof The proof can be carried out as in the classical complex Hilbert space case, see,
e.g., [51]. O
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Definition 3.0.17 Let T € L(H,). A subset € of D(T') will be called core of D(T) if
£ is a right submodule of D(T) and £ is dense in (D(T), || - |I7).

Definition 3.0.18 (Adjoint operator) Given T € L(H,) which is densely defined, we
let T* € L(H,) denote the unique operator so that

(Tx,y)=(x,T*y), xeD(),y e D(T"),
where the domain of T* is given by

D(T*) = {y € H, : there exists z € H,, with (Tx, y) = (x, z)
for every x € D(T)}.

Remark 3.0.19 Let T € B(H,). Then, in view of Definition 3.0.18, it is easy to check
that (T*)* =T.

Lemma3.0.20 Let T, W € B(H,). Then TW € B(H,),
ITWi <71l W] 3.9
and
IT*T|| = |T*|* = IT|I*. (3.10)

Proof The fact that TW € B(H,), (3.9) and (3.10) can be proved exactly as in the
classical complex Banach algebra case, see, e.g., Theorem 8 on page 168 of [51] for
a proof of the classical complex Hilbert space case of (3.9) and [28] for a classical
complex Hilbert space case of (3.10). O

Definition 3.0.21 (Self-adjoint, anti self-adjoint and unitary) Let T € L(H,). We
will call T self-adjoint, anti self-adjoint and unitary if T = T* with D(T) = D(T*),
T =-T*withD(T) =D(T*)and TT* = T*T = I, respectively.

Remark 3.0.22 Inview of Theorem 3.0.23(i), we have thatif T € L(H,,) is self-adjoint
or anti self-adjoint operator, then T is closed.

Theorem 3.0.23 If T € L(H,) is densely defined and W € L(H,,), then:

(1) T* € L(H,) is closed.
(i) Ran (7))t = Ker(T*).
(i) IfT € W, then W* C T*.

Proof The proofs can completed in much the same way as the case when H, is a
complex Hilbert space (see, e.g., Proposition 1.6 in [66]). O

Theorem 3.0.24 If T € L(Hy,) is densely defined, then:

(i) T is closable if and only if D(T*) is dense in H,.
(i) If T is closable, then T = T**, where T** := (T*)*.



The spectral theorem for normal operators on a Clifford... Page230f92 25

(iii) T is closed if and only if T = T**.

@iv) If T is closable and Ker(T) = {0} and Ran (T) is dense in 'H,, then T* is
invertible and (T*)~! = (T~ H*.

(v) If T is closable and Ker (T) = {0}, then T ! is closable if and only if Ker (T) =
{0}. In this case, we have (T)™' = T—1.

(vi) Suppose T is invertible. Then T is closed if and only if T~ is closed.

Proof The proofs can completed in much the same way as the case when H, is a
complex Hilbert space (see, e.g., Theorem 1.8 in [66]). O

Lemma3.0.25 Let T € L(H,) be a densely defined operator. Then the graph of T*
satisfies

G(T*) = V(G(T)H" =VG(T)"), (3.11)
where V : H, & H,, — Hu © H,, denotes the unitary operator given by

V(-x9 )’) = (_ys x)'

Proof Suppose x € D(T) and y € D(T*). Using Definition 3.0.18, we have

(V(x, Tx), (v, T*y)) = ((=Tx,x), (y, T*y))
= (—Tx,y)+(x, T*y)
= 0,

in which case we have G(T*) C V(G(T))L.
Conversely, suppose (y, z) € V(G(T))*. Then for any x € D(T), we have

(V(x,Tx), (y,2)) = (=Tx,y) + {x,2) =0,

and hence (Tx, y) = (x, z). But then we have again use Definition 3.0.18 to obtain

y € D(T*) and z = T*y, i.e., (v,z) € G(T*). Therefore, we have V(G(T))*t C
g(T™).

The second equality is an immediate consequence of V being unitary on H,, @ H,,.

O

Theorem 3.0.26 (Riesz representation theorem for Clifford modules) Let H, be a
Clifford module over R,,. Suppose B : 'H,, X H, — R, is bounded, i.e., there exists
M > 0 such that

|B(x, )| = Mlix|lllyll  for x,y € Ha,

and satisfies the following:

(i) B(x +y,2) = B(x,2) + B(y,2) and B(x,y +z) = B(x,y) + B(x,z) for
X,y,2 € H,.
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(i) B(xa,y) = B(x,y)aand B(x,ya) =a B(x,y) forx,y € H,, and a € R,,.
Then there exists a unique T € B(H,,) such that

B(x,y) =(Tx,y) for x,yeH,. (3.12)

Proof The proof of Corollary 1.11 in [55] can easily be adjusted to our present right
Clifford module setting. O

The following theorem appears in [55].

Theorem 3.0.27 (Hahn-Banach theorem for a Clifford module) Let H,, be a Clifford
module over R,, and S, be a right submodule of H,. Suppose & : S, — R, is
continuous (i.e., bounded) and satisfies

Lxa+y)=ZLx)a+ZL(y) for x,yeS, and a eR,. (3.13)

Then £ has a continuous extension £ : H, — R, (with a slight abuse of notation,
we shall use £ to denote the extension) such that (3.13) holds for all x, y € H,, and
a € R,.

Theorem 3.0.28 (Closed graph theorem for a Clifford module) Suppose T € L(H,,)
is a closed operator with D(T) = 'H,,. Then T € B(H,,).

Proof The proof given in Theorem 2.2.7 in [62] can easily be adjusted to the present
Clifford module setting. O

Lemma 3.0.29 Suppose C € B(H,) is invertible in B(H,,). Then the following state-
ments hold:

(1) C — D is invertible in B(H,) whenever

1
IDIl < —==-
[founa
(ii) Suppose C is invertible in B(H,) and |C — D|| < ||C~Y|~'. Then D is invertible
in B(Hy).
Proof The proof of (i) and (ii) is exactly the same as in the classical case, see, e.g.,
Theorem 2 in Chapter 17 of [51] for the proof of (i). O

Definition 3.0.30 (Normal operator on a Clifford module) Suppose T € L(Hp).
We will call T normal if T is densely defined, T is closed, D(T) = D(T*) and
TT*=T*T.

Lemma3.0.31 Let T € L(Hy) be normal. If S € L(H,) so that T C S and D(S) C
D(S8*), then S = T.

Proof If T C S, then $* € T* and hence
D(T) € D(S) € D(S*) € D(T*) = D(T),

i.e., D(S) = D(T). Therefore, S = T. m|
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3.1 S-resolvent set, S-spectrum for a linear operator and the spectral radius
formula

Definition 3.1.1 (S-resolvent set and S-spectrum for T € L(H,)) Let T € L(H) be
densely defined and Q,(T) : D(T?) — H be given by

Q(T)x = (T? = 2Re(s)T + |s|*I)x for x € D(T?). (3.14)
The S-resolvent set of T is defined as follows

os(T) = {s e R : Ker Q,(T) = {0}, Ran Q,(T) is dense in H,, and
O4(T)~" : Ran Qy(T) — D(T?) is bounded}.

The S-spectrum is defined as
os(T) =R\ pg(T).

Remark 3.1.2 In [27], the S-spectrum for T € L(H,,) was considered for paravector
operators, i.e., operators of the form

n
T=3 el
i=0

because the purpose of this theory was to define a functional calculus for (n + 1)-
tuples of noncommuting operators. Quite early on in our investigation of the Clifford
spectral theorem, we directed our attention to fully Clifford operators because of the
crucial decomposition

T = A+ JyB. (3.15)

of normal bounded operators given in Theorem 8.0.4. This decomposition implies
that, even if T is a paravector operator, the operators Jy and B will not be paravector
operators in general.

A further observation is that in the case T is a paravector operator with noncom-
muting components the S-spectrum is defined by the operator 72 — 2Re(s)T + |s|*1
that is not a paravector.

For an explanation of why this theory is so flexible see the introduction of the paper
[18], where some considerations are made on various Cauchy formulas that define
various holomorphic functional calculi. The properties of the S-spectrum and the S-
resolvent operators for fully Clifford operators remain the same with the same proofs
valid for paravector operators, see [17,18,37].

Remark 3.1.3 For any T € L(H,), it is easy to show that the S-resolvent set is equal
to
ps(T) = (s e R™*!' 1 Q1) : Ran Qy(T) — D(T?)
is bijective and bounded} (3.16)
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Definition 3.1.4 (Left and right S-resolvent operator) Suppose T € B(H,). For any
choice of s € ps(T), we shall define the left S-resolvent operator via

SN s, T) i=—Qu(T) " NT —51) € B(Hy) (3.17)
and the right S-resolvent operator via
Spi(s, T) = —(T =5 1)Qs(T) ™" € B(Hy). (3.18)

Remark 3.1.5 One can check that SL_1 (s, T) : ps(T) — B(Hp) is a right slice hyper-
holomorphic function (see Lemma 3.10 in [17] for details). Analogously, one can
check that S};l(s, T) : ps(T) — B(H,) is a left slice hyperholomorphic function.

Definition 3.1.6 (Axially symmetric) We will call a set @ € R**! axially symmetric,
if whenever s = sg + 513 € 2, where sg, s;1 € Rand J € S, then sg + 51J € 2 for all
Jes.

Remark 3.1.7 (the S-spectrum is axially symmetric) Let T € £ (H,). Then o5(T) is
axially symmetric. If og(7T) = (J, then there is nothing to prove. If o5(T) # ¥, then
one need only notice that s € ps(7) depends only on Re(s) and [s|.

Theorem 3.1.8 (properties of the S-spectrum for T € B(H,)) Suppose T € B(H,).
Then os(T) is a non-empty compact subset of

s eR"™ 0 < sl < ITI.
Proof We will first show that o5(7) is non-empty. For any choice of ¢ > 0, the series

Y%, Tis~i~! converges uniformly in norm on s € Q. := {a € R'T! : |a| =
IT| + €} to SL_l(s, T). Thus, for any J € S, we may use the fact that

[ ey =
— 0 if i#£0,

to obtain

/ S, (s, Tds(=7) = Z T! (f s—f—lds(—J)) =27 1. (3.19)
2 i=0 S

If My := {a e R |a| <|T|+¢e} € ps(T), then Remark 3.1.5 asserts that
SL_I(S, T)|pm, is a right slice hyperholomorphic B(H,)-valued function. However,
an analogue of Cauchy’s integral formula for B(*,)-valued functions asserts that
(3.19) must be 0, which is clearly not the case. Thus, M, is not a subset of ps(7"). But
then og(7") cannot be empty.

We will now show that o5(T) is a closed subset of R™"*! Notice that Q@ Rt

B(H,) given by ¢(s) = Q4 (T) is a continuous function. Lemma 3.0.29 can be used to
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show that the set of invertible operators in B(H,,) is open. Thus, ps(T) = o'W e
B(H,) : W= € B(H,)}) is open. Consequently, o5(7T) = R**1\ ps(T) is closed.

Next, we will show that o5(T) C {s € R"*! : |s| < |IT||}. In view of (3.9), we
have | T?|| < ||T| fori =0, 1,.... Thus, as s € R"*!, we have the estimate

I’

IT's™ 7 <2 s AT = Sy for i< 041
and hence
o0
> N7 s | converges if and only if |s| < || 7). (3.20)
i=0
We now claim that
(T? — 2Re(s)T + |s|> 1) (Z Tis™i— 1) =51-T. (3.21)
=0

Indeed, notice that

(T? = 2Re(s)T + |s|> 1) (Z T"s”)

i=0

Titlg=i=l _pitl—iclg 45 4 Tzs—i—ls§>

(]2 L[]e

(Ti+ls—i _ pitlg=i _ pitlg—islg 4 Tis—ig)

|
=1 ﬁ‘
=~ (=}

—-T.

Thus, we have (3.21). Putting together (3.20) and (3.21), we have that o5(T) C {s €
R™1 5| < | T|I}. As os(T) is closed, we have that is a closed subset of a compact
set, i.e., os(T) is compact.

Finally, we will show that o5(T) is closed. Suppose s € ps(T) and § € R"*! be
such that |s — s| is sufficiently small. Then

Qs(T) — Qz(T) = 2Re(S — )T + (s> — 1511
_ 1 <2Re(§—s) _—
= SE_pE\BE—pE )

one can use Lemma 5.3.11 to see that Q; is invertible in B(H},). Thus, § € ps(T) and
ps(T) is open, i.e., os(T) is closed. O
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Definition 3.1.9 (Spectral radius) Let T € B(H,). Then we shall denote the spectral
radius of T by rs(T) which is given by

rs(T):= sup |s| = max |[s]. (3.22)

seos(T) seos(T)
Theorem 3.1.10 (Spectral radius formula) Let T € B(H,) be normal. Then

1T =rs(T). (3.23)
Proof Theorem 6.7 in [[17] asserts, in particular, that for any 7 € B(H,), we have

. i 1
Tim (IT"10)7 = rs(T),
i—00

where
ITIh =) ITullye  for T =) Tyeq.
o o
Notice that
ITI:= sup | Tx|l = sup ||Y_ Tuxpeacsll
lxll=1 [lxlI=1 o8
< sup [ Tuxpeaes|
lel=1" 5
< 2! sup D 1 Tuxpli - leaep]
lxll= abeta
< ity sup el
wp \lxl=
< 22<"—”Z||Ta|m
a,B
= 2"72|T).
. . . i .
In view of (3.10), one can use induction on i to show that |72 |27 = ||T||. In view

of Theorem 3.1.8, we have rs(T) < ||T||. Thus,
rs(T) < |T| = IT% | for i=12,...
and hence

rs(T) < lim |72 %
11— 00
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. 3n=2 2
lim (277 (|7 1)
i—>00
= rs(T).

and hence we have (3.23). O

Following the possible splittings of the classical spectrum for operators on complex
Banach space we can give the same spitting also for fully linear operators on Clifford
modules. We recall that the splitting of the spectrum is defined according to where an
operators is not invertible. We will mention two possible splittings. The first one is the
point, residual, continuous S-spectrum of a Clifford operator.

Definition 3.1.11 (Point, residual, continuous S-spectrum) Let T : D(T) — H,,. We
split the S-spectrum into the three disjoint sets:

(P) The point S-spectrum of T':
ops(T) ={s € R""" : Ker(Q,(T)) # {0}}.
(R) The residual S-spectrum of T':
ors(T) = |s € R™! : Ker(Q,(T)) = (0}, Ran(Q;(T)) # Ha].

(C) The continuous S-spectrum of 7':

ocs(T) = {S e R™! 1 Ker(Q,(T)) = {0}, Ran(Q,(T)) = H,

and Q.(T)~" ¢ B(Hu}.

Remark 3.1.12 Notice that if A € B(H,,) that satisfies the two conditions:

(i) There exists K > O such that ||[Av| > K ||v]| for v € D(A) (bounded from below)
(ii) the range of A is dense in H,,,

then A is invertible.
So in analogy to the classical case for the S-spectrum we have:

Definition 3.1.13 (Approximate point and compression S-spectrum) Let T be a Clif-
ford bounded linear operator. The approximate point S-spectrum of 7', denoted by
ITs(T), is defined as

Mg(T) ={s € R . T2 —2Re(s)T + |s|2I is not bounded from below}.
The compression S-spectrum of 7', denoted by I's(7T'), is defined as

I's(T)={s e R"F! : the range of T? — 2ReT + |s|21' is not dense}.

The set [1g(7') contains the S-eigenvalues.
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3.2 Basic facts for normal operators

In this section we are defining self-adjoint, anti self-adjoint operators and positive
operators on a Clifford module. We are also formulating and proving a number of
facts which will be useful when proving the spectral theorem for a bounded self-
adjoint operator (see Sect. 6) and also the spectral theorem for an unbounded normal
operator (see 10).

For the quaternionic setting similar properties hold, see the book [16] and the
references therein.

Lemma3.2.1 Let T € L(H,) be given. The following statements are equivalent:
(1) T is self-adjoint.

@) (Tx,x) = (Tx,x) forall x € D(T).
Proof If T is self-adjoint, then

(Tx,x)=1{(x,Tx) for x € D(T)
and hence
(x,Tx)=(Tx,x) for x € D(T). (3.24)

On the other hand, if (ii) is in force, then (2.20) can be used to show that (Tx, y) =
(x, Ty) forall x, y € D(T). Thus, (i) holds. O

Definition 3.2.2 (Positive operator on a Clifford module) Let T € L(H,) be given.
The operator T is called positive if (Tx, x) > 0 for all x € D(T).

The following theorem will be useful when considering the unbounded case of the
spectral theorem for normal operators.

Theorem 3.2.3 Suppose T € L(H,) is a densely defined closed operator. Then the

following statement hold:

() I 4 T*T is a bijective mapping on Hy,. If Ct = (I + T*T)~! € B(H,), then
Cr € B(H,), Cr is positive and 1 — Cr is positive.

(ii) The operator T*T € L(H,,) is positive and D(T*T) is a core for T. In particular,
if T is self-adjoint, then D(T?) is a core for T.

Proof We will first prove (i). In view of Lemma 3.0.25, we have G(T*) = V(G(T))*,
where V denotes the unitary operator in the statement of Lemma 3.0.25. Notice that
Hn & Hy = G(T*) ® V(G(T)). Consequently, corresponding to every z € H,, there
exist x € D(T) and y € D(T*) such that

0,2) =0, T*Y)=V(&x,Tx)=(y—Tx, T*y + x).
Thus,y = Txand z = x+T*y = (I +T*T)x, in which case the operator I +T*T €

L(Hp) is surjective. To see that I +T*T isinjective, notice that forany x, y € D(T*T),
we have
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(I +T*T)(x — y)II?

Re((x =)+ T*T(x —y), (x =)+ T*T(x — y))
= Re{x —y,x —y)+2Re(T(x —y), T(x —y)) (3.25)
+ Re(T*T(x —y), T*T (x — y))
= Jx = yI*+20Tx = IP+ IT*T(x — YII*.  (3.26)
Thus, as I + T*T is injective and surjective, we have that / + T*T is bijective and
let Cr:= (I +T*T)"".

Suppose z = (I + T*T)x for some x € D(T*T). Then C7z = x and one can use
(3.26) with y = 0 to obtain

ICrzll = lxll < I + T*T)x|| = |z

and hence Ctr € B(H,,). The fact that Cr is self-adjoint is an immediate consequence
of

(Crz,z) =(x,2) = (x,  + T*T)x) =((I + T*T)x, x).

The remaining conclusions in (i) can be easily justified via (3.26).

We will now prove (ii). Since Cr € B(H,) is self-adjoint, we have that C is also
self-adjoint by Theorem 3.0.24(iv), i.e., I + T*T is self-adjoint. The fact that 7*T is
positive follows from

(T*Tx,x) =(Tx,Tx) =0 for x € D(T*T).

To check that D(T*T) is a core for T, we must check that D(T*T) is dense in the
Clifford module (D(T), ||-|l7).If y € D(T) satisfies (y, x)7 = Oforallx € D(T*T),
then realise that

0= (y,x)+(Ty, Tx) = (y, I +T*T)x)
for every x € D(T*T). Consequently, y = 0 since Ran (/ + T*T) = H,, in which
case we have that D(T*T) is a core for T'.
The second assertion is very obvious. O
Lemma3.2.4 Let T € L(H,) be self-adjoint. Then os(T) C R.
Proof In order to show that o5(7) C R, it suffices to show that pg(T) C {s € R"+! :

Re(s) = 0}. Let s = so + 51 € R"*! where 59 € R and s; € Im(R"*1)\{0}. Notice
that

Qu(T) :=T? = 2Re(s)T + |s|?1 = (T —so 1) + |s1]%1

and hence D(Tz) = DT —s9 D) andas T is self-adjoint, we have that (T —sg D24+
|s |21 is self-adjoint. Moreover, in view of the second assertion in Theorem 3.2.3(ii),
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we have that D(T2) is dense in H,,. We claim that Re(((T — so 1)* x, x)) > 0 for all
x € D(T?). Indeed,

Re(((T — 5o I)%x,x) = Re(((T — 5o D)x, (T — 5o I)x))

(T —so Dx||>>0 for x € H,.

Notice that

1Qs(T)x|I> = Re({(T — 50 1)* + Is1 [*I}x, {(T —so )* + |sy|* I}x)
= (T —so D)*x||* + 2Re((T — so 1)*x, |s1|*x) + Is1|*|lx ]2
= (T = so D*x 1>+ 2Is1 PII(T = 50 Dx||* + Is1[*]1x 12
Isi*Ix)I>  for x € D(T?) (3.27)

v

and hence Q;(T)~! : Ran Q4(T) — D(T?) is bounded (just take x = Q,(T)~ !y for
y € Ran Q4(T) in (3.27)) and Ker Q;(T) = {0}. As Q,(T) is self-adjoint, we have
that

Ran (Q (T)H)*
Ker (Q;(T)*)*
Ker Q(T))™*
= {0}t = H,.

Ran Q4 (T)

Thus, for all s = s¢ 4 s1, with 51 € Im(H,;,)\{0}, we have s € ps(T), i.e., ps(T) C
R*N\R, i.e., o5(T) C R.
O

Lemma3.2.5 Let T € L(H,) be a positive operator. Then os5(T) C [0, 00).

Proof A careful inspection of the proof of Lemma 3.2.4, bearing in mind the additional
hypothesis that T is a positive operator, will reveal that for all s < 0, we have that
Q,(T)~! € B(H,) and hence (—o0, 0) C ps(T), i.e., os(T) C [0, 00). O

Lemma3.2.6 Let T € L(H,) be anti self-adjoint. Then
os(T) € Im(R"*!) := {a € R"! : Re(a) = 0}. (3.28)
Proof Since T = —T*, we have

|Qs(T)x|I* = Re(T?x, T?x) 4 2(sg — |s1/*)Re(Tx, Tx) + (s§ + |s1/*)Re(x, x)

= [1T%x] +2(s3 — IstHITx I + (53 + Is11D)[1x]|> for x € D(T?).
(3.29)

Therefore, if |sg| > |s1], then we have

1Qs(T)x|1* = sglix|I*  for x € D(T? (3.30)
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and we may proceed as in Lemma 3.2.4 to show that s = so + 51 € ps(7), i.e., (3.28)
holds.

If [so] < [s1l, then (s5 — [siHIT2x[[llx]l < II(s§ — Is11) I Tx||? for x € D(T)
together with (3.29) can be used to show that (3.30) holds. But then we may proceed
as above to obtain (3.28). O

Theorem 3.2.7 Let T € B(H,,) be a normal operator. Then we have
ops(T) =ops(T*), ors(T) =ors(T*) =0, ocs(T)=ocs(T").

Proof Since T is normal and Q,(T)* = O, (T™) itis clear that Q;(T)* is normal. For
bounded linear operators the kernel 7" and the kernel of its adjoint are equal so

Ker (Q,(T)) = Ker (Qs(T™))

so by the definition of point S-spectrum se have
ops(T) = ops(T").

The fact that ogs(T) = ors(T*) = 0 follows by contradiction, in fact if 0 # s €
ors(T) we get

{0} = Ker (Qy(T)) = Ker (Qs(T*)) = (Ran (Qs(T))"* # {0}.

In the same way we can prove that ogs(T*) = 0. Since T and T* have the same
S-spectrum and the three components of the S-spectrum, by definition, are pairwise
disjoint it follows that ocs(T) = ocs(T*).

O

4 Measure theory and integration theory for R,-valued measures

Definition 4.0.1 (Positive R,,-valued measure) Let Q2 be anon-empty set and ./ denote
a o-algebra on Q. We will call u : & — R, U {00} positive if w(M) = 0 (see
Definition 2.1.6) for every M € 7 such that (M) # oo and u is o-additive, i.e.,

n (U Mn> = (M) @.1)
i=1 i=1

for every sequence M := (M;);,, where M\ N M; = ) fori # j and M; € o/ for
i =1,2,....Inthis case, we shall write u is B(R,,)-valued.

Definition 4.0.2 (Finite, semi-finite and o -finite ‘B(R,)-valued measure) Let Q2 be a
non-empty set and <7 denote a o -algebra on 2. We will call a B (R, )-valued measure
W finite if 1(2) < oo, semi-finite if for every M € <7 such that

w(M) = oo, there exists N € .7 such that u(N) <ocoand N C M
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and o -finite if

M;,

Q
|
e

I
-

1

where u(M;) < oo fori = 1,2, .... Note that if u is finite, then the finite additivity
of u together with ;(2) < oo implies that (M) < oo for every M € «7.

Definition 4.0.3 (Borel measure) Let X be a Hausdorff space. We will call a B(R,,)-
valued measure p on the Borel o-algebra generated by X a positive R,,-valued Borel
measure.

Definition 4.0.4 (R,,-valued measure) Let Q be a non-empty set and ./ denote a o -
algebra on Q. We will call u : &/ — R, a R,-valued measure if u is o-additive. In
this case, u has the Jordan decomposition

w=) w1 = nea, 42)
o
where ,u(i“ ) are positive measures (in the usual sense) for every o € 1, ...,n).

The support of a R,-valued measure (1 shall be denoted by supp p and is defined as
the set N which satisfies

w(M)=u(MNN) for Med.

We will call p finite if 1(2) < oo.

Definition 4.0.5 (Integral with respect to a R,,-valued measure) Let u be a finite R,,-
valued measure on a non-empty set 2, .o/ be a o-algebra generated by 2, J € S
and = ) { f) - u(_a)}ea be the Jordan decomposition for . Then for any <7 -
measurable function f : Q2 — R, we shall define

| rordniy :=Z( | rorans = [ f(l)du(_“))ea (43)

and for any .«/-measurable function f : Q@ — Cg, we shall define

/Q fRdp) = Z( /Q Re(f () du — /Q Re(f()»))du(_“)>ea

o

+ ) ( fg Im(f () duf — /Q Im(f()»))du(“)> Jea:

(4.4)

provided that all of the four integrals on the right-hand side exist and we do not end up
with the indeterminate expression oo — oco. Similarly, for any <7 -measurable function



The spectral theorem for normal operators on a Clifford... Page350f92 25

f : Q — Cj, we can define an integral with f(A) on the right via

/Q dp () () :=Z< /Q Re(f(h)dpy’ — /Q Re(f(x»du(f’)) ¢

o

+ ( /Q Im(f (1) dp — /Q Im(f(/\))du(“)) Jeq.
(4.5)

Definition 4.0.6 (Measure space and p-integrability) Let Q be a non-empty set and
</ denote a o-algebra on Q. Suppose u = ), n@eg is a P(R,)-valued measure on
o/ . We shall call the triple (2, <7, ) a measure space. We will write that a property
holds p-a.e. on Q whenever the desired property holds except on a set M € o7, where
w(M) = 0. A function f : Q2 — R U {oo} is called measurable if {, € Q2 : f(A) <
t} € of forevery t € R. We will call a function f : Q — Cy U {oo}, where J € S,
pu-integrable if fQ FOOd@ (1) converge for all « € §2({1, ..., n}).

Theorem 4.0.7 Let X be a compact Hausdorff space and € (X, R) denote the normed
space of real-valued continuous functions on X together with the supremum norm
Il - lloo- Corresponding to any bounded positive linear functional £ : €(X,R) — R,
there exists a unique positive Borel measure jw on X such that

-i”(p)=/xp(t)du(t) for p e ¢ (X,R).

In this case, u(M) < || Z| for every set M that belongs to the Borel o-algebra
generated by X, i.e., B(X).

Proof The existence and uniqueness of p is a special case of Theorem D in Section
56 of [42]. The last assertion follows immediately from the fact that

1£1=Z21) = fxdu(t) =uX) = pnM) for M e BX).

O

Corollary 4.0.8 Let X be a compact Hausdorff space. Corresponding to any bounded
linear functional £ : € (X, R) — R,, there exists a unique R, -valued Borel measure
won X such that

f(p):/Xp(t)d,u(t) for p e € (X,R). (4.6)

In this case, |W(M)| < || Z|| for every set M € B(X).

Proof Write Z(f) = Y 1L (f) — L (f)}ew, where 2 - €(X,R) — R

are positive linear functionals for o € 69({1, ...,n}). Itis easy to see that .,Sfj(f) are
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bounded linear functionals and we may apply Theorem 4.0.7 to obtain the unique

positive Borel measures ,u(f ) so that

L (f) = fX FOdD @) for f e (X, R).

Thus, if we let u© = Za{uf) — ,u(_“)}ea, then we obtain (4.6).

To see that u is unique, suppose there is another R,-valued measure v on X so
that (4.6) holds. Write the Jordan decomposition v = Za{v_(f) — v(_a)}ea, where vf )
are positive Borel measures on X. Then, for any « € 5 ({1, ..., n}), we must have

() _ () Th —
My = Vi . us, U = v.
The final assertion can be shown in much the same way as the final assertion of

Theorem 4.0.7. O

Definition 4.0.9 (Transformation of a R,,-valued measure) Suppose p is a positive
R,,-valued measure on a o -algebra of sets <7 generated by a set 2 and ¢ : Q@ — Q.
Let <7’ be the family of sets given by M’ € <7’ if v ' (M’) € o/ Notice that &7’ is a
o-algebra on Q' and ' (M’) := u(¥~1(M")) is a positive R,,-valued measure on o7’

Theorem 4.0.10 Let Q, ', 7, &', uw and u' be as in Definition 4.0.9. Suppose f :
Q' — Cg, where J € S, is a /'-a.e. finite Q'-measurable function. Then f oV is a
u-a.e. finite of -measurable function on Q and

fg/f()\/)du/(/\/) =/Qf(1ﬂ(/\))du(k)- 4.7

Proof Let ' = Za{vf) — v@}ea and u = Za{,ug‘_x) — u@‘)}ea be Jordan decom-

positions (see 4.2) for " and p, respectively. Applying the classical result to vf ) and

ug‘g ) (which are just positive measures in the usual sense), see, e.g., Theorem C in
Section 39 of [42], we obtain both assertions. O

Theorem 4.0.11 Let X be a compact Hausdorff space. Corresponding to any bounded
positive linear functional £ : €(X,R) — &(R,), there exists a unique positive
R,,-valued Borel measure ( on X such that

ZL(p) =/ p@®)du(t) for pe€(X,R). 4.8)
X
In this case, |W(M)| < || Z|| for every set M € B(X).
Proof First, let K > 0 be such that
|-Z(p)] < Klplloo  for every p € (X, R).

Next, note that forevery p € ¢’ (X, R), we may uniquely decompose .Z(p) as Z(p) =
>y Lu(pleq, where Ly (p) € R.Let L(p) : €(X,R) — x(R,) given by L(p) =
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x(Z(p)) for p € €(X,R). Since yx is a x-homomorphism and .Z : € (X, RR) —
G (R,,), we have that L(p) is areal Hermitian matrix forevery p € ¢ (X, R). Moreover,
in view of the first assertion in Remark 2.1.8 and the estimate

IL(P) oo = IX(L(PDI =Y |-La(p)]
’ 1/2
< 2n/2(2$a(p)2)
= 2"2.2(p)|
< 2"2K||plles

where || - ||oo denotes the maximum row sum norm of a matrix, we have that L(p) is a
bounded positive R?"*2"-valued linear functional. Consequently, a finite dimensional
version of the operator-valued version of the Riesz representation theorem (see, e.g.,
Theorem 19 in [8]) gives us the existence of a uniquely determined positive R?" *2"-
valued measure v := (vik)l.z’nj:1 such that

on

L(p) = /Xp(t) dv(t) = (/X p(t)dv,-j(t)> for p e €(X,R).

i,j=1

If we write L(p) = (Lij(p))} ;. then L;; : (X, R) — R is a bounded linear
functional such that

Lij(p) = /Xp(t)dv,-j(l) for p e ¢(X,R). 4.9)

Consequently, Corollary 4.0.8, with n = 0, asserts that v;; is the only R-valued
Borel measure such that (4.9) holds. If we use the fact that L(p) = x (Z(p)) and the
aforementioned uniqueness of the R-valued measure in (4.9), then for any M € AB(X),
we have that v(M) = x(ay) for some ay € R,. In view of Remark 2.1.8, the fact
that v(M) is a positive semidefinite matrix implies and v(M) = x (ays) implies that
ay € P(R,) forall M € A(X). It is easy to check that u(M) 1= ay = xYw(M))
is a positive R,,-valued measure with the property that

f(p)=X_I(L(p))=/xp(t)du(t) for pe % (X,R),

i.e., (4.8) holds.

The uniqueness of & such that (4.8) holds follows immediately from the uniqueness
of v and the injectivity of x. The final assertion can be proved in much the same way
as the proof of the final assertion in Theorem 4.0.7. O
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5 Spectral integrals

Throughout this section, .7 will denote an algebra of subsets of 2, H,, will denote a
Clifford module over R, and all infinite sums of operators in 5(,,) will be meant in
the strong operator topology, i.e., Y re Tk = T if and only if

k
Tx = lim Tix for x € Hpy.

k—o00 £
j=1

5.1 Basic properties

Definition 5.1.1 (Orthogonal projection) An operator T € B(H,,) is called an orthog-
onal projection if T is self-adjoint and T2 = T'. The set of orthogonal projections on
‘H,, will be denoted by P(Hp).

Definition 5.1.2 (Spectral premeasure and spectral measure) Let <7 be an algebra of
subsets in 2. We will call E : &/ — P(H,) a spectral premeasure if the following
conditions hold:

(1) E is countably additive, i.e.,

E <G M,-) - iE(M,-)
i=1 i=1

for every sequence of mutually disjoint sets (M;)72, such that M; € Q fori =
1,2,...and U2 M; € Q.
(i) E(Q) = 1.

If o is a o-algebra, then E will be called a spectral measure. In this case, we will
write that E is a spectral premeasure (resp., measure) on (2, 7).

Lemma 5.1.3 Let <7 be an algebra of sets in Q. Suppose E : o/ — P(H,) is a finitely
additive map, i.e.,

k k
E (U M,~> =D EM)
i=1 i=1
for every collection of mutually disjoint sets (Mn)f,‘:1 such that M; € Q fori =
1,... . kand |5, M; € Q. Then
EM)E(N)=EMNN) for M,N € <. 6D

In particular, we have E(IM)E(N) =0if M NN = (.

Proof The proof can be carried out in the same way as the complex Hilbert space case
(see, e.g., Lemma 4.3 in [66]). O
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Lemma 5.1.4 Suppose <7 is an algebra of sets in Q2. The mapping E : o/ — P(H,)
is a spectral premeasure if and only if the following conditions hold:

(i) Forany x € Hy, the set function E(-) given by
Ex(M) := (E(M)x, x),

where M € <, is a countably additive P (R,,)-valued set function.
(i) E(Q) =1.

Proof Suppose E is a spectral premeasure. Then, by Definition 5.1.2, (ii) holds. It
follows from Lemma 5.1.3 with M = N that E(M)*x = E(M)x for x € H, and
M € o7, we have

E.(M) = (E(M)x, E(M)x) € B(R,) for M € o and x € H,.

Thus, (i) holds.

Conversely, suppose (i) and (ii) hold. Suppose (M;)7° | be a sequence of mutually
disjoint sets such that M; € < fori = 1,2, ... and hence M := U2 | M, € </, since
o7 is a o-algebra. For any x € H,,, we note that E is finitely additive and hence E is
finitely additive as well. Thus, we may use Lemma 5.1.3 to deduce that (E(M;))?2,
is a sequence of orthogonal projections such that E(M ;) E(M;) = 0 whenever j # n.
Consequently, Y -2, E(M;) has a limit in the strong operator topology of B(Hp).
Since

EX(M) = Ex(Mi)

[Nagk

Il
.Mg

I
-

(E(Mi)x, x)

o0
= <ZE(M,»)x,x> for x € Hy,
i=1

we may use the polarisation formula (2.20) to obtain

(E(M)x,y)= (> E(Mp)x,y) for x,y€eH,,
i=1

ie, E(M) = Z;’il E(M;). Thus, E is a spectral premeasure. O

Remark 5.1.5 In the event that <7 is a o-algebra, a careful inspection of the proof
of Lemma 5.1.4 shows that we can easily adapt the proof to obtain the following
result where spectral premeasure and countably additive P(IR,)-valued set function
are replaced by spectral measure and (R, )-valued measure, respectively.
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Lemma 5.1.6 Suppose <7 is a o -algebra of sets in Q2. The mapping E : o/ — P(H,)
is a spectral measure if and only if the following conditions hold.:

(i) For any x € 'H,, the set function E.(-) given by E,(M) := (E(M)x, x), where
M € o, is a ‘B(R,)-valued measure.
() E(Q) =1.

Moreover, E,(+) is a finite P(R,,)-valued measure.
Proof See Remark 5.1.5 for the characterisation of spectral measures. The second

assertion is a direct consequence of E(2) = I. Indeed, E,(2) = (E(Q)x,x) =
(x, x) < o0. O

Remark 5.1.7 Fix x, y € H, and let E be a spectral measure on <. Then consider the
R, -valued measure Ey (M) := (E(M)x, y)for M € /. One can use the polarisation
formula (2.20) to verify

E . Za(Ex+yea - Ex—yea)ea
Yy 4dim S(R,,)

5.2)

It turns out that the R,-valued measure E, , has the properties detailed in the
following lemma.

Lemma 5.1.8 Let &7 be an algebra of sets in Q2. Suppose E is a spectral premeasure on
4. Then for any sequences of sets (M;);2, and (N;){<, in &/ such that M;+, € M;,
N;i € Niy1fori=1,2,...and M := N2 M; € </, we have

EM)=s— lim E(M;) and E(N)=s— lim E(N;), (5.3)

11— 00
where N := U2 | N;.
Proof The proof is very straight forward. O

We will now define the support of a spectral measure. We shall suppose €2 is a
Hausdorff topological space which has a countable base of open sets. In what follows,
AB(2) will denote the Borel o-algebra of sets generated by €2, i.e., the smallest o -
algebra which contains all open sets in €2. For the sake of brevity, we shall sometimes
write that E is a spectral measure on Z(2) in place of E is a spectral measure on
(Q, #()).

Definition 5.1.9 (Support of a spectral measure) Let E be a spectral measure on
A(L2). We shall define the support of E by

supp E := Q\ U M.
Me# (2) open
E(M)=0

The following lemma will be important when proving the bounded case for the
spectral theorem for normal operators on a Clifford module.
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Lemma 5.1.10 Let E be a spectral measure on (2, B(2)). Then
supp E = {A € Q: E(M) # O for every open set M € B(2) with ., € M}. (5.4)

Proof The characterisation (5.4) is a straight forward consequence of Definition 5.1.9.
(]

Let <7 be an algebra of sets in Q. For any R,,-valued measure v on 2, we shall let
the total variation of v be given by

lv[:= sup [v(M;)], (5.5)
(M),
where (M,-)f.‘=1 is any sequence of mutually disjoint sets with M; € o/ fori =1, ...,k

and k € N is arbitrary.

Definition 5.1.11 (An L,-space with respect to R, -valued measure) Let <7 be an
algebra of sets in 2, J € S and v be a R,;-valued measure on .o/. Then we shall let

Lr(2,,Cy,v) := {d-measurable f:Q2—>Cy: f |f(k)|2d|v|(k) < oo}
Q

For x € H, and a spectral measure E on Z(2) we let u,(M) = (E(M)x, x) for
M € %(2) and

Lr)(R,,Cq, E,) = {,szf—measurable f:Q—=>Cy: / |f(k)|2d|ux|(k) < oo}.
Q

Remark 5.1.12 Let Q, 7,3, E, x, E; and v be as in Definition 5.1.11. Write the
Jordan decomposition v = )", = {vﬁf‘) - v@}ea for v. Then it is easy to see that

Ly, . Cav)= [ (Lo . C3.0{) N La(Q, o, T3, v )},
(5.6)
and
Lr(R2,,Cq,Ey) = {M—measurable f:Q—>Cy: /9 |f()»)|2d(R€[Lx()\))
< oo}, (5.7)

where (M) := (E(M)x, x) for M € <.

Lemma 5.1.13 Let E’ be a spectral premeasure on (2, /"). Then there exists a spec-
tral measure E on (2, .o/), where < is the o-algebra generated by /', such that
EM)=E' (M) forall M € &’.
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Proof Forany x € H,, we may use Lemma 5.1.4 to see that i/, () given by u/. (M) =
(E(M)x, x) is a premeasure on .«/’. Moreover, using Lemma 2.2.6, we obtain

1 (@] = (W (@), x)| = [{x, x)|

Thus, ), is a finite R,,-valued premeasure on .7’ and hence all of the positive measure
components in the Jordan decomposition of

We = (Wrot — Wy g )ea
o

namely (Mx’a’i)aep({l,...,n , are also finite positive measures. Thus, we may
appeal to Theorem A in §13 of [42] to produce uniquely determined measures
(,ux,a,Jr)ae&Q({l ’’’’’ ap O0 the o-algebra </. Consequently, py = > ,(Uxo+ —
Wx.a.—)eq 18 the unique S(R,)-valued measure on o7 such that p,(M) = p'.(M)
for M € &,

Letx,y € H, and uy y be the R, -valued measure given by

Za(ﬂx+ye — Ux—yey)Co
M) = < L for M e <. 5.8
oy (M) 4dim S(R,) or e >8)

Next, let
o =M € o : the map x > fiy (M) is right linear for all y € H,,}.

One can use (5.8) and Lemma 5.1.8 to show that o/ has the following property. The

union U;’leM,- € < for every sequence of sets (M,-);'no=1 such that M; € < for

i =1,2,...with M; € M;y,. Thus, as &' C Jzi, we may use Theorem B in §6 of
[42] to deduce that .7 C o7 and hence & = <.

In much the same way as above, one can show that the map y — p y(M) is anti-
right linear, i.e., tx, ya4z (M) = apix y(M) + pix (M) forall M € o7 and x, z € H,,.
It is easy to check that

Watxey (M) = 1y o (M) = 2(u; (M)ey — eqpt). (M)
and hence by the uniqueness of © we have
Mx+xey (M) — Mx—xeq (M) =2(ux(M)eg — eq iy (M)).

Consequently,

,ufx,x(M) = ZZ(MX(M) —eqpx(M)ey),

o
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in which case puy (M) € P(R,) and Re uy (M) > O forall M € & and x €
Hy. For any M € </, we may use the polarisation formula (2.20) to check that
(E'(M)x, y) = u;)y(M) and Lemma 2.2.6(ii) to deduce

A

ey (M)] < |12,y ()]
i, ()]

= (E'(Qx,y)| = (x.)
IxIyl> for x,y € Ha.

Thus, for any M € 7, we may invoke Theorem 3.0.26 to obtain a positive operator
E(M) € B(H,) such that (E(M)x, y) = py,y(M) forx,y € H,. For M € /', we
have

E'(M)x,x) = (E(M)x,x) for x eH,

and, hence, one can use the polarisation formula (2.20) to check that E/(M) = E(M)
forM e o'.

Finally, let & := {M € o/ : E(M) € P(H,)}. It is very easy to see that & has
the monotone property and hence <7 C Z2. But then &/ C Z2. Thus, we may use
Lemma 5.1.6 to deduce that E is a spectral measure. O

Lemma 5.1.14 Suppose 2 is a locally compact Hausdorff space which has a count-
able base of open sets and E is a spectral measure on B(2). For any x € H,, let
wy(M) = (E(M)x, x) for M € B(Q) and let puy = Za{u)(gzr — ufcofl}ea be the
Jordan decomposition for jLy. Then

y,)((ai_ is a finite positive Borel measure for every o € § ({1, ...,n}).  (5.9)

Proof The last assertion of Lemma 5.1.6 ensures that p, is a finite P(R,)-valued
Borel measure. Consequently, uff‘i is a finite positive Borel measure for all ¢ €
§2({1, ..., n}). But then we may use the well-known fact that every positive Borel
measure on a locally compact Hausdorff space which has a countable base of open

sets is regular (see, e.g., Proposition 7.2.3 in [13]) to obtain (5.9). O

Theorem 5.1.15 Suppose Q; is a locally compact Hausdorff space which has a count-
able base of open sets and E; : B(2;) — P(Hy) is a spectral measure on B(S2;) for
i=1,...,d IfE;E; =EE; fori, j=1,...,d, then there exists a unique spectral
measure E : B(QL) — P(H,), where Q = Q| X -+ X Qg, such that

EM| x - x Mg) = E(My)--- E(My) for M; € B(Q;)andi=1,...,d.
(5.10)

Proof Let us consider the case d = 2 (the more general case follows in much the same
way). Let &7/ denote the algebra of sets generated by sets of the form M| x M,, where
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M; € B(Q;) fori = 1,2. Thus, every N € &/’ can be written as N = U];ZINJ-,
where N1, ... Ny are mutually disjoint and are of the form

NJ':MUXMZ/GW/ for j=1,... k.

We shall now define E(N) := Y5_| Ey(My;) E2(Mp)).

We claim that E(N) € P(H,). To this end, note thatif i # j, then N; N N; =0
forces My; N My; = @ or Mpy; N Mp; = . In either case, we can make use of
Lemma 5.1.3 to deduce

0= E1(My; N Myj)Er(Mp; N M)
= E\(M)E1\(Myj)Ex(Mi) Ex(Maj)
= E\(My;) E2(M2i) E1(Myj) E2(M2j).

Consequently, E(N) € P(H,). One can easily modify the proof of Theorem E in
§8 of [42] to show that E is independent of the representation that we choose for
N € B(Q).

What remains is to show that E is countably additive, i.e., for any monotone
sequence of sets (N;)?°,, where N; € Z(Q'), with N := U, N;, we must show
that E(N) = ) 72, E(N;). In view of the fact that Re(E(N')x, x) is a positive mea-
sure for any choice of N’ € Z(Q2") and x € H,,, we can prove

Re(E(N)x, x) < ZRe(E(Nix, X)
i=1

in much the same way as the proof of Theorem 4.10 in [66] with the caveat that terms
of the form (E(N')x, x) must be replaced by Re(E(N’)x, x). Since N; € N, we
immediately have Zle Re(E(N;j)x, x) < Re(E(N)x, x) and hence we arrive at

Re (E(N)x,x) = ¥ Re (E(N))x, x). (5.11)
i=1

Since E € P(H,), we have
|E(N)x||> = Re (E(N')x, E(N")x) = Re (E(N')x,x) for N' e B(Q)

and thus we may use (5.11) and the fact that all sums are taken with respect to the
strong operator topology to obtain E(N) = Y 2| E(N;), i.e., E is countably additive.
Finally, since the o-algebra generated by .’ is 2(2), we may use Lemma 5.1.13

to deduce that the spectral premeasure E has an extension to a spectral measure. With a
slight abuse of notation, the aforementioned spectral measure on Z(£2) will be denoted
by E. One can use the definition of E to verify (5.10). The uniqueness of a spectral E
which obeys (5.10) drops out immediately from the fact that the o -algebra generated
by the algebra of sets of the form M| x M3, where M; € AB(2;) fori =1, 2,1is B(RQ).
O
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5.2 Spectral integrals of bounded measurable functions

We anticipate the definition of imaginary operator given in Definition 8.0.2. We will
call an operator Jo € B(H,) a partial imaginary operator if Jy is a partial isometry
and J§ = —Jo. We will call J € B(H,) an imaginary operator if J is unitary and
J*=—J.

Definition 5.2.1 Given a spectral measure E on (2, /) and an imaginary operator
J € B(H,), we will say that J is associated with the spectral measure E if

JEM)=EM)J for Me . (5.12)

Given a spectral measure E on (€2, <7) as above and an imaginary J associated with
E, we wish to give meaning to the integral of a measurable function f : @ — Cgy,
where J € S, against a spectral measure E. Let B(2, o/, C5) denote the Banach
space of all bounded ./ -measurable functions f : & — Cg, where J € S, equipped
with the norm

I flloo = sup{| f(A)] : & € 2}

We let x,s denote the characteristic function with respect to M € Q, i.e.,

1 if xeM
A) =
MR =00 0 5

Let B, (2, <7, C5) denote the subspace of simple functions in B(2, <7, C5), i.e., the
subspace of functions f € B(R2, .o/, C5) which are of the form

k
FOY="cjxm; M), (5.13)
j=1
where c¢1,...,cx € Cy and My, ..., My are pairwise disjoint sets belonging to
B, , Cy).
Given f € B,(Q2, o7, Cy), we shall let
k
I(f) := Z{Re(cj)E(Mi) +1Im(c;)E(M;)J} € B(H,). (5.14)
j=1

It can be easily checked that the finite additivity of E implies that the definition of
I(f) in (5.14) is independent of the (5.13).

Lemma5.2.2 Letr f € B,(R2, o, Cy). Then [|[L(H)]l < | fllco-
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Proof Since M| ..., M; are mutually disjoint sets belonging to %(£2), Lemma 5.1.3
asserts that E(M;)E(M;) = 0 whenever i # j. Thus, for any x € H,, we have

k
IICHxI? = Y Re({Re(ci) + Im(ci) JYE(M;)x, {Re(c;)I + Im(c;)J}E(M;)x)

i,j=1
k

= ZRe ({Re(c;)I + Im(c;)JYE(M;)x, {Re(c;) + Im(c;)J }x)
i=1
k

= ZRe ({Re(c;)I + Im(c;)JYE(M;)x, {Re(c;)I + Im(c;)J}E(M;)x)
i=1
k

= Y lIRe(e)I +Im(ci)J)E(Mi)x|*
i=1
k

< Y lalPIEM)x)?

i=1
2

k
< Y IAIRIEM)xI? =11 £11%

i=1

2 12
= IfIG M7

k
ZE(M,-)x
i=l1

Consequently, [|[I(f)]| < || f|lco holds. O

Definition 5.2.3 (I(f) for f € B(R, o7, Cy)) We will now give a definition for
I(f) when f € B(Q, o, Cy). Since B, (2, o7, Cy) is a dense subset of the Banach
space B(R2, o7, Cy) with respect to the supremum norm || - ||, given any f €

B(2, o/, Cy), we have the existence of a Cauchy sequence (f; ?‘;1, where f; €
B, (2, o/,Cy) for j =1,2...,such that

lim |[f = fjllo =0.
j—o00

Lemma 5.2.2 can be used to show that (I( f j));?oz1 is a Cauchy sequence of operators
belonging to B(H,). As B(H,) is a complete metric space (see Remark 3.0.5), we
have the existence of an operator I(f) € B(H,) such that

jliﬂolo ILCS) = ICHNIF = 0.

Moreover, Lemma 5.2.2 can be used to show that the limit I( f) does not depend on
the choice of Cauchy sequence.

Theorem 5.2.4 Forany f, g € B(RQ, o/, Cy), we have the following:
@ I(f) = I(H)*
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@ii) I(fg) = I(HI(g).
(i) I(3) = J and I(cf + g) = cl(f) +1(g) forallc € Cyand J € S.
(i) (I(NHx,y) = [qRe(fFANA(EM)x,y) + [oIm(f(W)d(JEM)x, y) for all
X,y € Hpy.
W) ILNHxI? = [q | fG)Pd(Re (E()x, x)) for all x € Hy.
D) [ICON = 11 oo
(vii) For any sequence of functions (f; 7‘0:1’ where f; € B(Q, ,Cy) for j =
1,2, ... which converges pointwise E-a.e. on Q to f and there exists k > 0
such that | f;(A)| <« forall € Qand j = 1,2, ..., we have

s — lim 1(f,) = 1(f).
Jj—00

Proof Inview of Definition 5.2.3, it suffices to prove (i)—(vi) for f, g € B;(Q, &7, Cy).
Let f(0) = Y5_ cixm;(A) and g(1) = Y5_ djxn;(). Using the fact that
JEM)=EM)J forall M € o/ and J* = —J, we have

k
I(f)* = Y EM;)*{Re(c;)] + Im(c;)J*}E(M;)
j=1

k
- Z E(M;){Re(c;)I —Im(c;)J}E(M;)
j=l1

k
= > (Re(cj)] —Im(c))J}E(M))
j=1

= I(f).

Thus, we have proved (i).
Next, since

k k
I(NHI(g) = (Z{Re(ci)l +Im(ci)J}E(Mi)> (Z{Re(dj)l +Im(dj)J}E(Nj))

i=1 j=1
k

= > {Re(c;))Re(d;)] — Im(c))Im(d))!

i j=1
+ (Re(c)Im(d;) + Re(d;)Im(c;)) JYE(M; N N;)
= I(HI(g),

we have proved (ii).

To prove the first statement in (iii), simply observe that f(X) = J xq(A) = J and
hence [(J) = J. The second statement in (iii) is an easy consequence of (ii) and the
fact that I(J) = J.
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The proof of (iv) is very straight forward. To prove (v), we may use (i), (ii) and (iv)
to verify that

ICHxI* = Re(I(f)x, I(f)x)
= Re (I(HI(f)x, x)

= Re (I(| f1P)x, x)

_ Re ( / |f<x>|2d<E<x)x,x>>
Q

/If(k)|2d(Re(E(k)x,x)) for x € H,.
Q

Statement (v) is a direct consequence of (iv). Indeed, using (iv), we have
AN < 1 flloo Rex, x) = I flloollx > for x € Hy,

in which case we have (v).
Finally, to prove (vii), we may use (vi) to see that

HICH) = TCfbe ) = fQ |fO) = fuWPdRe(E(M)x, x))  for x € H,

and hence (vii) follows immediately from the Lebesgue dominated convergence the-
orem. O

Lemma5.2.5 Let <7 be an algebra of sets in Q and E be a spectral measure on <.
Then the following facts hold:

(i) |Exy|(M) < /Re Ex(M) \/Re Ey(M) forallx,y €e Hyand M € .
(ii) Let f € L2(R2,Cy, Ex) and g € L2(2,Cy, Ey). Then

'LRe(f(k)g(k))d(E(k)x,y) +/le(f()»)g0»))d(E(A)Jx,y)

IA

/;2|f()\)g(}\)|d|Ex,y|()\)

IA

2" fllLy@.Ca.E0 I8l Lo(2.C5. Ey) (5.15)
where E, (M) = (E(M)x, y) for M € B(2) and forall x, y € H,.

Proof We will first prove (i). Suppose M = Uf::l My, where My € o/ and M\ M; =
) whenever k # j. Using Lemma 2.2.6, we have

|Exy (M| = (EMi)x, y)| = [(E(Mp)x, E(My)y)|

1EM)x[[| E M)yl

VRe E.(My) \/Re Ey(My).

A
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Consequently, we have

p
D IEx (M)

k=1

IA

14
Z VRe Ex(My) \/Re Ey(My)
k=1

» 12 4 p 1/2
<ZReEx(Mk)> (ZReEy(Mk)>

k=1 k=1

VRe E.(M) \/Re E,(M).

Finally, if we take the supremum over all possible disjoint unions of M in <7, then we
obtain (i).

We will now prove (ii). We will verify (5.15) for simple functions, in which case
(5.15) will hold by the density of simple functions in both L,-spaces. Suppose f(A) =
P fuxm (M) and g(A) = Y°F_ gk xm, (A) are simple functions in Ly (2, C3, E)
and L(2, C3, Ey), respectively. Using (2.4), Assertion (i) and (2.4), we have

IA

VQRe(f(k)g(k))d(E(l)x,y)+/le(f()»)g()»))d<E(>»)Jx,y)‘

p
D (Re(fego) (E(Mi)x, y) + Im( feg) (E(Mi)J x, y)}
k=1

p
2N fi ghl I vy [ (M) + | E gy (M)}
k=1

P
2713 Uk il (VREEL(M) JRe Ey (M) + VR En(My) [Re E, (M) )
k=1

IA

IA

p
= 27 Y i gel (VRO E (M) |/ Re By (Mp) + VRe Ex (M) | [Re E, (M)
k=1

IA

» 1/2
2" (Z | fiPRe Ex<Mk>)

k=1

1/2
x (Z FART Ey(M;a) :

k=1
Thus, (5.15) holds for simple functions. O
5.3 Spectral integrals of unbounded measurable functions

Fix J € S. Let §(2, &7, C3, E) denote the set of all .«7-measurable functions f :
2 — Cy U {oo} which are E-a.e. finite, i.e., E{A € Q: f(A) = 00}) = 0.
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Definition 5.3.1 (Bounding sequence) Let (M j)iil be a sequence of sets, where
M; € (R, «,C3) and Mj € My for j = 1,2,.... We will call (Mj)?il a
bounding sequence for a subset & of F(2, o7, Cy, E) if every f € & is bounded on
M; and E(U?‘;IMJ') =1.

Remark 5.3.2 We note that if (M j)?il is a bounding sequence, then for the results

appearing in Sect. 5.1, we have E(M;) < E(Mj,1) for j =1,2, ...,

lim E(MMj)x=x for x € H,
j—00

and U;?i] E(M;)H, is dense in H,,.
Remark 5.3.3 Every finite subset {f1, ..., fx} € §(R2, o/, C5, E) has a bounding
sequence. To see this, let

Mj:={eQ:|fi)]<n for j=1,...,k

and M = Uj?‘;le. Thus, Q\ M C Ulj‘.zl{k € Q : fj(A) = oo}, in which case
E(Q2\ M) = 0. Consequently, (Mj)j:1 is a bounding sequence for { fi, ..., fk}.

Theorem5.3.4 Let f € §(2, o/, Cy, E) and

DA(f)) = {x €Hy: / | f(W)*d(Re(E(M)x, x)) < oo} (5.16)
Q

;?O:I for f, we have the following:

1) DAS) = {x € Hy : (]I(fXMj )x)?":l converges in H,} = {x € H,
sup; ey (S ) < 00},

(ii) For any x € D(I(f)), the limit of the sequence (I(f xm; )i, does not depend on
the choice of the bounding sequence (M ;)52 . Moreover, there is a linear operator
I(f) € L(H,) with domain D(f)) given by

For any bounded sequence (M )

I(f)x = lim I(fxu)x for x € DAS)). (5.17)
Jj—>00

(iii) The right submodule UCJ?‘;IE(Mj)Hn C DU(f)) € Hn and is a core for I(f).
Moreover,

EMN)I(f) SUHEM) =L(fxm;,) for j=12,.... (518

Proof The proof is broken into steps.

Step 1 Prove (i).

Let x € D(f)). Thus, by definition, f € L(2, &7, Cy, E,) and we may use
Lebesgue’s dominated convergence theorem to obtain fxy;, — f in L2(2, Cy, Ex).
Since (M j);?o: | is abounding sequence for f, we have that f is bounded on M. Thus,
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fxm; € B, o, Cy) and I(fxm;) € B(Hy,) given by Definition 5.2.3. Using
Theorem 5.2.4(v), we obtain

ITCF xa)x — TCF xaa)x 1> = N0 xars — f xaa )11

/Q | F ) xar ) = F ) xm; W) Pd(Re(E(W)x, x))

If xas = x| yocy e,y fOr inj=1,2,....

Thus, putting all of the above observations together, we have that (I( f ;) x)2, is a
Cauchy sequence in H,, and hence I( f xu, )x)fil converges in Hy,.

Next, if {I(fxm;)x : i = 1,2,...} converges in H,, then {|[I(f xp)x|l : i =
1,2, ...} is bounded.

Finally, suppose that {||I(f xa;)x|l : i = 1,2, ...} is bounded. Then

sup [[ICf xa;)x]l < oo.
ieN

Since | f (M) xm; ()L)|2 converges monotonically to | f ()L)|2 E.-a.e. on 2, we may use
Lebesgue’s monotone convergence theorem to obtain
/ |f(M)Pd(Re(E(M)x, x)) = lim / FW)xm; W7 d(Re(E(1)x, x))
Q 11— Q

= lim [|I(f xm)x]|* < oc.
1—> 00
Thus, f € Ly(R2, o7, Cy, Ey) and hence x € D(I(f)). We have managed to show

DA(f)) € {x € Hy : (H(fXM_/)x)?‘;l converges in H,, }
< L €My sup 10wl < oo}
jeN

< DA,

in which case we have (i).

Step 2 Prove (ii).
Suppose (N;);2, is also a bounding sequence for f and x € D(I(f)). Using
Theorem 5.2.4(i) and (v), we have

ILCf X x — LCf v )x Nl = LG Xy — fxnp)xlLy@.c5.E,)
Ifxm; — fllLy@.or.C5.E,)

+Ifxn;, = fllLy@o.cye) = 0 as i, j — oo.

IA

Thus,

lim I(fxp)x = lim I(fxn,)x  for x € DA(S)).
i—00 j—o0
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By (i), we have that D(I(f)) is a right linear subspace of H, and (5.17) gives rise to
a right linear operator I( /) € L(H,,).

Step 3 Prove (iii).
Suppose y € ‘H,,.Recallthat £(M;) = I(xu;) and hence we may use Theorem 5.2.4
to obtain

ICf xm)y = ICf xm xm;)y = 1(f xm)E(Mj)y
= EM)I(fxm;)y  whenever i> j. (5.19)

Consequently, sup{||I(f xm,)yll :i =1,2,...} < oo and hence E(M;)y € D((f)),
i.e., the union U2 | E(M;)H, € D(f)).
Letting i — oo in (5.19), we obtain

IHEM)y =1(fxmp)y  for yeH,.

Suppose x € D(I(f)) and letting i — oo in (5.19), we obtain the equality in (5.18).

Finally, using the fact that E(M;)y — y asi — oo for all y € H,
and I(YEM;)x = EM)I(y) — I(f)x for all x € D(f)), we have that
U E(M;)H, is a core for I(f). O

Remark 5.3.5 1f f € B(Q, o/, Cy, E),then (M;){°,, where M; = Qfori =1,2,...,
is a bounding sequence for f. Consequently, the operator I(f) € L(H,) given by
(5.17) coincides with I( f) € B(H,) in Definition 5.2.3.

Theorem 5.3.6 Suppose f, ¢ € 3(Q, o, Cy, E). Then
(X T = [ Re(fRRIEG, )
+ [ (T EGS ) (5.20)
forx € DA(F)) and y € D((g)) and
P = [ 1£GIPAReEGIT ) for x DA (52D

Proof We will first show (5.20). Let (M;)72, be a bounding sequence for {f, g} and
hence fgxm, € B(Q, o/, Cy, E). We may make use of Theorem 5.2.4(i) and (ii) to
obtain

/Q Re(f (M) g(M)d{EM)x, y) + fg Im(f(A)g(A)d(JEM)x, y)

= (I(fgxm)x, y)
ACf xm)x, (g xm)y)- (5.22)
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Since x € DA(f), we have f € Ly(R2, «/,Cy, Ey) by (5.16). Similarly, since
vy € D(I(g), we have g € Lo(2, o/, Cy, E,). One can use Lemma 5.2.5(ii) to see
that the integrals

/Q Re(f (M)g(M)d(E(M)x, y) and /Q Im(f (M)g(A)d(E(M)Jx, y)

are both convergent. We may also use Lemma 5.2.5(ii) and the fact that f — fxu,
in Ly (2, o, Cy, E,) to see that

| fg Re(f (Mg 00) 1 VA(E(x, ¥) — /Q Re(f (WgONd(E(M)x. y)
- /Q Im(f (W) g() xp, MA(E(W)JIx, y) — /Q Im(f(L)g(A)d(E(L)Jx, y)]
iy /Q Re(Lf (War, (1) — FONNZONAEG)x, )

+ /Q Im({ £ (W) xp, W) — F)}gW)A(E (M) T x, y)]

< 2" fxm; = flly@.o .y E0 I8 Ly, 7.Co )

— 0 as i — oo.

Thus, if we let i — oo in (5.22), we obtain (5.20).
Formula (5.21) is easily obtained from (5.20) by putting y = x and g = f. O

Theorem 5.3.7 Let J be an imaginary operator associated with the spectral measure
E.Forany f,g € §(Q, o/,Cy, E) and c € Cy, whereJ € S, we have the following:

@) I(f) =1(H*
(i) I(fg) = L(/HI(g).
(i) I(fc+ g) = 1(fHRe(c)] +1Im(c)J) + 1(g) for all ¢ € Cs.
@iv) I(f) is a closed normal operator belonging to L(H,,).
(v) DA(f)I(g)) = DA(fg) N DI(g))-

Proof Let (M;)°, be a bounding sequence f,g € 3F(R,«,Cy, E)
(see Remark 5.3.3). We note that it is easy to check that (M, ,-)‘I’Oz1 is abounded sequence

for the functions f + g, fg and f. Consequently, Theorem 5.3.4(iii) can be used to
see that

£ = { U E(M)x :x € H,,} (5.23)

i=1

is a core for I(f + g) and [I( fg). The remainder of the proof is broken into steps.
Step 1 Prove (i).
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Suppose x € D(I(f)) and y € D(I(g)). Using (5.18) and Theorem 5.2.4(i) we
obtain

<E(Ml)H(f)x’ )’> = (H(fXMl)x’ y) = (X, H(fXM,)’)) = <X, H(?XM,)Y)
(x, E(M)I(f)y).

Letting i — oo above results in (I(f)x, y) = (x, I(f)y), i.e., I(f) € I(f)*. Next,
suppose x € H, and y € D(I(f)*). Then we can again make use of (5.18) and
Theorem 5.2.4(i) to obtain

(x, E(MM)I()*y) = WO EMi)x, y) = (I(f xm) x, y) = 6, 10 xm)y)-

Thus, E(M;)I(f)*y = I(f xm;)y and hence

ITCF xm)y1I* = Re@(Fxa)y, ICF xa)y)
Re(E(M)I(f)*y, E(M)I(f)*y)
IE(M)ICH)* ||

But then

sup  [[ICf xm) Il < ILCH* vl

i=1,2,...

in which case, Theorem 5.3.4(i) ensures that y € D(I(f)). Thus, D(f)*) < DA(f))
and hence I(f) € I(f)* implies that I( f)* = I(f) as required.

Step 2 Prove (ii).

We begin by noting that (5.18) asserts that £ is a dense right submodule such that
£ € DA()I(f)). Consequently, we may use (i) and Theorem 3.0.24 to see that
I(f)I(g) is closable. One can use (5.18) and Theorem 5.2.4(i) to check that

I(f&)EM;) = LI(f)I(g) E(M;) (5.24)

and hence

EMNI(NHI(g) < I(HIQEM;) =1(fg)E(M;). (5.25)

If we let i — oo in (5.24) and we make use of the fact that £ is a core for I(fg),
then we obtain I(fg) € I(f)I(g). On the other hand, as I(fg)E(M;) € B(H,),
we may use (5.25) to conclude E(M;)I(f)I(g) C I(fg)E(M;). Letting i — o0 in
EMHI(H(g) € I(fg)E(M;) and using (5.17), we obtain I( f)I(g) < I(fg). But
then we have (ii).

Step 3 Prove (iii).
The fact that I(fc) = I(f)(Re(c)I + Im(c)J), where [ is the identity operator
and J is the imaginary operator, is an immediate consequence of Theorem 5.2.4(iii)
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and (ii) in the present theorem. Thus, in order to prove (iii), we need only consider
I(f + g). Let £ be as in (5.23). Then, in view of (i), the set containments

£ € DA(S) +1(@) = DANH* + 1)) € DULS) + 1)}

demonstrate that I( ) + I(g) is closable. Moreover, £ is a dense right submodule of
‘H,,. Using (5.18) and Theorem 5.2.4(i), we obtain

I +L@NEWM;) = I(f xm) +L(gxm,)
= I(fxm; +8xm;)
= I(f + 9 EWM;) (5.26)

and

EM)I(f) +1(g) = EMDI(f) + E(M)I(g)
< {ICN) + LI EWM))
= I(f + 9 EM)). (5.27)

If we leti — oo in (5.26) and make use of the fact that

{UE(M,')x Cx eHn}

i=1

is a core for I( f + g), then we obtain I(f 4+ g) € I(f) + I(g). Finally, (5.27) implies
that E(M)I(f) + I(g) € I(f 4+ g) E(M;) and letting i — oo we have I(f) + I(g) €
ICf + 9.

Step 4 Prove (iv).

It follows from (i) and (ii) that I(f)*I(f) = I(HI(f) < I(ff). Note that
I(f)*I(f) € L(Hpy) is closed. Thus, we may use Theorem 3.2.3(ii) to conclude that
I(f)*I(f) is self-adjoint. On the other hand, (i) implies that I(f f) is self-adjoint, in
which case, we have I( f)*I(f) = I(f f). We can replicated the above argument to
obtain I( £)I(f)* = I(ff) and hence we have I( £)*I(f) = I(f)I(f)*.

Step 5 Prove (v).

We begin by noting that (ii) implies that D(I(/)I(g)) < D(fg)) N D(g). Thus,
in order to prove (v), we need only show the opposite set containment. Suppose
x € DAI(fg)) N D((g)). Then we may use (5.24) to obtain I(fg)E(M;)x =
I(f)I(g)E(M;)x and letting i — oo and using the fact that I( f) is closed, we have
I(g)x € DA(f)). Thus, we have x € DI(f)I(f)) as required. O

Theorem 5.3.8 Forany f, g € §(, o/, Cy, E), we have the following:

) If f =g E-a.e.on Q, then I(f) = 1(g).
(ii) If f is real-valued E-a.e. on 2, then 1(f) € L(H}) is a self-adjoint operator.
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(iii) If f(A) = 0 E-a.e. on Q, then I(f) € L(H,) is a positive operator. Moreover,
I/ )? = I(f) and hence I(f) has a positive square root.

Proof Suppose f = g E-ae.. Then E({A € Q : f(A) # g(A)}) = 0 and then
it follows from (5.16) that D(I(f)) = D(I(g)). We also have that any bounding
sequence (M;){2, for f is also a bounding sequence for g. Consequently, we may use
(5.17) to deduce that I( f) = I(g). Thus, we have proved (i).

Next, suppose f is real-valued E-a.e.. Then from (5.20) with g(A) = land y = x
we obtain

(ICf)x, x) =/QRe(f()»))d(E(k)x,X) =/Qf()~)d(E(?»)x,X) € 6(R,) (5.28)

for all x € D((f)). Thus, I(f) is self-adjoint and we have proved (ii).

Next, suppose f > 0 E-a.e.. Then (5.28) can be used to show that I( f) is a positive
operator. Finally, in view of the first part of (iii), it is obvious that I(,/f) is a positive
operator. The fact that (I(/f N2 =1¢( f) is a direct consequence of Theorem 5.3.7(ii)
and (v). O

Definition 5.3.9 (L (2, o/, Cy5, E)) Let f € §(2, o/, C5, E). We shall let
Lo (2, o7, Cy, E) := {E-measurable f : Q — C5 : f is bounded on 2}
be endowed with the norm

Il flloo := ];fglg sup{| f(M)| : A € Q\ M}.
with E(M)=0

Lemma5.3.10 Let f € (2, o7, Cy, E). The operator I(f) € B(Hy) if and only if
f € Loo(, o, Cy, E). In this case, |[I(f)|| = || f | -

Proof Suppose f € Loo(R2, o7, Cy, E). Then | f(1)| < k E-a.e. for some x > 0 and

nﬂﬂﬂﬂ=ﬂ9ﬂmﬂm«wauw»snﬂmww.

Thus, I(f) € B(H,).
Next, suppose I( /) € B(H,,) and put

Mi={eQ:|fW)|=ILHI+27"} for i=1,2,....

and M = U;’ilMi. Note that M = {A € Q : |f(M)| > |II(f)]l}. Using Theorem
5.3.7(ii) and (5.21), we obtain

ILCAHI? - 1EM)xII> = 1T E(M)x|*
= ICf xm)x|1?



The spectral theorem for normal operators on a Clifford... Page570f92 25

/QIf(k)XM,-(k)I2d(Re(E(?~)x,X>)

/Q | f()1Pd(Re(E (W)x, x))

AN + 27D EM)x||> for i € Nand x € H,.

IV

But then E(M;) = O foralli = 1,2,...,in which case E(M) = 0, i.e., || fllco
II(f)]l. Thus, we have the characterisation of elements in Lo (€2, E) and ||I(f)]]
Il lloo-

Lemma5.3.11 Let f € F(2, o/, Cy, E). The right linear operator I( f) € L(H,,) is
invertible if and only if f(1) # 0 E-a.e. on Q. In this case, I(f)~' = 1(1/f), with
the understanding that é = 0 and (l) = 0.

o Il IA

Proof Let N := {A € Q : f(A) = 0}. We may use Theorem 5.3.7(iii) and (v) to
obtain

I(HEWN) =1(fxn) =1(0) = 0.

Consequently, I( f) is not invertible whenever E(N) # 0.

Next, suppose E(N) = 0 and hence 1/ f € §(2, E). We may use the fact that
f(/f)=1E-ae.onQtoseethat DA(f(1/f))) = D(g)) = H,,whereg(A) = 1.
Consequently, Theorem 5.3.7(v) implies that

D1/ HI)) = DAS)).

Moreover, Theorem 5.3.7(iii) implies that

L1/ HICH < WA/ ) =10) = 1.

Thus, putting these observations together, we have that I( f) is invertible and I( f)~! <
I(1/f). To see that I(1/ f) < I(f), we may simply replace f by 1/f in the above
proof. O

Definition 5.3.12 (Intrinsic function) LetJ € S. Let @ € R"*! be an axially sym-
metric open set and let U = {(u, v) € R2:u+SvcC Q}. A function f : Q@ — R, is
called a left slice function, if it is of the form

f) = fou,v) +J3fi(u,v) forA=u+Jve
with two functions fy, f1 : U — R, that satisfy the compatibility conditions

fO(“, _U) = fo(u7 U), (529)
Silu, —v) = = fi(u, v). (5.30)

We say that f is an intrinsic function if in addition fj, and f; are real valued. We
denote by S(2) the set of intrinsic functions defined on 2.
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Remark 5.3.13 For intrinsic functions, when we restrict f to Q3 C Cg, we have
that f(£25) belongs to Cy, since fy, and f| are real-valued. To stress this fact we
will often use the notation F(Ry, Z(25), C5) instead of F(2, Z(2)) when we
work on a complex plane C5, and when we consider the half plane C‘j" we write
FQT, BT, (C;r). Observe that condition (5.30) forces fi(u, v) = 0 for every
u—+Jve Qer N R whenever v = 0.

Theorem 5.3.14 Let E be a spectral measure on @(Q}D, where Q"j" - (C'j"for JeSs,
and f € F(QT, %(Q%‘), Cy, E) be an intrinsic function. Then

os((f)HNCH = (s eCL:E((h e Q:|f(0)* —2Re(s) f(A) + s’ < &))
# 0 for all ¢ > 0}.

Remark 5.3.15 The assumption that f € §(2, B(2), Cy, E) is intrinsic (see Defini-
tion 5.3.12) is necessary for preserving the fact that og(f(7')) is axially symmetric
(see Remark 3.1.7).

Proof (Proof of Theorem 5.3.14) Notice that s € pg(I(f)) if and only if (I(f R
2Re()I(f) + |s|?I)~" € B(H,). Thus, Lemma 5.3.10 and Lemma 5.3.11 imply
that s € ps(I(f)) N C3 if and only if f> — 2Re(s)f + |s|* # 0 E-a.e. on £ and
1/(f>=2Re(s) f+1s|?) € Loo(R2, B(RQ), Cy, E), or, equivalently, there exists k > 0
such that

E{reQ:] f(A) —2Re(s) f(A) — Is)?| = k}) = 0.
Thus, s € os(I(f)) N (C‘jF if and only if
E({r € Q:[f()* —2Re(s) f (W) + |s]*| < &}) #0

forall e > 0. O

Remark 5.3.16 We wish to highlight that Theorem 5.3.14 will be very useful for show-
ing that an operator-valued integral (9.3) appearing in the spectral theorem for a
bounded normal operator is on the S-spectrum of 7.

Theorem 5.3.17 Let E be a spectral measure on B(2) and W € B(H,). Then
EMW = WEM) for all M € ZB(Q) if and only if WI(f) C I(f)W for every
fed, BK),Cy, E).

Proof Suppose E(M)W = WE(M) for all M € HB(K2). Then, as I(xy) = E(M),
we have WI(f) C I(f)W forevery [ € F(R2, Z(R2), Cy, E). Conversely, suppose
WI(f) C I(f)W forevery f € F(R2, B(2), Cy, E). Then

IEM)Wx||*
= [[WEM)x|?
IWI2IEM)x|?

Re (E(M)Wx, Wx)

IA
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= [|W|*Re(E(M)x, x)

for all M € A(2) and x € H,,. Thus, Wx € D((f)) whenever x € D(I(f)). It is
immediate to see that WI(f) = I(f)W whenever f € B,(R2, o/, Cy, E) and that
this observation can be extended to all f € B(Q2, o7, C5, E). Consequently, we have
WDI(f)) € DA(f)) and hence WI(f) C I(f)W. O

Theorem 5.3.18 Suppose S € B(H,) and E is a spectral measure on (2, o). Then
SE(M) = E(M)S for every M € o if and only if SI(f) C I(f)S for every f €
S(Q, #(Q), Cy, E).

Proof 1If SI(f) C I(f)S for every f € F(R2, o/, E), then SE(M) = E(M)S for
every M € . is obvious. Conversely, suppose SE(M) = E(M)S forevery M € .
Since

Re(Esc(M)) = Re((E(M)Sx, E(M)Sx)) = Re((SE(M)x, SE(M)x))
ISEM)x|*

IS E(M)x|*

ISII*Re((E(M)x, E(M)x),

IA

we may use (5.16) to conclude that Sx € D(I(f)) whenever x € D(I(f)). Since
SE(M) = E(M)S forevery M € </, we have that ST( fy) = SI( fo) for every simple
function fy € B, which can easily be extended, by taking limits, to STI(f) = I(f)S
for every f € B. The fact that SI(f) = I(f)S for every f € §F(2, o, E) follows
immediately from (5.17). O

Definition 5.3.19 (Transformation of a spectral measure) Let E be a spectral measure
on a Borel o-algebra <7 generated by a set 2, J be an associated imaginary operator
with E and ¥ be a function such that ¢ : € — Q' and <7’ be the o -algebra of all
subsets M’ C ' such that ¥~ (M') € /. We shall let

E'M'):=EW "M for M e (5.31)

Remark 5.3.20 Tt is very easy to check that E’ : /" — B(H,,) is a spectral measure
on &', Moreover, in view of (5.31) if J is an imaginary operator associated with E,
then J is also an imaginary operator associated with the E’.

Theorem 5.3.21 Let Q, Q', v, J, E and E’ be as in Definition 5.3.19. Suppose h €
S, ' F). Thenhoy € 3(Q, ., E) and

/ Re(h(M))dE'()) + / Im(h(\)) dE' (W)
Q/ Q

— /QRe(h(W(A)))dE(/\)+/§zlm(h(1//(k)))dE(k)J (5.32)
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Proof The factthathoy € §(2, <7, E) follows immediately from Definition 5.3.19.
Since (E(-)x, x) and (F(-)x, x) are positive R,-valued measures on ./ and &7’ for
any x € H,, respectively, we have invoke Theorem 4.0.10 to obtain

Ih(W)Pd(E'(W)x, x) = / Ih(y W) Pd(E(M)x, x)  for x € H,
Q Q
and

/Q Re(h()d(E'(K)y. y) + fQ Im(hG))d(E' )Ty, )

= /QRe(h(W(K)))d(E(?»)y,y)+/le(h(1ﬁ()»)))d(E(l)Jy,y) (5.33)

for all y € H,, such that & is (E’(-)y, y)-integrable on ©’. We may use (5.16) and
(5.33) to realise that D(Ig/(h)) = D(Ig(h o)), where Iz and I g denote the spectral
integrals with respect to E” and E, respectively. Notice that (5.20) with g(A) = 1 and
(5.33) can be used to obtain (Ig/(h)y, y) = (Ig(ho)y, y) forall y € DIl (h o))
(which coincides with Ig/(h)). Finally, the polarisation formula (2.20), to deduce
(5.32).

O

6 Spectral theorem for a bounded self-adjoint operator

The main goal of this section is to formulate and prove the spectral theorem for bounded
self-adjoint operators on a Clifford module (see Theorem 6.0.1).

Theorem 6.0.1 (Spectral theorem for bounded self-adjoint operators) Let T € B(H,,)
be self-adjoint. Then there exists a spectral measure E on the Borel o-algebra

B(os(T)) such that
T:/ tdE(t). (6.1)
os(T)

The spectral measure E is unique in the sense that if F is a spectral measure on
ABR) such that T = thdF(t), then E(M Nos(T)) = F(M) for all M € Z(R).
Moreover, W € B(H,) commutes with T if and only if WE (M) = E(M)W for every
M € B(os(T)).

Before we can prove Theorem 6.0.1, we need a number of lemmas. In the following
one, we wish to stress that the polynomial p appearing in the spectral mapping identity
(6.2) is a polynomial with real coefficients.
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Lemma6.0.2 Let T € B(Hy) be self-adjoint. Then
os(p(T)) = p(os(T)) for p e R[z]. (6.2)

Proof Suppose p(t) = Z?:o pjt/ € R[t], with p; # 0. We begin by noting that
p(T) = Z’}:O pjTA" € B(H,) is self-adjoint. Thus, Lemma 3.2.4 asserts that
os(p(T)) C R.If k = 0, then (6.2) holds trivially.

Suppose k > 0. We will first show that p(os(T)) S os(p(T)). We will only
show that o5 (p(T)) € p(os(T)) (the proof of the other containment is very standard
and does not divert at all from the classical case). Choose 7y € os(p(T)). Consider
the polynomial ¢(¢) := p(t) — tp € R[¢]. If ¢ has all real zeros, say t1, ... (not
necessarily distinct), then () = ¢ ]_[1;:1 (t —t;) for some constant ¢ € R. Therefore,

k
o(T) = p(T) —tg1 = c [[(T =1, .

j=1
Since ¢(T) is not invertible, 7 — ¢ ; I must not be invertible for some je{l, ...k}
Thus, 7j: € o5(T), in which case p(z;/) = 1. )
Next, if ¢ has non-real zeros, say ¢, {1, - .-, {¢, &¢. Then

Ja
o) =y [[¢ - — &)

j=1

for some polynomial ¥ € R[] which is constant or has all real zeros. Write {; =
uj+v;J, wherev; #0for j =1,..., £ Since

=)t =) =@—up’+v; for j=1,...¢
we have

£
o(T) =y (T) [ [T —u; 1* +v7 1},

j=1

Since T —u; I € B(H,) is self-adjoint, we have that (7" —u ; 1 )? is a positive operator,
in which case (T — u; I)2 + v? I is invertible for j = 1, ..., £. Consequently, ¢(T")
not being invertible implies that ¢ (T') is not invertible. Hence, { cannot be a constant
polynomial. We may now proceed as in the case when ¢ has all real zeros to obtain
the desired conclusion. O

Lemma 6.0.3 Let T € B(Hy) be self-adjoint. Then
Ip(T)Il = max [p(r)] for peR[z]. (6.3)
reas(T)

Proof In view of (3.10) and (3.23), we have
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Ip(DHII> = 1Ip(T)* p(T)| = Ip(T)?|| = rs(p(T)?)
max{|| : T € a5(p(T)?)}

max{p(to)> : to € os(T)},

i.e., (6.3) holds. O

Theorem 6.0.4 (Functional calculus for bounded self-adjoint operators) Let T €
B(Hy,) be self-adjoint. Then corresponding to any f, g € € (os(T), R), there exist
self-adjoint operators f(T), g(T) € B(H,) which exhibit the following properties:

@ (fo)(T) = f(T)g(T).
i) (f +)(T) = f(T) + g(D).
@i 1A= 1flloo-
) If floscry = 0, then f(T) is a positive operator.

Proof Fix f € € (os(T), R). By the Weierstrall approximation theorem, R[¢] is uni-
formly dense in % (og, R) with supremum norm

[ flloo == sup [f(®)] for f €% (os(T),R).

teos(T)

Thus, there exists a sequence of real-valued polynomials (f;)72, such that f is the
uniform limit of (f;)7°, on os(7T), i.e.,

lim max |f(to) — fn(t0)|-

n—>o0 tyeos(T)
Therefore, (f;)72, is a Cauchy sequence and (6.3) applied to f; implies that

Jim (1) = S =0.

Since B(H,) is complete, as must have that (f;(T));2; has a limit in the uniform
operator topology, which we will denote by f(7"). One can easily check that f(T)
does not depend on the choice of the Cauchy sequence (f;)2;.

Assertions (i)—(iii) are a direct consequence of the definition of f(T) for f €
% (0os(T), R), given above, just as in the classical complex Hilbert space setting.
To prove (iv), observe that if f|s5) > 0, then there exists g € R[¢] such that

fos(r) = &%log(r)- Thus,

(f(T)x,x) = (g(T)*x, x)
= (g(T)x, g(T)x)
> 0 for x € H,.

Thus, f(T) is a positive operator. O

We are now ready to prove Theorem 6.0.1.
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Proof (Proof of Theorem 6.0.1) Fix T € B(H,,) and x € H,,. We shall utilise the func-
tional calculus given in Theorem 6.0.4 to make sense of f(T) for f € € (os(T), R).
Let £, : €(0os(T),R) - G(R,), where G(R,) denotes the real vector space of
self-adjoint Clifford number in R, be the linear functional given by

6(f) = (f(T)x,x) for f €€ (os(T)R).
The fact that £, (f) € G(RR,) follows at once from the fact that f(T) = f(T)* (see
Theorem 6.0.4 and £, (f) = (f(T)x, x).

We claim that £, is a positive linear functional. If f|s5) = 0, then flogr) =
g2|gs(7) for some g € € (o5(T), R). Thus,

() = (g(T)%x, x)
= (g(TM)x, g(T)x)
> 0 for x € H,,

in which case, £, : €(os(T),R) - &(R,) is a positive linear functional. Conse-
quently, it follows from Theorem 4.0.11 that there exists a unique positive R, -valued
Borel measure 1, on A(os(T)) such that

() = / F@dux@)  for f e (os(T), R). (6.4)
os(T)
Fix x, y € H,,. Utilising the polarisation formula (2.20), one can check that

(F(T)x.y) = / FOduey()  for fe%s(T).R),  (65)

os(T)

where (1, , denotes the R,,-valued measure on % (os(T)) given by

_ Za(ﬂx—t-yea - Mx—yeu)ea

for x, 6.6
4 dim 6(R,,) or x.yeH (66)

Mx,y

Moreover, one can use (6.6) and the uniqueness of the positive Borel measure in (6.4)
to show that for any x, y € H,, there is one and only one R,-valued measure on
PB(os(T)) such that (6.5) holds.

Animmediate consequence of the uniqueness of (., , in (6.5)isforany x, y, z € H,
and a, b € R,,, we have

an+yb,z(M) = px;(M)a + My,z(M)b

and

Pox,yatzp(M) = ape,y(M) + by (M)
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forall M € A(os(T)). We can also use (6.5) to show that for any x, y € H,,, we have

|Hx,y(M)| = |Mx,y(US(T))|
= [{x, »I
< llxllliyll  for M € B(os(T)).

A

Thus, for any M € A(os(T)) we may use Theorem 3.0.26 to obtain an operator
E(M) € B(H,) such that

(E(M)x,y) := px,y(M). (6.7)

We now wish to show that E : B(os(T)) — B(H,) is a spectral measure (see
Definition 5.1.2). To see that E is a spectral measure, we shall make use of Lemma
5.1.6. Since (E(-)x, x) = W, is a positive Borel measure (and hence u, is countably
additive) for any x € H,,, it suffices to show that E(os(T)) = I, E(M) = E(M)*
and E(M)? = E(M) for M € B(os(T)).

Putting f () = 1 into (6.5), we obtain (x, y) = py,y(0s(T)) = (E(os(T)x, y) for
all x, y € H,, and hence E(os(T)) = I. Next, since

(f(T)x,y) =/ (T)f(t)d/lx,y(t) for f e € (os(T), R).
os

On the other hand,

(f(D)x,y) = {y, fF(T)x)
= (f(D)y,x)

= / fWdpy () for f e C(os(T),R).
os(T)
Thus, for any x, y € H,, we have
/ Sy y(1) = / f@dpy <) for fe€C(os(T),R)
os(T) os(T)

and the aforementioned uniqueness of the R, -valued measure ftx y such that (6.5)
forces fix,y = [y x. Consequently, (6.7) implies that E(M) = E(M)* forall M €
HB(os(T)).

We will now prove that E(M)? = E(M) forall M € B(os(T)). Using the defini-
tion of f(T) for f € ¥ (os5(T), R), one can extend the identity in Theorem 6.0.4(i)
to the case when f, g € € (o5(T), R). Thus, for any x, y € H,,, we have

(F(T)g(T)x, y) = (f9)(T)x. y) = f FOgOdny (@)

os(T)
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forall f, g € €(os(T), R). On the other hand,

(F(T)g(T)x, y) = / SOy for .8 € 65T, B)
as

Thus, using the uniqueness of the R,-valued measure ., in (6.5), we have
ditg(Tyx,y = gdjix,y forall x, y € H,. Consequently, for any x, y € H,, we have
(E(M)g(T)x,y) = fM gt)dy y forall M € %(os(T)). Putting these observations
together, for any x, y € H,,, we have

/ gM)dux Emyy = f &) xpm (t)d iy, (1)
os(T)

os(T)

for all g € € (o5(T), R). Thus, using the uniqueness of the R, -valued measure in
(6.5), we have d,LLx’E(M)y = XMd,U«x,y, i.e.,

Mx Emyy(N) = /NXM(t)de,y(t) = pxy(MNN) for N € HB(os(T)),

ie., (E(N)x, E(MM)y) = (E(M N N)x, y). Using the fact that E(M) = E(M)*, we
arrive at (E(M)E(N)x,y) = (E(M N N)x, y) for all M, N € B(os(T)). Setting
N = M, we get E(M)> = E(M) for all M € A(os(T)). Thus, E is a spectral
measure on os(7).

Formula (6.1) follows at once from (6.5) with f(¢) = ¢ together with (6.7).

Let F be another spectral measure on #(R) such that (6.1) holds with F in place
of E. We shall let [z (f) denote the spectral integral for f € F(A(R), F) (see Theo-
rem 5.3.7). Let g : 05(T) — R given by g(¢) = . Then

T =1r(g) =/ tdF(1).
BR)

Theorem 5.3.14 asserts that

os((g) = {s e R: F({r € BR) : |g(t)* — 2Re(s)g(t) + |s*| < &}) #0
for all & > 0}
={seR:F{te BR): 1> —2st +s*| <&}) #0
for all & > 0}
={seR:F{te BR):|t—s*><e}) #0
for all £ > 0}
= supp F,

where we used (5.4) to obtain the last equality. Thus, as o5(T) = os(Ir(g)), we
have o5(T) = supp F. On the other hand, let I(g) denote the spectral integral of
g € §(os(T), E). Then, using the argument above, with F replaced by E, we obtain
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os(T) = supp E and hence o5(T) = supp E = supp F. Using Theorem 5.2.4(v), we
obtain for any x € H,,,

/ (T)|f(r>|2d(Re<E(r)x,x>>= / |f ()12 d(Re(F (t)x, x))
os

os(T)

for every f € B and, in particular, for every f € € (os(T), R). Thus, Theorem 4.0.7
forces (E(M)x, x) = (F(M)x, x) for all M € %(os(T)). Consequently, the polari-
sation formula (2.20) forces E = Flo(T).

Finally, suppose WT' = WT for W € B(H,). Using Theorem 5.2.4(iv), we have
forany x, y € H,,

(f(THWx,y) = / o Re(f()d{(E®)Wx, y) for f e€B.
os

In view of Definition 5.2.3, we have that Wf(T) = f(T)W for every f € B and
hence, for any x, y € H,,

(f(TYWx,y) = (f(T)x, W*y) = f o Re(f(1)d(E(t)x, W*y) for f € B.
os

Putting these observations together, we have, in particular,

/ o FOA{E@)Wx, y) =/ FOA(Et)x, W*y) for f € €(os(T),R).
os

os(T)

Thus, using Corollary 4.0.8, we have (E(M)Wx,y) = (E(M)x, W*y, ie.,
(E(M)Wx,y) = (WE(M)x,y) for every x,y € H, and M € H(os(T)), i.e.,
EM)YW = WE (M) for every M € B(os(T)).

O

Remark 6.0.5 Let T and E be as in Theorem 6.0.1. We wish to record that in the proof
of Theorem 6.0.1 we showed that the support of the spectral measure of A is precisely
the S-spectrum of 7, i.e.,

supp E = os(T).

Corollary 6.0.6 Let T € B(Hy) be a positive operator. Then there exists a unique
positive operator A € B(H,) such that A> = T. Moreover, if(fj)?":1 is any sequence

of polynomials such that f;(t) — 1172

then

uniformly on [0, d], where d = max os(T),

lim || fj(T) — T'?|| = 0. (6.8)
j—o0

Proof The spectral theorem for a bounded self-adjoint operator (see Theorem 6.0.1
asserts that there exists a uniquely determined spectral measure E on o5(7') such that
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T = faS(T) tdE(t). In view of Lemma 3.2.5, we have o5(T) C [0, d], where d > 0.

Notice that have that f(t) = 1'/2 € B(o5(T), B(os(T)), C3) (see Definition 5.2.3),
where J € S, and

A= f(T) =/ V2 dE(1).
os(T)
Thus,
(Ax,x):/ PAE@x,x) =0 for x € H,
[0.d]

and hence A is a positive operator and we may use Theorem 5.2.4(i) to check that
A% = T. The limit (6.8) is an immediate consequence of Theorem 5.2.4(vii). We will
now prove that there is only one positive operator W € B(H,) such that W2 =T.
Suppose Ae B(H,) is a positive operator such that A2 = T. Then it is easy to see
that AT = T A and hence Ag(T) = g(T)A for any g € R[7]. Consequently, we have

K(Jim fj(T)) = <‘lim fj(T)> A,
Jj—00 j—o00

where (f ])C>O o 1s any sequence of polynomials in R[#] such that f;(z) — ¢
formly on [0 dl,ie.,

1/2 \ini-

AA = AA. 6.9)
Forany x € H,,lety := (A — Av)x. Thus, using (6.9), we obtain
(Ay. )+ (Ay. y) = (A + A)(A = A)x, y) = (A7 = A)x,y) = 0. (6.10)
Therefore, as (Ay, y) > 0 and (Xy, y) > 0, we must have
(4y.y) = (Ay.y) =0. (6.11)

But then, as A = D*D for some D € B(H,) and A D*D for some D € B(H,),
we have that (6.11) implies that (Dy, Dy) = (Dy, Dy) =0eR,ie,

Re (Dy, Dy) = Re (Dy, Dy) = 0.
Thus, ||Dy|| = |IDy|| =0, i.e., Dy = By = 0. But then we have
Ay =D*Dy=D*D = Ay =0.

Therefore, for any x € H,,, we have
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I(A — A)x||> = Re (A — A)x, (A — A)x)
= Re ((A — Z)zx, x)
= Re ((A— A)y, x)
=0
and hence (A — X)x = 0 forevery x € H,,i.e,A = A. O

Corollary 6.0.7 Suppose A € B(H,) and B € B(H,) are self-adjoint operators
with spectral measures E 5 and Ep, respectively. Then AB = BA if and only if
Ex(M)Eg(M) = Eg(M)EA(M) for all M € B(R).

Proof The last assertion in Theorem 6.0.1 with T = A and W = B ensures that
AB = BA if and only if BEA(M) = Es(M)B. Applying the last assertion in
Theorem 6.0.1 with T = B and W = Eg(M) we see that

AB = BA <> BEA(M) = EA(M)B < Eo(M)Eg(M) = Eg(M)E (M)

for any M € A(R). O

7 Polar decomposition for bounded operators

Let T € B(H,). The aim of this section it show that there exists a uniquely determined
positive operator P € B(H,) and a partial isometry Q such that T = U Q. This will
be important for the spectral theorem for a normal operator in Sect. 9.

Theorem 7.0.1 (Polar decomposition for bounded operators) Every T € B(Hj,)
admits a factorisation

T=UQ, (7.1
where Q = |T| is uniquely determined, where |T| := (T*T)'/?, and U : Ran(Q) —

Ran(T) is a partial isometry. In the particular case that T € B(H,) is normal, we
can choose U such that U is unitary and we have the following:

WT =TW and WT* =T*W = WQ = QW for W € B(H,) (7.2)
and
WT =TW and WT* =T*W = WU =UW for W € B(H,). (7.3)

Moreover, T is normal if and only if QU = U Q.

Proof Note that T*T € B(H,) is a positive operator and has a unique positive square
root Q := (T*T)'/? € B(H,) (see Corollary 6.0.6). For any x € H,,, we have
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ITx||> = Re(Tx, Tx)
= Re (T*Tx, x)
Re (Q%x, x)
= Re (QOx, Ox)
= [lQx[*. (7.4)

Thus, if we let x = y — z, with y, z € H,,, then (7.4) implies that Ty = Tz whenever
Qy = Qz for any y, z € H,. Consequently, we may let U : Ran Q — Ran T denote
the operator belonging to B(H,,) given by U (Qx) = Tx for x € H,,. Next, extend U
to all of ‘H,, via

- 7.5
0 if y € Ran QL. (72)

Tx if = QOx,
Uy = { y=0
Since (Uy, z) = (y,U*z) = 0forall y € Ran Q and z € H,,, we have U* : H,, —
Ran QJ' and hence Ran U C Ran Q.
‘We now wish to show that

U*Ux =x for x € Ran Q. (7.6)
Suppose y, z € Ran Q. Then
(y,2) = (Uy,Uz) = (y,U"Uz)

and hence (U*Uy — y, w) = 0 for all w € Ran Q. We have already noted that
U* : H, — Ran Q. Hence for all y € Ran Q, we have U*Uy — y € Ran Q.
Consequently, we have (7.6). Putting all of these observations together, we arrive at
the factorisation (7.1). The asserted uniqueness can be justified precisely the same
way as the complex Hilbert space case.

Let us now suppose that 7 is normal. We first note that (T7*x, x) = (T*Tx, x)
implies that (Tx, Tx) = (T*x,T % x) and hence Re (Tx, Tx) = Re (T*x, T * x),
ie., |Tx|| = |T*x| forall x € H,,. Therefore, Ker T = Ker T™* and hence

Ran Q' = Ker Q = Ker T = Ker T* = Ran T

Thus, we can extend U : Ran Q — Ran Q from (7.5) to U : 'H,, — H, (with a slight
abuse of notation we shall denote the extension of U by U as well) via

Uy=y if yeRaan.

As H,, = Ran Q & Ran Ql, we have that U : 'H,, — H,, is unitary.
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The implication 7.2 is an immediate consequence of the final assertion of Theo-
rem 6.0.1 and Corollary 6.0.6. We will now show (7.3). In view of (7.2), we have

(WU —UW)Q = 0. (1.7)

Thus, as T € B(H,,) is normal, we have H, = Ker7T @ Ran 7. Thus we may write
any x € H, asx = y+z,where y € Ker T = Ker Q and z € Ran T, we may use the
fact that Ker Q = Ker T and (7.7) to obtain

(WU —UW)x =(WU -UW)(y+2) =0,

e, WU =UW.

The final assertion can be justified in the same way as the complex Hilbert space
case (bearing in mind that one must use Corollary 6.0.6 which guarantees that bounded
positive operators have a unique positive square root). O

8 An additive decomposition for bounded operators and imaginary
operators

In this section, we will show that all bounded operators on a Clifford module admit an
additive decomposition which is analogous to the well-known additive decomposition

po (THTTY, (T
2 "\ )

which holds in the complex Hilbert space case. In the particular case that the bounded
operator is normal, this additive decomposition will be useful for proving the spectral
theorem for a bounded normal operators in Sect. 9.

Lemma 8.0.1 Let T € B(H,) be unitary. Then
os(T) C {s e R" 2 |s] = 1. 8.1)

Proof We claim that pg(T) € R*™t!\{s € R"*! : |s| = 1}. Since TT* = I, it is
obvious that || T'|| = 1. Thus, Theorem 3.1.8 ensures that

{s e R" s > 1} € ps(T).

Since Qo(T) = T? is a unitary operator, we have that Qo(T) is invertible, i.e., 0 €
ps(T). Forany s = so + 51 € R with 0 < |s| < 1, we have

T? —2Re(s)T + |s|> I

(s|HT*(T*)? 4+ 2Re(s HT* + |s711>T?)

= |s]*T2Q,-1(T™).

Qs (T)
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Thus, as T* is unitary and |s~'| > 1, we have that s~ belongs to ps(7*), in which
case s € R"™! with 0 < |s| < I, belongs to ps(T). Putting everything together we

have (8.1). O
Definition 8.0.2 (Imaginary operator) We will call an operator Jy € B(H,,) a partial
imaginary operator if Jy is a partial isometry and J; = —Jo. We will call J € B(H,)
an imaginary operator if J is unitary and J* = —J.

Theorem 8.0.3 Corresponding to any operator T € B(Hy,), there exist a self-adjoint
operator A € B(H,), a partial imaginary operator Jo € B(H,) and a positive
operator B € B(H,) such that

T = A+ JoB, (8.2)

where A .= (T + T*)/2 and B := |T — T*|/2 are uniquely determined by T.
Moreover, we may choose Jy in (8.2) to be an imaginary operator.

Proof If welet A := (T +T%*)/2,then A € B(H,) is obviously self-adjoint. Consider
the anti self-adjoint operator Y := T — A = (T —T*)/2 € B(H,). Since Y is normal,
we may use Theorem 7.0.1 to find a positive operator B € B(H,,) and a partial isometry
Jo such that Y = JyB. Moreover, by Theorem 7.0.1, we have BJy = JoB. Since Y is
anti self-adjoint, we must have J = —Jo. Thus, Jy is a partial imaginary operator.
The uniqueness of A is obvious. The uniqueness of B follows from Theorem 7.0.1.
Finally, the fact that we may choose Jy to be unitary follows from Theorem 7.0.1
applied to the bounded normal operator (T — T*) /2. O

In the case that T € B(H,) is normal, we have the following refinement of Theo-
rem 8.0.3.

Theorem 8.0.4 Corresponding to any normal operator T € B(H,,), there exist a self-
adjoint operator A € B(H,), a partial imaginary operator Jy € B(H,) and a positive
operator B € B(H,,) such that A, Jy and B mutually commute and satisfy

T =A+ JyB. (8.3)
In this case, A and B are as in Theorem 8.0.3 and
TJy= JoT. (8.4)

Moreover, we may choose Jy to be an imaginary operator (in this case we shall write
J in place of Jo).

Proof In view of Theorem 8.0.4, we only have to show that A := (T + T*)/2, B :=
|T — T*|/2 and Jyp mutually commute and that (8.4) holds. The fact that B and Jy
commute follows from the fact that Jy B is a polar factorisation for the bounded normal
operator Y := (T — T™*)/2. Since T is normal, we have A(T —T*) = (T —T*)A and
A(T —T*)* = (T —T*)*A. Thus, the fact that A, B and Jy mutually commute follows
at once from (7.2) and (7.3). The final assertion (8.4) is an immediate consequence of
(8.3) and the fact that A, J and B mutually commute. O
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Theorem 8.0.5 Let J be an imaginary operator on a Clifford module Hy, fixJ € S
and define

Hi(J,T) ={xeH,: Jx=x(£I} (8.5)

Then the following statements hold:

(1) H+(J,J) are nontrivial, i.e., H+(J,J) # {0} and
Hi(J, ) NH_(J,T) = {0}. (8.6)

(i) H+(J, ) are Cy closed right linear subspaces of H,,, with respect to Cs, i.e.,
ifx,y € Ht(J,J) and » € Cy, then x» +y € Hx(J,T). Consequently,
H1(J,J) may be both be viewed as a complex Hilbert space with respect to
the Cy-valued inner product given by

(x,¥)cy :=Re({x,y)) —Re((x,y)NT € C; for x,y € Hx(J,T).(8.7)

(i) Hy =H+(J,I) @& H_(J,T).

(iv) For any orthonormal basis (n;);c1 of the complex Hilbert space H4(J,J), we
have that, for any choice of J € SwithJJ = —33, (n; J)ieT is an orthonormal
basis of H_(J, J).

Moreover, for any orthonormal basis ());e7 of the complex Hilbert space
H_(J, J), we have that, for any choice of J € SwithIJ = —JJ, (1; J)ieT is
an orthonormal basis of H(J, J).

(v) For any orthonormal basis (n);c1 of the complex Hilbert space Hy(J,J),
(ni)iez is an orthonormal basis of the Clifford module 'H,,.

(vi) og(J)NCE = (T},

(vii) For any orthonormal basis (n;); 1 of the complex Hilbert space H+(J, J) and
J €S, we have

Jx = "nJ(x.n;) for x€H,. (8.8)
iel
Proof We will first prove (i). Suppose there exists x € H,\{0} such thatx — JxJ # 0.
Then

Jx —xJxT) = Jx +xJ
= (x — JxJ)J.
Thus, y :=x — JxJ € H,\{0} and Jy = yJ and hence H (J, J) # {0}.
On the other hand, if there exists x € H,\{0} suchthat x = JxJ, thenchoose J € S
such that 33 = —JJ. Thus, JxJJ = xJ implies that —J (xJ)J = xJ and hence

J(x3) = (xJ)J.
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Thus, we again arrive at the conclusion Hy(J,J) # {0}. The justification that
H_(J,J) # {0} can be carried out in a similar fashion.

We will now show (8.6). Suppose to the contrary that there exists a nonzero vector
x € Hy(J,J) N'H_(J,J). Then we have xJ = x(—7J), i.e., xJ = 0 which forces
x = 0, a contradiction.

We will now prove (ii). Suppose x, y € H(J,J) and A € C5. Then

JxA+y) =xTIh+yT = (xr+y)J.

Thus, H(J, J) is a C5 right linear subspace of H,,. The fact that H (J, J) is closed
follows at once via the continuity of multiplication. The justification that H_(J, J)
is a closed right-linear subspace, with respect to C5, can be carried out in a similar
fashion. Finally, the fact that H (J, J) and H_(J, J) may be viewed as a complex
Hilbert spaces with respect to the Cy-valued inner product given by (8.7) follows
immediately from H(J,J) being closed right subspaces of H,, and checking that
(8.7) is an Cy-valued inner product (to this end, it will be helpful to use the easily
verified fact that (x, y)A = £A(x, y) forall A € Cy and x, y € H4(J, J)).

We will now prove (iii). Let y = (x — JxJ)/2 and z = (x + JxJ)/2. Then
y € Hy(J,J) since

1 1
Jy=-(Jx+x7J)=-(x —JxTJ)J.
2 2
Similarly, z € H_(J, J) since
1 ~ 1 ~ o~
Jz = E(Jx —xJ) = E(x + JxJ3)(=7T).

Thus, as x = y + z and (8.6) holds we have H, = H+(J,J) & H_(J, J).
We will now prove (iv). Let J € S be such that JJ = —JJ. Then for any y €
Hy(J,T), we have

Jyd = INI = miHT).

Thus, yJ € H_(J,J). One can easily push this observation further and establish that
¢ Hy(J,T) — H_(J,T) given by ¢(y) = yJ is an isomorphism. Consequently, if
(ni)ie7 1s an orthonormal basis of H (J, J), then (1; J);<7 is an orthonormal basis
of H_(J, 7).

We will now prove (v). Let (1;);c7 be any orthonormal basis of H (J, Z). Then
we may apply (iv) and (iii) to see that (7;);<7 is also an orthonormal basis of H,,.

We will now prove (vi). Recall that J* = —J and JJ* = [. Thus, combining
(3.28) and (8.1), we have

os(/)YNCY ={reCl:Re)=0}N{aeCy:|r|=1}={T}.

We will now prove (vii). Let (1;); <7 be any orthonormal basis of H (J, Z). In view
of (v), we have that (;);c7 is an orthonormal basis of H,,. Consequently, in view of
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Lemma 2.2.6(iv), we have

x=) milx.m) for xeH,
i€l

and hence

Jx=Y Jmile,m) =) mi3e,m)  for x €M,
iel iel [}

9 Spectral theorem for a bounded normal operator and some
consequences

In this section we will be prove one of the main results of this manuscript, namely the
spectral theorem for a bounded normal operator on a Clifford module.

Let J € S be arbitrary. In the following lemma, we shall identify R x [0, co) with
(C;r ={A e (C;r : Im(A) > 0} in the natural way. Consequently, a spectral measure
on ZA(R x [0, 0c0)) may be viewed as a spectral measure on %’((C}r).

Lemma 9.0.1 Let E| be a spectral measure on B(R), E> be a spectral measure on
HB([0,00)) and T € S. Suppose E1(M)Er(M>) = E>(My)E | (My) for every M| €
BR) and My € HB([0, 00)) and let E(M| x M3) := E(M)E (M) be the uniquely
determined spectral measure on %((C;r) (see Theorem 5.1.15). For any real-valued
function f € F(B(CTL, E), we have

/f(t)dEl(t)=/ fRe()dE(R) 9.D
R ct
and
f g(u)dEz(u)=/ g(m@)dE(A) 9.2)
[0.00) ct

Proof We will verify (9.1) for simple functions. For any M € Z(R), we have

[ o R Gy = G <10, 00)
J
= B\ E(0.0)) = £ (M)

/XM(t)dEl(t)
R

Thus, by linearity, (9.1) holds for simple functions. Passing to a limit, we obtain (9.1)
forany f € F(#(C), E).
Formula (9.2) can be justified in much the same way as (9.1).
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We are now ready to state and proof the spectral theorem for a bounded normal
operator on a Clifford module.

Theorem 9.0.2 (Spectral theorem for bounded normal operators) Let T € B(H,) be
normal. Then corresponding to any choice of J € S, there exists a spectral measure
E on the Borel o-algebra AB(os(T) N C;f) such that

T :/ Re(k)dE(A)+/ Im(AM)dE) J, 9.3)
os(T)yNCH os(T)yNCY

where J an anti self-adjoint and unitary operator obeying (8.3). E is unique in the
sense that if F is a spectral measure on 9 (C}L) such that

T =/+Re(k)dF(k)+/ Im(L)dF (L) J,
CJr

(CJ J

then E(M Nos(T) N CY) = F(M) for all M € B(CY). Moreover, W € B(H,)
commutes with T if and only if WE(M) = E(M)W for every M € A(os(T) N (C;).

Proof We begin by using (8.3) to write T = A+ J B, where A € 5(H,,) is self-adjoint,
B € B(H,)is positive and J is anti self-adjoint and unitary and A, B and J all mutually
commute. Since A is self-adjoint and B is positive, we may use Theorem 6.0.1 to obtain
spectral measures E (resp., E2) on B(os5(A)) (resp., ZB(os(B))) such that

A=/ tdE((t) and B:/ tdE>(1).
os(A) os(B)

Note that since A € B(H,,) is self-adjoint, we have that og(7') is a non-empty compact
subset of R and since B € B(H,,) is positive, we have that og(B) is a non-empty
compact subset of [0, 0o0) (see Lemma 3.2.4). Moreover, in view of Remark 6.0.5, we
have

supp E1 = os5(A) and supp Ez = o5(B).

Since A and B commute, we have that E1 (M) E>(M>) = E1(M1)E>(M>) for every
M € Z(o). Thus, we invoke Theorem 5.1.15 with Q; = HB(os(A)) and Qp =
AB(os(B)) to obtain a uniquely determined spectral measure E on Z(os(A) X os5(B))
given by E(M; x My) = E(My)E(M;) for M| € ZB(cs(A)) and M, € B(os(B)).

Let J € S be arbitrary and identify R x [0, co) with (Cg ={r e (C; :Im()) > 0}
in the natural way. Consequently, we will view E as a spectral measure on the non-
empty compact subset o5(A) x os(B) C %’((C‘g). Lemma 9.0.1 with f(A) = Re(A)
and g(1) = Im(A) imply that

A:/tdE1(t)=/ Re(M)dE (L) 94
R +

C5



25 Page760f92 F. Colombo, D. P. Kimsey

and

B:/ udEz(u)zf Im(AdE), 9.5)
[0,00) ct

J
respectively. Since supp E1 = o5(A), supp E2 = op(A) and suppE C og5(A) X
op(A), we may rewrite (9.4) and (9.5) as
A :/ tdE(t) =/ Re(M)dE(A) 9.6)
os(A) os5(A)xos(B)

and

B:/ udEz(u)zf Im(W)dE(L), 9.7)
o5(B) o5(A)xas(B)

respectively. Thus ,as T = A + BJ, we can use (9.4) and (9.5) to obtain

T :/+Re(k)dE(k)+/ Im(WAEQ) J. 9.8)
C +

J (Cj

Theorem 5.3.14 with f (1) = A implies that

os(T)NCL = os@(f)NCY
= {seCl:E(reQ:|f(W)* —2Re(s) f(M) + Is|*| <)) #0
for all ¢ > 0}
= {seCy:E({x € Q: A% —2Re(s)A + |s]*| <e}) #0

for all ¢ > 0} 9.9)
={seCl:E(reQ:|A—sl-]A—5 <) #0

for all ¢ > 0} (9.10)
={seCl:EreQ:a—s* <eh) #0

for all ¢ > 0}, 9.11)

since, if we write A = Lo+ J € CT,withig € RandA; > 0,ands = so+s1J € (C}“,
with so € R and s; > 0, then

=517 = (Ao — 50)* + AT+ 2h151 + 57
(ho — 50)% + A3 — 24151 + 57

A — s>

v ol

Thus, in view of (5.4), (9.11) implies that o5(T) N Ct = supp E. Thus, we may
rewrite (9.8) to obtain (9.3).
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We will now show that E is unique. Suppose E’ on e%’((Cer) is another spectral
measure such that (9.3) holds. One can argue as in the proof of Theorem 6.0.1 to see that
supp E’ = og(T) which is non-empty and compact by Theorem 3.1.8. Consequently,
we may use Theorem 5.2.4(iv) with y = x and f € € (o5(T) N CT, R) to obtain

f FOV(EG)x, x) = f FOV(E (), x).
os(T)NCH os(T)NCS

Thus, one can show that E = E’ as in the proof of Theorem 6.0.1.
The proof of the final assertion can be completed in the same way as the proof of
the final assertion in Theorem 6.0.1. O

Remark9.0.3 LetJ,J€Sandy : C}r — (C§ denote the bijective map given by
Yy (o + A13) = Ao + A13, (9.12)

where Ao € Rand A1 > 0. Animmediate consequence of the proof of Theorem 9.0.2, is
thatif E5, whereJ € S, is a spectral measure for anormal operator I’ € B(H,,) and E3,
where J € S, then since y (o5(T) N (C}]") =os(T)N (C‘g and supp E5 = o5(T)NCH,
we have

E3(M) = E3(y(M)) for M € B(os(T) NC). (9.13)

In view of the above observations, we are justified in calling a spectral measure £ on
os(T)N (C;r the spectral measure of T .

Corollary 9.0.4 (Borel functional calculus in the bounded case) Let T € B(H,) be
normal, J be an imaginary operator satisfying (8.3) and E be the spectral measure of
T.FixJ € Sandput Q% := o5(T)NCY. Forany f, g € B(QY, (%), Cy, E) (see
Sect. 5.2), we have the spectral integrals 1(f), 1(g) € B(H,) are normal operators
with the following properties:

() I(f) =I(H)*.
(i) I(fg) = I(NHI(g).
(iii) I(3) = J and I(cf + g) = Re(c)] +Im(c) HI(f) + 1(g) for all c € C5 and
Jes.
(iv) Forall x,y € H,, we have

(I()x, y) = fm Re(f(M))d(ER)x, y) +/Q+ Im(f(A)d(JER)x, y)

J J

W) ILHxN? = [ |f WP dRe (E(M)x, x)) for all x € Hy.
i) IO < N1 flloo Moreover, L)l = Il flloo if and only if f € Loo(Q23, %
(Qt, Cy, E).
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(viii) For any sequence of functions (fj)?il’ where fj € B for j =1,2,..., which
converges pointwise E-a.e. on Q to f and there exists k > O suchthat | fj(A)| <
K forallh € Qand j =1,2,..., we have

s — lim I(fy) = 1(f).
J—>00

(viii) If we let T1L(J, J) denote the orthogonal projection onto the right complex
subspace H1(J, J), respectively (see Theorem 8.0.5(i1)), then

(e = [ dEGIL D) 0

£

+ /+d(E(A)H,(J,3)x,y)m for x,y e Hy,

$%

where both integrals above are meant in the sense of (4.5).
(ix) If f € BQT, %(Q}}'), C3, E) is nonnegative E-a.e., then I(f) = 0.
x) I(f)~' € B(H,) ifand only if f(1) # 0 E-a.e. and

e Loo(@f, 200, Cy, E).
In this case,

1)~ =11/ f).

(xi) The spectral measure Ey sy of I( f°) satisfies the identity
Eyp(M) = E(f~'(M 0 f(Q@1). (9.14)

Proof Let T € B(H,) be normal and fix J € S. Then by Theorem 9.0.2, we can find a
spectral measure E on SZ}; =os5(T)N (Cg such that (9.3) holds. Thus, we may invoke
Theorem 5.2.4 with Q = Q;f and .o/ = %(Q;r) to obtain (i)—(v), the first assertion in
(vi) and (vii). The fact that I( f) € B(H,,) is normal is an easy consequence of (i) and
(i1). Indeed, as

IHLH* =1 ) = L1(f ) =LHLS),

we have that I( f) is normal.

The second assertion in (vi) follows immediately from Lemma 5.3.10. We will now
prove (vii). We may use Theorem 8.0.5(iii) to write x = x4 +x_andy = y4 + y_,
where x4, y+ € Hy(J,J) and x_, y_ € H_(J,J). We note that [T (J, T)x = x4.
Then we may use (iv) and (8.5) to obtain
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(I(f)x, y) = f+Re(f(>»))d(E(?»)x, y)

Qj
+ [ G G G+ 00,
J
= [ ReF @D dE@ s +500.3)
J
+ [ e dER I~ 2.
J

_ f d(EG)xs. y) F(3)
Q‘F

J

+ / d(EG)x_, y) T 0.
Q+

J

in which case we have the desired identity.
We will now prove (ix). If we let y = x in (iv) with f(1) > 0 E-a.e., then we may
use the fact that E(M) > O forall M € %’(Q}? to obtain

(I(HHx, x) = /m JRd(ER)x, x) = 0.
J

Assertion (x) is an immediate consequence of Lemma 5.3.10 and Lemma 5.3.11.
Finally, we will prove (xi). Using Theorem 5.3.21 with @ = Q1. Q" = f(Q3)\{o0},
Y (L) = f(A), h(A") = )/ and F be the spectral measure given by (9.14), we obtain

/ Re(\YdF(\) —I—/ Im(\)dF(\)J
(C+ (C+

J J
= / Re(M)dF(\) + / Im(\)dF ()T
F@3)\{o0) F @3\ {00}

= / Re(f(AM)dEQ) + / Im(f(A)dEA)J
F(Q)\{o0} F(&Q5)\{oo}

= 1.

Thus, the asserted uniqueness in Theorem 9.0.2 ensures that the spectral measure for
I(f) is given by (9.14). O

Corollary 9.0.5 (Subclasses of bounded normal operators) Let T € B(H,) be normal
with spectral measure E and J be an imaginary operator associated with T (see
Theorem 8.0.4). We have the following:

(1) T is self-adjoint if and only if os(T) C R. In this case,

T:/tdE(t).
R
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(ii) T is positive if and only if os(T) C [0, 00). In this case,

T =/ tdE(t).
[0,00)

(iii) T is anti self-adjoint if and only if o5(T) C {s € R"! : Re(s) = 0}. In this case,
T = / tdE(t)J.
R
(v) T is unitary if and only if o5(T) C {s € R** : |s| = 1}. In this case,

T:/ Re(k)dE(A)+/ Im(1) dE(L).
In=1

[Al=1

(vi) T is imaginary if and only if o5(T) N CY = {3}. In this case,

Tx:Znij(x,m) for x € H,,
ieZ

where (n;);e1 is any orthonormal basis of H4 (T, J) (see (8.5)).

Proof Let us prove the claims. We prove (i). If T is self-adjoint, then Lemma 3.2.4
asserts that og(7) < R. The integral representation 7 = thdE (t) appeared in
Theorem 6.0.1. Conservely, suppose 7' € B(H,,) is normal and o5(7) € R. Then the
fact that T = T* follows at once from Corollary 9.0.4 with f(A) = A. Assertions (ii)
(with the help of Lemma 3.2.5), (iii) (with the help of Lemma 8.0.1) and (iv) (with the
help of Lemma 3.2.6) can be proved in much the same manner using Theorem 9.0.2
and Corollary 9.0.4.

Finally, Assertion (vi) is just (8.8). |

10 Spectral theorem for an unbounded normal operator and some
consequences

Before we can formulate and prove the spectral theorem for an unbounded normal
operator on a Clifford module, we will need to define the bounded transform of a
densely defined closed operator and also a lemma which highlights various properties
of the aforementioned bounded transform.

Definition 10.0.1 Suppose T € L(H,) is a densely defined closed operator. Let Cp
be as in the statement of Theorem 3.2.3,1.e., Cr := (I + T*T)_l. In view of Theo-
rem 3.2.3(ii), Cr € B(H,) and Cr is positive. In view of Corollary 6.0.6, Cr has a
unique positive square root C ;/ ‘eB (Hy). If we let

Zr :=TC)”, (10.1)
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then Z7 will be called the bounded transform of T (we will justify this nomenclature
in Lemma 10.0.2).

Lemma10.0.2 Let T € L(H,) be densely defined. Then the following statements
hold:

(i) Z7 € B(H,). Moreover,
I1Zrl =1 (10.2)
and
Cr=U+TT) ' =1-25Zr. (10.3)

(1) (Z7)* = Zp+ and hence Z7 is self-adjoint whenever T is self-adjoint.
(iii) Z7 is normal whenever T is normal.

Proof The proof in the classical complex Hilbert space (see, e.g., Lemma 5.8 in [66])
can be carried over into the Clifford module setting. For completeness, we will provide
the proof. The proof is broken into steps.

Step 1 Prove (i).
First note that
(Cx:xeH})=DU+T*T) =D(T*T) (10.4)

and hence if x € H,,, then

ITCy*Cy?x|? = (T*TCrx, Crx)
< (I +T*T)Crx, Crx)

(
(

= (C;'Crx, Crx)
(

A

= (x,Crx)
1/2
= ¢/ %2,
. 12 .
Thus, if y € {C;/"x : x € H,}, then
12
IZryll = 1TCy yll < Iyl (10.5)

Since Ker(C7) = {0}, we have that Ker(C;/z) = {0} and hence {C;/zx x € H}isa

dense subset of H,,. By assumption, T is a closed operator and since C ;/ 2 € B(H,),

we have that Z7 is closed as well. Thus, we have

{C)°x :x € Ha} SD(T), D(Zr) =Hy

and, in view of (10.5), we have | Z7| < 1.
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Next, it follows from (10.5) and cl2t* c Z7 that

(I—CnCcy* = > (U +T*T)Cr — C)*Cr

= c)*r*rcy*c)?
Z32rCyl%.

N

Thus, Z3, ZTCl/2 I — CT)C;/2 and, as {C;/Zx : x € H} is a dense subset of H,,,
we get (10 3).

Step 2 Prove (ii).
Using (10.3) we get that C7+ = (I + TT*)~'. If x € D(T*), then let y = Cr+x.
Therefore,

x=I+TT"y
and
T'x=T"U+TT*)y=U+T*T)T"y.

Thus, Cr+x € D(T*) and hence

CrT*x =T*y = T*Cr=x. (10.6)
It follows easily from (10.6) and (10.3) that p(Cr+)x € D(T*) and

p(C)T*x = T"p(Cr+)x
for any real polynomial p € R[¢]. By the Weierstraf} approximation theorem, there

exists a sequence of real polynomials (p, )5, which converge uniformly in supremum
norm to the function 7 — /2 on [0, 1]. We may use Corollary 6.0.6 to obtain

. 1/2 . 1 2
lim [|p;(Cr) — C)%| = lim |Ip;(Cr) — C;/*| =
j—o00 j—o00

Since T is a closed operator, 7* is also a closed operator. Thus, we have

C,°T*x = lim p;(Cr)T*x = lim T*p,(Cr)x
J—00 J—>00

= T*(Cy+)"/*x for x € D(T").

As CI/ZT* c (TCl/z)* = Z7r+, We get that

Zrex = C)*T*x = T*(Cr+)'?x = (Zr)*x
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for x € D(T*). Finally, since D(T*) is dense in H and Z7 € B(H,), we have that
Zr+x = (Z7)*x for x € H,, i.e., Zyx = (Z1)*.

Step 3 Prove (iii).
Using the first of (ii) on 7" and 7* and the assumption 77* = T*T, we have

I —(Zr)'Zr= (I+T*T) ' =U+TTH "' =1 (Zp)*Zr+
=1—-Zr(Zr)*
in which case it is clear that Z7 is normal. O

Suppose T € L(H,) is an unbounded normal operator and consider the bounded
transform Z7 € B(H,,) of T given by (10.1). In view of Lemma 10.0.2, we have Z7
is a bounded normal operator. Thus, we may use Theorem 8.0.4 to find a self-adjoint
operator Az, € B(H,), a positive operator Bz, € B(H,) and a imaginary operator
J such that A, B and J mutually commute and obey

ZT=AZT+JBZT~ (10.7)

Definition 10.0.3 (Strongly commuting operators) Suppose T, T € L(H,) are
unbounded normal operators . We will say that 7" and T strongly commute if the
bounded transforms of 7 and 7', i.e., Zr and Z7, respectively, commute.

We are now ready to formulate and prove the spectral theorem for an unbounded
normal operator.

Theorem 10.0.4 Let T € L(H,) be an unbounded normal operator. Then correspond-
ing to any choice of J € S and animaginary operator J in (10.7), there exists a spectral
measure E on the Borel o-algebra %(os(T) N (C}j") such that

T :/ Re(A)dE(k)+/ Im(A)dE(M) J. (10.8)
os(T)yNCH os(T)NCY

E is unique in the sense that if F is a spectral measure on .@((C}') such that
T = fcg Re(M)dF (L) + fq Im(A)dF (M) J, then E(M Nos(T) NCY) = F(M) for
all M € B(CY).
Remark 10.0.5 Before proceeding to the proof of Theorem 10.0.4, we wish to point

out that a consequence of Theorem 10.0.4 is that for any unbounded normal operator
T € L(H,), we have

os(T) # 0. (10.9)

Indeed, for any choice of J € S, Theorem 5.3.14 with f (1) = A implies that supp E =
os(T)N (C; Since supp E # ¥, we have (10.9).
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Proof (Proof of Theorem 10.0.4) The proof is broken into steps.

Step 1 Show that there exists a spectral measure E on os(T) N (C;ir such that (9.3)
holds.

In view of Lemma 10.0.2, we have Z7 is a bounded normal operator. Moreover,
IZ7 || < 1.Let J be the imaginary operator appearing in (10.7). Since Z7 € B(H,) is
normal, we can use Theorem 6.0.1 to obtain a uniquely determined spectral measure

Ez, on Z(0s(Zr)) DY where
Dy:={reCy:|A| <1} for TeS,

such that

Zr =/ Re()»)dEZT()»)—i-/ Im(W)dEz, (M) J. (10.10)
Dy

Dy

We may use (10.10) and (5.20) to see that, for any x € H, and M € %’(C}?), we
have

(I = (Z1)* Z1)Ez; (M), Ez,(M)x) = fM(l — IMPd(Ez, ()x, x). (10.11)

A simple consequence of Theorem 3.2.3 is C — - (Z7)*Z7 is invertible and
positive. Thus, Ker (I — (Z7)*(Z7)) = {O}and I — (Z1)*Z7 is positive. Thus, (10.11)
implies that og(Z7) N Ct = suppEz, C ]D)‘j" and Ez, (T‘j") = 0. Consequently,

Ez; (DY) = Ez; DI\ T) =1,
where Ty :={A € C5 : [A] = 1}.
Let (L) = A(1 — |A])~ /2. Notice that ¥ is an intrinsic function (see Defin-

tion 5.3.12). We claim that [(y) = Z7 (C;/ 2)_1, where I denotes the spectral integral

with respect to the spectral measure Ez, . Indeed, since Ez, (]D)Jj“) = [ and  is clearly
finite E7,-a.e. on C3, (5.16) asserts that D(I(y)) = D(I((1 — A)~/2)). Thus, we
may make us of Theorem 5.3.7(ii) and (iv) to obtain

I(y) = I)I((L — (A5 72,
Next, in view of Lemma 3.0.29, we have that
I(1 — A7) =11 = 2PHYH 7L

Finally, since Z7 = I(A) and the square root of a positive bounded operator is unique
(see Corollary 6.0.6), we have that

CY2 = (1 — (Zry 2p)'? = 1((1 — AP,
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Therefore, we have proved the claim I(y/) = ZT(C;/ 2)’1/ 2,

In what follows, with a slight abuse of notation, we will view v as wID; Let
E(M) := Ez, (¥ "' (M)) for M € #(C%). In view of Remark 5.3.20, E is a spec-
tral measure on % ((C}') and J is an imaginary associated operator with the spectral
measure E. Using the fact that T = Z7{(C7)'/?}~!, I(y) = Z7{(C7)'/?}~! and
Theorem 5.3.21, we obtain

T = 1) = / Re(YEZ () + / M@ ()dEZ, ()]

D; D7

1
Dt /1= A2

/Re()n)dE()L)—i—/ Im()dEM)J. (10.12)
(C+ +

J (Cfi

dEz, (\)

Finally, using Theorem 5.3.14, we have that supp E = os(T) N CT,ie., (10.12) is
(10.8).

Step 2 Show that E is unique.
Suppose F is another spectral measure on A (C;) such that the imaginary operator
J is associated with F and

T = /+Re(k)dF(A) + /+Im(k)dF()L) J.

Gy G5

Let F/(M) := F(yy(M)) for M € %(D;j”). In view of Remark 5.3.20, F’ is a spectral
measure on %’(]D)Jj’) and the imaginary operator J is associated with F’. Moreover,
since Ez, (Der), we have

Zr

/ Re(/\)dF’(A)—i—/ Im(ANdF' (M) J
D D

J J

/ Re(MdEz, (A) + f Im(\)dEz, (M) J.
Dt +

J DTI

But then the Borel functional calculus applied to Z7 € B(H,) (see Corollary 9.0.4)
asserts that for any real-valued polynomial p € R[A] and x € H,,, we have

(P(?»)x,x)=f pMAF' (3)x, x)
Dt

J

= /+ p(MAEz, (M)x, x).

Dy

Since R[A] is Ense in the Banach 1 space of real-valued continuous functions on the
compact set ID; (denoted by € (DT, R)), we can use Corollary 4.0.8 to see that
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(F'(M)x,x) = (Ez,(M)x, x) for any M € %’(D;), But then the polarisation for-
mula (2.20) enables us to deduce that F’ = Ez,.. Finally since F(M) = F'(yy~'(M))
for M € %(C%‘), we have F = E on %(C;) as required. O

Remark 10.0.6 LetJ,J e Sandy : (C; — (C}J|r denote the bijective map given by
y (ko +2173) = Ao + 13, (10.13)

where Ag € Rand A1 > 0. Animmediate consequence of the proof of Theorem 10.0.4,
is that if E5, where J € S, is a spectral measure for an unbounded normal operator
T € L(H,) and Ey, where J € S, then since y (os(T) N (C}') =os(T)N C; and
supp E5 = a5(T) N C*, we have

E;(M) = E3(y(M)) for M € %(os(T)NCY). (10.14)

In view of the above observations, we are justified in calling a spectral measure E on
os(T)N (CJJr the spectral measure of T .

Corollary 10.0.7 (Borel functional calculus in the unbounded case) Let T, E and
J be as in Theorem 10.0.4 and Q"j" = os(T) N (C%' for 3 € S. Forany f,g €
F(Qt, %(Q%‘), E) and ¢ € Cy, we have the spectral integrals 1(f), 1(g) € L(Hp)
have the following properties:

) I =1H*
() I(fg) = L(HI(g).
(i) I(fc+g) =1(H(Re(c)I +1Im(c)J) + 1(g) forall c € Cy.
(iv) I(f) is a closed normal operator belonging to L(H,,).
(v) DA(NI(g) = DA(fg) ND(I(g)).
(vi) If we let T1+(J, J) denote the orthogonal projection onto the right complex
subspace H1(J, J), respectively (see Theorem 8.0.5(i1)), then

Hror = [ dEGTL.Ix5) £6)

£y

+/+d(E(A)H_(J,3)x,y)m for x € D(T),
Q

J

where both integrals above are meant in the sense of (4.5).
(vii) If f € F(QF, L%’(Qg), Cy, E) is nonnegative E-a.e., then I(f) = 0.
(vii) I(f)~' € L(H,) ifand only if f(X) # O E-a.e. In this case, 1(f)~' = 1(1/ f).
(viii) The spectral measure Ey(yy of I(f) satisfies the identity

Exp (M) = E(f 7 (M N £(Q7)). (10.15)

Proof Let T € L(H,) be normal and fix J € S. Then by Theorem 10.0.4, we can find
a spectral measure E on o5(7T) N (C}r such that (10.8) holds. Thus, we may invoke
Theorem 5.3.7 with Q@ = o5(T) N C3 and & = B(o5(T) N CY) to obtain (i)—~(v).
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Assertions (vi)—(viii) are straight forward adaptations of Theorem 5.2.4(viii)—(xi)
to the unbounded setting. The corresponding proofs can be completed in much the
same way as the bounded setting. O

Corollary 10.0.8 (Subclasses of bounded normal operators) Let T, E and J be as in
Theorem 10.0.4 and Q}' =o0s(T)N (C}' for 3 € S. We have the following:

(1) T is self-adjoint if and only if o5(T) € R. In this case,

T:/tdE(t).
R

(i1) T is positive if and only if os(T) C [0, 00). In this case,

T =/ tdE(t).
[0,00)

(iii) T is anti self-adjoint if and only if o5(T) C {s € R+ : Re(s) = 0}. In this
case,

T = / tdE(t)J.
R

Proof The proofs of (i)—(iii) can be completed in much the same way of the proofs of
Corollary 9.0.5(i)—(iii) with Theorem 10.0.4 in place of Theorem 9.0.2. O

The following corollary is an unbounded analogue of the Teichmiiller decomposi-
tion.

Corollary 10.0.9 Corresponding to any normal operator T € L(H,), there exist a
self-adjoint operator A € L(Hp,), an imaginary operator J € B(H,) and a positive
operator B € L(H,) such that A, J and B strongly commute and satisfy

T=A+JB. (10.16)

In this case, A = fcg Re(M\)dE()) and B = f(C}’ Im(}) dE()), where E is the
spectral measure for T, and

T and J strongly commute. (10.17)

Proof The additive decomposition (10.16) follows at once from (10.8). The fact that
A, B and J strongly commute follows from the fact that Z4, = Az, Zp = Byz,,
where Az, and Bz, are as in (10.7), and the fact that Az, , Bz, and J mutually
commute. Finally, (10.17) is an immediate consequence of (10.16) and the fact that
A, B and J strongly commute O
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Theorem 10.0.10 (Spectral mapping theorem for an unbounded normal operator) Let
T € L(H,) be normal with spectral measure E and Q% := o5(T) ﬂ(C;r, whereJ € S.
For any intrinsic continuous function f € B(QY, @(Q;), Cs, E), we have

os(I(f) NCy = f(os(T) NCy), (10.18)
If T € B(H,) is normal, then (10.18) becomes
os(I(f) NCy = f(os(T) NCy). (10.19)

Proof We begin by noting that image of f is symmetric about the real axis in C5 (see
(5.29) and (5.30)). We will first show that

flos(T)NCy) C os(I(f)) NCy.

Suppose wo € f(os(T)NCy) and wy € C; For any ¢ > 0, we can find A9 €
os(T) N Cy such that f(Ag) € (C;r and

£ (Ro) — wol < g (10.20)

Since f is continuous, we have the existence of § > 0 such that

Us:= {AeCy:|r— 21| <8}
heCy:lf)— fOo)l < g}

rAeCy:lf) —wol <&}
Ve.

N

N

Since wo and f (Ao) both belong to C‘:’;, we may proceed as in the verification of (9.11)
and show that

Ve NCY = {1 € CF 1 1 f (W) = 2Re(wo) f () + [wol?| < &7).

Thus, as Ao € os(T) N (C?; and Ao € Us, we have that E(Us) # ¢, in which case
E(VeN (C;r) # (). But then Theorem 5.3.14 ensures that wg € os(I(f)) N (C;r.

If wo and f(Xo) both belong to C5, then we can use the fact that the image of f
is symmetric about the real axis and the fact that the S-spectrum is axially symmetric
(see Remark 3.1.7) and repeat the argument above with wg and ¢ in place of w and
Ao, respectively, to arrive at the same conclusion.

We will now show that o (I(f))NCy € f(os(T) N Cy). The inclusion os(I(f))N
Cy C f(os(T) N Cy) follows immediately from comparing the formula for og (I( f)N
C5 coming from Theorem 5.3.14 and the formula for f(os(7) N C5) derived from
(9.9).

Finally, (10.19) drops out easily from the fact that if T € B(H,,), then o5(T) N (C;
is compact. O
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A background of the S-spectrum and connections with functional
calculi and function theory

In 1936, Birkhoff and von Neumann, in their paper [9] on the logic of quantum mechan-
ics, showed that an set-theoretic abstraction of quantum mechanics can be formulated
on Hilbert spaces over the reals, complex numbers and quaternions. Consequently,
there was a strong motivation to prove the spectral theorem in the quaternionic setting
(i.e., a Clifford module over R;) and since that time several attempts have appeared
in the literature. The main contributions are due to Teichmiiller [67] in 1936 and to
Viswanath [69] in 1971. However, both authors do not make clear the notion of spec-
trum that is in use for quaternionic linear operators. Nevertheless, there are useful
results on quaternionic operator theory in [67] and [69].

The major breakthrough came in 2006 when 1. Sabadini and the first author dis-
covered the S-spectrum og(7") and the S-functional calculus for a quaternionic linear
operator 7. A prime motivation for this investigation was to give quaternionic quantum
mechanics a rigorous mathematical foundation. The strategy for the identification of
the S-spectrum was purely based on hyperholomorphic analysis methods and not on
physical arguments (see the introduction of the book [16] for a detailed explanation).
The definition of S-spectrum os(7') for an linear operator 7 on a quaternionic Banach
space V is somewhat counter intuitive because it involves the second order operator

Qs(T) :=T? = 250T + |s)* I
and is given by
os(T)={s e H : Q,(T) isnot invertible B(V)},

where H is the algebra of quaternions, so the real part of s € H, |s|? is the modulus
squared and B(V) is the space of all bounded linear operators.

Before 2006 in the literature there were two different notions of spectrum in the
quaternionic setting (as well as in the Clifford setting): the left spectrum o, (T") and
the right spectrum og(7) and both definitions mimic the eigenvalue problem for
complex operators. We point out that just in the finite dimensional case the quaternionic
spectral theorem was precisely proved using the notion of right spectrum by Farenick,
Pidkowich in [30] that was published in 2003. We also want to point out that in the
literature on quaternionic quantum mechanics physicists used the right spectrum to
describe the bounded states where there are just the eigenvalues, see the book of Adler
[1] and for more recent advanced see the paper of Gantner [34] on the equivalence
of complex and quaternionic quantum mechanics. Only in 2015 the authors with D.
Alpay proved the spectral theorem for quaternionic normal operators based on the
S-spectrum os(7) in [4] which was published in 2016. Fairly recently, there has been



25

Page 90 of 92 F. Colombo, D. P. Kimsey

a renewed quaternionic quantum mechanics, which utilises the notion of S-spectrum
(see, e.g., [57-59,68]).
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