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Abstract
In this paper, using the recently discovered notion of the S-spectrum, we prove the
spectral theorem for a bounded or unbounded normal operator on a Clifford module
(i.e., a two-sided Hilbert module over a Clifford algebra based on units that all square
to be −1). Moreover, we establish the existence of a Borel functional calculus for
bounded or unbounded normal operators on a Clifford module. Towards this end,
we have developed many results on functional analysis, operator theory, integration
theory and measure theory in a Clifford setting which may be of an independent
interest. Our spectral theory is the natural spectral theory for the Dirac operator on
manifolds in the non-self adjoint case. Moreover, our results provide a new notion of
spectral theory and a Borel functional calculus for a class of n-tuples of commuting or
non-commuting operators on a real or complex Hilbert space. Moreover, for a special
class of n-tuples of operators on a Hilbert space our results provide a complementary
functional calculus to the functional calculus of J. L. Taylor.
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1 Introduction

The spectral theorem for a normal operator on a complex Hilbert space is an incred-
ibly elegant result which lies at the heart of operator theory, harmonic analysis and
mathematical physics. In this paper we endeavour to generalise the spectral theorem
to a noncommutative setting where a complex Hilbert space is replaced by a Hilbert
module over a Clifford algebra Hn := H ⊗ Rn , where H is a real Hilbert space and
Rn := R0,n is a Clifford algebra which is generated by units e0 = 1 and e1, . . . , en ,
where e2i = −1 and ei e j = −e j ei for i, j = 1, . . . , n with n > 0 (we will favour the
termCliffordmodule for brevity) and the notion of spectrum is replaced by the recently
discovered notion of S-spectrum. We wish to stress that given the well-known classi-
fication of Clifford algebrasRn for n = 1, 2, . . . (see, e.g., [50]), our results can easily
be translated to handle spectral theory for a linear operator on any Hilbert module over
a finitely generated unital algebra.

The S-spectrum can be characterised by the invertibility of a second order oper-
ator and it is defined to be a subset of the set of paravectors in Rn (where one can
instil a natural complex structure corresponding to any paravector). More precisely,
corresponding to a right linear operator T on a Clifford moduleHn overRn , we define

σS(T ) :=
⎧
⎨

⎩
s =

n∑

j=0
s j e j : (T 2 − 2s0T+(s20+. . .+s2n )I )

−1 /∈ B(Hn)

⎫
⎬

⎭
, (1.1)

where B(Hn) denotes the set of bounded linear operators onHn . The S-spectrum was
discovered by the first author and I. Sabadini in the context of arbitrary operators on a
quaternionic Banach space (i.e., a Clifford module over R2) and paravector operators
T on a Banach module over a Clifford algebra Xn = X ⊗ Rn , where X is a real
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Banach space and Rn is as above with n > 2, i.e., right linear operators of the form

T = T0 +
n∑

j=1
e j Tj ,

where T0, . . . , Tn are linear operators on the real Banach spaceX (see “Appendix 1”
for more details).

Recently we realised that we can dispense with the restriction that T is a paravector
operator, i.e., the S-spectrum can be defined for an arbitrary right linear operator on
Xn . This observation will turn out to be critical for this manuscript. Moreover, the
consequences of this observation on the S-functional calculus and the slice hyperholo-
morphic function theory have been investigated in [17,18], respectively.

It turns out that Clifford numbers of the form s = ∑n
j=0 s j e j embed naturally into

a complex plane and hence

σS(T ) ⊆
⋃

I∈S
CI,

where CI = {λ1 + λ2I : λ1, λ2 ∈ R} and S := {s = ∑n
j=1 s j e j : s2 = −1}. A

moment’s consideration of (1.1) will reveal that the upper half plane σS(T )∩C
+
I can

identified in a natural way with σS(T )∩C+J for any choice of I, J ∈ S. Thus, one may
think of the S-spectrum as a complex notion of spectrum with an elegant symmetry.
For a concise background of the history of the S-spectrum, related function theory and
known results in the quaternionic case see “Appendix 1”.

We shall see that corresponding to every densely defined normal operator T on a
CliffordmoduleHn , there exists an imaginary operator J (i.e., J ∗ J = I and J ∗ = −J )
and a uniquely determined spectral measure E := EI such that

T =
∫

C
+
I

Re(λ)dE(λ)+
∫

C
+
I

Im(λ)dE(λ) J for I ∈ S. (1.2)

We shall also see that

supp E = σS(T ) ∩ C
+
I . (1.3)

Moreover, we establish a full analogue of spectral integrals corresponding to a spectral
measure E , the Borel functional calculus associated with T and the spectral mapping
theorem in the bounded and unbounded case. The fact that J is an imaginary operator
on Hn allows one to think of J as an operator-valued analogue of an imaginary unit.
It is worth pointing out that in the present setting the spectral measure E gives rise
to a family of Rn-valued measures which are positive as elements of the Clifford
algebra Rn . This creates a significant technical difficulty when building the requisite
machinery to prove (1.2) and the Borel functional calculus.
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Motivation
We mention some of the main motivations to study the spectral theorem on a Clifford
module.

(I) Spectral theory for vector operators.
The spectral theory on the S-spectrum is a very natural tool for studying vector oper-
ators that come from vector analysis such as the gradient operators with nonconstant
coefficients

T =
n∑

j=1
e ja j (x)∂x j , x = (x1, . . . , xn) ∈ R

n (1.4)

where e j is an orthonormal basis in R
n and a j : � → R, j = 1, . . . , n are given

functions with suitable regularity and � ⊆ R
n is an open set. With our spectral

theory we can define, for example, the fractional powers of operators of the form (1.4)
which can be used to represent fractional Fourier’s law for the propagation of the heat
in nonhomogeneous materials contained in �. In the quaternionic setting, fractional
Fourier’s law, the has been considered in various papers, see for example [15,19], and
the references therein.

(II) Dirac operator on manifolds.
In a great preponderance of the papers on spectral theory for the Dirac operators
the self-adjoint case is considered. This is most likely the cause due to the associated
difficulties of defining in an appropriate way the spectrum of the non self-adjoint Dirac
operator. However, the Dirac operator is just a particular case of a Clifford operator,
and on manifolds, it has in general non-constant coefficients, so its natural notion
of spectrum is the S-spectrum. The S-spectrum of a self-adjoint Clifford operator
(in particular the Dirac operator) is real. Let us explain with more details the above
motivation. Assume that g : U → R

n×n , given by

g(x) = (gi j (x))
n
i, j=1,

is a smooth matrix-valued function defined on the open set U in R
n where g(x) will

always be taken to be positive-definite and symmetric. Then

gx (ξ, η) =
n∑

i, j=1
gi j (x)ξiη j , ξ, η ∈ R

n (1.5)

is a positive-definite inner product on Rn and

gx (X ,Y ) =
n∑

i, j=1
gi j (x)aib j , where X =

n∑

i=1
ai (x)∂xi , Y =

n∑

j=1
b j (x)∂x j ,

(1.6)
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defines a positive-definite inner product space on the tangent space Tx (U ) to U at
x . So U can be seen as a coordinate neighbourhood for the Riemannian manifold M
taking x = (x1, . . . , xn) as coordinates and (1.6) as inner product, making it possible
to study the Dirac operator on M , by introducing it as a nonconstant coefficients
nonhomogeneous first-order systems of differential operators on C∞(U ,H). To give
a precise definition of the spectrum of the Dirac operator on M , (i..e, the S-spectrum),
we need to perform the following steps.

(a) We need to give the definition of the Dirac operator D on M .
(b) Next, we need to write D2 explicitly in terms of a second-order Laplacian and a

curvature operator, via the Bochner–Weitzenböck theorem.

The precise expression of the operator D2 is of crucial importance in order to define
the S-spectrum because it is associated with the operator

Qs(D) := D2 − 2s0D + |s|2 I ,

here s is a paravector in the Clifford algebra Rn . Before we can define the Dirac
operator, we require some additional notions. Let g : Rn×n → U be an invertible
function on R

n×n and write

g−1 : U → R
n×n, g−1(x) = (gi j (x))ni, j=1. (1.7)

Next, let

γ (x) = (γi j (x))
n
i, j=1, γ−1(x) = (γ i j (x))ni, j=1 : U → R

n×n,

be the unique square roots of g and g−1, respectively.Let e1, . . . , en be the skew-adjoint
operators satisfying the Clifford relations e j ek + eke j = −2δ jk , set

ei (x) =
n∑

j=1
γ i j (x)e j , x ∈ U ,

for every i = 1, . . . , n. By definition we have that

e j (x)ek(x)+ ek(x)e j (x) = −2g jk(x), x ∈ U . (1.8)

Let dτ : spin(n)→ U(H) be the representation of the Lie algebra of spin(n) derived
from the representation τ : spin(n) → U(H). For more details see [39].

As a differential operator on C∞(U ,H) the standard Dirac operator D on (U , g)
is defined by

D =
n∑

i=1
ei (x)

(
∂xi + dτ(ωi (x))

)

where ω1, . . . , ωn : U → spin(n) are smooth functions uniquely determined by g.
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Some more work is necessary to define D2, but clearly the spectral theory on the
S-spectrum allows one to consider non-self adjoint Dirac operators. We recall that the
scalar curvature of (U , g) is defined by

κ(x) = −
n∑

i, j=1
Ri ji j (x) (1.9)

where Ri jk(x) is the Riemann curvature tensor. As an example we recall Spinor
Laplacian, that is we assumeH = �n and τ is the Spin representation of S of spin(n)

on�n ,n = 2m, (see [39]) the secondorder operator D2 is often called spinorLaplacian
is given by the Lichnerowicz’s formula

D2 = −�S + 1

4
κ(x).

So in similar cases the S-spectrum can be written explicitly. Several results, such as
[11,32,47,48,52] and also [31,43,49,56,60,61] in spectral theory for theDirac operators
can now be seen in a new light using the spectral theory on the S-spectrum for the
Dirac operator, also using the S-functional calculus [3,7,24,35] and the function theory
[2,21–23] on which this calculus is based on for n-tuples of operators.

(III) Complementarity to the Taylor spectrum for a class of tuples of commuting oper-
ators or non-commuting operators and harmonic analysis.
Given an n-tuple of bounded or unbounded operators (T1, . . . , Tn) on a real Hilbert
space H, we can form the right linear operator

T =
n∑

j=1
eα j T j ,

where α1, . . . , αn ∈℘({1, . . . , n}). Now if there exists a configuration of units such
that T is normal, then one may define the spectrum of (T1, . . . , Tn) to be the S-
spectrum of T , i.e., σS(T ). Moreover, one has a Borel functional calculus at hand for
a reasonably large class of functions of T , which is helpful in problems in harmonic
analysis and partial differential equations. It is worth mentioning that one can find the
relations between the monogenic functional calculus, Taylor functional calculus and
the Weyl functional calculus (see, [45,46,53,54,63]). In harmonic analysis in higher
dimensions, singular integrals and in the study of the Fourier transform one can find
various connections with Clifford analysis in the recent book [64]. Boundary value
problems treated with quaternionic techniques can be found in [41]. Clifford wavelets,
singular integrals, and Hardy spaces are studied in [55].

(IV) Spectral theory for linear operators on a Hilbert module over a finitely generated
unital algebra.
We first note that we may use the classification of Clifford modules (see, e.g., [50])
and the fact that every finitely generated unital algebra is isomorphic to a subalgebra
of Rm×m , for some m, to see that there is an embedding of any Hilbert module over a
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finitely generated unital algebra into a Clifford module Hn for an appropriate choice
of n. Thus, given a normal right linear operator T on a Hilbert module over a finitely
generated unital algebra, we may view T as a being a right linear operator on a
Clifford moduleHn for a suitable choice of n. We can then utilise the spectral theory
and functional calculi in the Clifford setting and translate back to the Hilbert module
setting in a straight forward manner.

For the function theory of slice hyperholomorphic functions the main books are
[5,25–27,33,36], while for the spectral theory on the S-spectrum we mention [6,12,
14,16,27]. For the Fueter and monogenic function theory and related topics see the
books [10,20,29,39,40,44,65].

Strategy
We wish to summarise our strategy for proving the spectral theorem for a normal
operator on a Clifford module.
(I) It turns out that the S-spectrum and S-resolvent set can be defined for all bounded
or unbounded operators (not necessarily paravector operators). This is the first crucial
intuition for the decomposition of normal operators andwe show that the S-spectrumof
a bounded operator is a non-empty compact subset of {s ∈ Rn : s = s0+∑n

j=1 s j e j }.
(II) We define a spectral measure on a Clifford module and spectral integrals I( f ),
where f belongs to a suitable class of functions (see Sect. 4).

Moreover, we point out that an absolutely key result is Theorem 5.3.14 which
connects σS(I( f )) to supp E . Dealing with the S-spectrum requires to overcome sub-
stantially different difficulties with respect to the classical complex or quaternionic
Hilbert space case (where the spectral measure E gives rise to a family of positive
measures in the usual sense).
(III) We prove a spectral theorem for a bounded self-adjoint operator (see Theo-
rem 6.0.1) where the important result given in Theorem 5.3.14 is being used to show
that the spectral measure E has the property that supp E = σS(T ).
(IV)We prove a polar decomposition for a bounded Clifford operator T and specialise
the result to the case when T is normal (see Theorem 7.0.1). This then enables one
to prove that every bounded normal operator can be written as T = A + BJ , where
A = A∗ ∈ B(Hn), B ∈ B(Hn) is positive, J J ∗ = I and J ∗ = −J and A, B and J
all mutually commute (see Theorem 8.0.4).
(V) To prove the spectral theorem for bounded normal operators (see Theorem 9.0.2),
one needs to apply a technical result (see Theorem 5.3.17) to manufacture a uniquely
determined spectral measure E which lives on σS(A)×σS(B)which will be identified
with the complex plane CI, where I ∈ S.

One applies the key result Theorem 5.3.14 with the identity function f (λ) = λ to
see that σS(T ) ∩ CI = supp E ∩ CI. One can get a suitable integral representation
for T which resembles the quaternionic case.
(VI) We use the bounded case of the spectral theorem (see Theorem 9.0.2) to prove
the unbounded case (see Theorem 10.0.4).

For the convenience of the readerwehave compiled a list of commonlyusednotation
that appears throughout this manuscript.
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Notation
Rn := R0,n will denote the Cifford algebra generated by the units e0 := 1 and
e1, . . . , en , where ei e j = −e j ei for i 	= j . An element a ∈ Rn can be written as

a =
∑

α

aαeα :=
∑

α∈℘({1,...,n})
aαeα,

where ∅ can be identified with 0 and α 	= ∅ can be interpreted as a n-tuple (i1, . . . , in)
with i1 < . . . < in).
S := {I = (0,I1, . . . ,In) ∈ R

n+1 : ∑n
i=1 Ii = 1}. A typical element of S will be

denoted by I or J.
For any I ∈ S, we shall let CI = {λ0 + λ1 I : λ0, λ1 ∈ R} and C

+
I = {λ0 + λ1 I :

λ0 ∈ R, λ1 ≥ 0}.
S(Rn) will denote the set of self-adjoint Clifford numbers in Rn , i.e., all a ∈ Rn such
that ā = a.
P(Rn) will denote the set of positive semidefinite Clifford numbers in Rn , i.e., all
a ∈ Rn such that a = bb̄ for some b ∈ Rn . In this case, we will write a � 0.
χ : Rn → R

2n×2n will denote the injective ∗-homomorphism from the Clifford
algebra Rn to the set of real matrices of size 2n (see Definition 2.1.7).
Hn = H ⊗ Rn will denote a two-sided Clifford module over Rn , where H is a real
Hilbert space (see Definition 2.1.6).
〈·, ·〉 : Hn ×Hn → Rn given by (2.9) and ‖x‖ := √Re 〈x, x〉 for x ∈ Hn .
For any closed submodule Y ⊆ Hn , we shall let

Y⊥ := {y ∈ Hn : 〈x, y〉 = 0 for all x ∈ Hn}.

L(Hn) will denote the set of right linear operators onHn . The domain of an operator
T ∈ L(Hn) will be denoted by D(T ) (see Definition 3.0.1).
Ran T and Ker T will denote the range and kernel of T ∈ L(Hn), respectively (see
Definition 3.0.3).
B(Hn) will denote the set of bounded linear operators on Hn (see Definition 3.0.4.
We shall let

‖T ‖ := sup
‖x‖≤1

‖T x‖ = lim‖x‖=1 ‖T x‖.

G(T ) will denote the graph of a linear operator (see Definition 3.0.6).
For T ∈ L(Hn), we shall let 〈x, y〉T := 〈x, y〉 + 〈T x, T y〉 and ‖x‖T := (‖x‖ +
‖T x‖2)1/2 for x ∈ D(T ).
For S, T ∈ L(Hn), we will write S ⊆ T ifD(S) ⊆ D(T ) and Sx = T x for x ∈ D(S).
|T | := (T ∗T )1/2 (see Theorem 7.0.1).
For any closable operator T ∈ L(Hn), we shall let T denote the closure of T (see
Definition 3.0.14).
We shall let Qs(T ) := T 2 − 2Re(s)T + |s|2 I .
ρS(T ) denotes the S-resolvent set of T and σS(T ) denotes the S-spectrum of T (see
Definition 3.1.1).
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We shall let S−1L (s, T ) and S−1R (s, T ) denote the left S-resolvent operator and right
S-resolvent operator of T at s, respectively (see Definition 3.1.4).
For T ∈ B(Hn), we shall let rS(T ) denote the spectral radius of T with respect to the
S-spectrum (see (3.22)).
For T ∈ B(Hn), we shall let σPS(T ), σRS(T ) and σCS(T ) denote the point S-spectrum
of T , residual S-spectrum of T and continuous S-spectrum of T , respectively (see
Definition 3.1.11).
For T ∈ B(Hn), we shall let �S(T ) and �S(T ) denote the approximate point S-
spectrum of T and compression S-spectrum of T , respectively (see Definition 3.1).
T ∈ L(Hn) will be called normal if T is densely defined, closed,D(T ) = D(T ∗) and
T T ∗ = T ∗T .
T ∈ L(Hn) will be called self-adjoint if D(T ) = D(T ∗) and T x = T ∗x for all
x ∈ D(T ).
T ∈ L(Hn) will be called positive if T is D(T ) = D(T ∗) and 〈T x, x〉 � 0 for all
x ∈ D(T ), i.e., 〈T x, x〉 ∈ P(Rn) for all x ∈ D(T ).
T ∈ L(Hn) will called anti self-adjoint if D(T ) = D(T ∗) and T = −T ∗ for x ∈
D(T ).
T ∈ B(Hn) will be called unitary if T T ∗ = I .
J ∈ B(Hn) will be called imaginary if J is anti self-adjoint and J is unitary.
P(Hn) will denote the set of orthogonal projections on Hn .
s − limi→∞ Ti will denote the limit of a sequence of operators (Ti )∞i=1, where Ti ∈
B(Hn) for i = 1, 2, . . ., in the strong operator topology.
E will denote a spectral measure on (�,A ), whereA is a σ -algebra of sets generated
by �.
The set of Borel sets generated by � will be denoted by B(�).
Given a spectral measure E on (�,B(�)), supp E will denote the support of E (see
Definition 5.1.9).
Given an Rn-valued measure ν the total variation of ν will be denoted by |ν| (see
(5.5)).
Given an imaginary operator J ∈ B(Hn), we will say that J is associated with a
spectral measure E on (�,A ) if E(M)J = J E(M) for all M ∈ A (see Definition
5.2.1).
B(�,A ,CI) will denote the Banach space of all bounded A -measurable functions
f : �→ CI equipped with the norm

‖ f ‖∞ = sup
λ∈�

| f (λ)|.

Bs(�,A ,CI) will denote the subspace of B(�,A ,CI) of all simple functions.
Given f ∈ B(�,A ,CI) and a spectral measure E on (�,A ), we shall let I( f )
denote the spectral measure of f with respect to E (see Definition 5.2.3).
Given a spectral measure E on (�,A ), we shall let F(�,A ,CI, E) denote the set
of all A -measurable functions f : � → CI ∪ {∞} which are E-a.e. finite, i.e.,
E({λ ∈ � : f (λ) = ∞}) = 0.
Given f ∈ F(�,A ,CI, E) and a spectral measure E on (�,A ), we shall let I( f )
denote the spectral measure of f with respect to E (see Theorem 5.3.4(ii)).



25 Page 10 of 92 F. Colombo, D. P. Kimsey

Given an imaginary operator J ∈ B(Hn) and I ∈ S, H±(J ,I) = {x ∈ Hn : J x =
x(±I)} is a complex subspace of Hn (see (8.5)).
Given a densely defined operator T ∈ L(Hn), we shall let CT := (I + T ∗T )−1 and
ZT := TC1/2

T (see Definition 10.0.1).

2 Preliminaries

In this section we will formulate a number of definitions and results on Clifford alge-
bras, Clifford modules, linear operators on Clifford modules, the S-spectrum and
measure theory and integration theory with respect to a Clifford algebra-valued mea-
sure. While the topic of Clifford algebras is very classical and well-known, the theory
of linear operators on Clifford modules and measure theory and integration theory
with respect to a Clifford algebra-valued measure are not so well developed. We have
furnished proofs for Clifford algebra/module analogues of results whenever the proof
differs from the classical case with the aim of making the present manuscript as self
contained as possible.

2.1 Clifford algebras

Definition 2.1.1 A collection of n elements e1, . . . , en , with n = p+q and p, q ∈ N0
will be called imaginary units if

e2i = +1 for i = 1, . . . , p

e2j = −1 for j = p + 1, . . . , n

e j ek + eke j = 0 for j 	= k

and

e1 . . . en 	= ±1. (2.1)

We shall denote the real algebra generated by the imaginary units e1, . . . , en the
universal Clifford algebra and denote it by Rp,q . An element of Rp,q is called a
Clifford number.

Remark 2.1.2 We note that it is only necessary to assume (2.1) if p − q ≡ 1(mod 4).
It is easy to check that {eα}α∈℘({1,...,n}) is linearly independent and hence Rp,q has

dimension 2n (as a real vector space).

Let α ∈ ℘({1, . . . , n}) and if α 	= ∅, then we may write α = {i1, . . . , ir }, with
i1 < . . . < ir . Then we may let

eα := ei1,...,ir := ei1 . . . eir if α = {i1, . . . , ir },
e0 := e∅ = 1 if α = ∅
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and write an arbitrary Clifford number a ∈ Rp,q as

a =
∑

α

aαeα :=
∑

α ∈℘({1,...,n})
aαeα,

where the sum is taken over ∅ and subsets {i1, . . . , ir } with i1 < . . . < ir .

Remark 2.1.3 The only Clifford algebra considered in the remainder of this paper will
be Rn := R0,n .

We will let

ā :=
∑

α

aα ēα =
∑

α

aα(−eα)

and

|a| :=
(

∑

α

a2α

)1/2

for a =
∑

α

aαeα ∈ Rn .

Hence one can easily check that for all a, b ∈ Rn , we have

ab = b̄ ā

a + b = ā + b̄

|a + b| ≤ |a| + |b| (2.2)

|ab| = |a| |b| whenever bb̄ = |b|2
and (2.3)

|ab| ≤ 2n−1|a| |b|. (2.4)

Definition 2.1.4 Given s = (s0, s1, . . . , sn) ∈ R
n+1, we may identify the vector s ∈

R
n+1 with the paravector s = ∑n

i=0 si ei ∈ Rn . With a slight abuse of notation, for
the remainder of this paper, we will use s in place of s.

Let S denote the unit sphere of vectors in Rn+1, i.e.,

S :=
{

I = (0,I1, . . . ,In) ∈ R
n+1 :

n∑

i=1
I2i = 1

}

.

It is easy to see that S is an (n − 1)-sphere in R
n and I ∈ S implies that I2 = −1.

Note that the real two-dimensional subspace ofRn+1 generated by 1 and I is complex
plane CI := R+RI. It is not hard to see that CI is isomorphic to the usual complex
plane C.
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Given a paravector s = ∑n
i=0 si ei ∈ R

n+1, it is possible to find Is ∈ S such that
s ∈ CIs . Indeed, if s 	= 0, then we may write

s = s0 +
(∑n

i=1 si ei
|s|

)

|s|.

Thus, if we let Is :=
∑n

i=1 si ei|s| , then one can check that Is ∈ S and hence s ∈ CIs .

Definition 2.1.5 (Self-adjoint Clifford numbers) We will call a ∈ Rn self-adjoint if
a = ā. The set of all self-adjoint Clifford numbers in Rn shall be denoted by S(Rn).
We note that S(Rn) is a real vector space.

Definition 2.1.6 (Positive semidefinite Clifford numbers) We will call a ∈ Rn positive
semidefinite if there exists b ∈ Rn such that a = bb̄. In this case, we shall write a � 0.
The set of all positive semidefinite Clifford numbers inRn shall be denoted byP(Rn).

We will need to recall a well-known injective ∗-homomorphism χ : Rn → R
2n×2n

which can be found, e.g., in [55].

Definition 2.1.7 Let χ : Rn → R
2n×2n be the injective ∗-homomorphism given by

the following inductive construction. We will first give meaning to χ(e j ) for j =
0, 1, . . . , n. Let χ(e0) = I2n and χ(e j ) := En

j for j = 1, . . . , n, where {Ek
j }kj=1 are

inductively defined via

E1
1 :=

(
0 −1
1 0

)

, Ek+1
j :=

(
Ek

j 0
0 −Ek

j

)

and Ek+1
k+1 =

(
0 −I2k
I2k 0

)

for j = 1, . . . , k and k = 1, . . . , n − 1. Next, we let

χ(eα) := χ(ei1) · · ·χ(eik ) for α = {i1, . . . , ik},

where i1 < . . . < ik . Finally for a = ∑
α aαeα ∈ Rn , we let

χ(a) :=
∑

α

aαχ(eα).

Remark 2.1.8 Let a ∈ Rn . It is easy to check that χ(a) is a positive semidefinite matrix
in R2n×2n if and only if a is a positive semidefinite Clifford number.

2.2 Cliffordmodules

Definition 2.2.1 (Clifford modules over Rn) Let H be a real Hilbert space with an
inner product 〈·, ·〉H and a natural norm ‖x‖H := 〈x, x〉1/2H for x ∈ H. Then by Hn

we mean the two-sided Clifford module generated by H and Rn with n > 0, i.e., Hn

consists of all vectors of the form

x =
∑

α

xα ⊗ eα, (2.5)
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with

x + y :=
∑

α

(xα + yα)⊗ eα, (2.6)

xa :=
∑

α

xα ⊗ (eαa) =
∑

α,β

(xαaβ)⊗ (eαeβ) (2.7)

and

ax :=
∑

α

xα ⊗ (aeα) =
∑

α,β

(xαaβ)⊗ (eβeα) (2.8)

for y = ∑
α yα⊗eα and a = ∑

α aαeα . We will employ the short-hand x = ∑
α xαeα

in place of x = ∑
α xα ⊗ eα . We may then endow a Clifford module Hn with the

Rn-valued “inner product” 〈·, ·〉 given by

〈x, y〉 :=
∑

α,β

eα ēβ〈xα, yβ〉H for x, y ∈ Hn . (2.9)

Remark 2.2.2 For the great preponderance of this work, we will not need the fact that
Hn is a two-sided module. Thus, whenever possible we will make use of the fact that
Hn is a right module. However, for Theorem 3.1.10 we will need to use the two-sided
which will be utilised when proving the spectral theorem for a bounded self-adjoint
operator in Sect. 6.

Remark 2.2.3 It is easy to check that the following facts hold:

〈x, x〉 � 0 and 〈x, x〉 = 0⇐⇒ x = 0 (2.10)

〈x + y, z〉 = 〈x, y〉 + 〈y, z〉, (2.11)

〈x, y〉 = 〈y, x〉 (2.12)

and

〈xa, y〉 = 〈x, y〉a for x, y, z ∈ Hn and a ∈ Rn . (2.13)

Furthermore, if we define

‖x‖ :=
(

∑

α

‖xα‖2H
)1/2

for x =
∑

α

xαeα, (2.14)

then ‖ · ‖ is a “norm” onHn , i.e., for all x, y ∈ Hn and a ∈ Rn , we have

‖x‖ > 0 whenever x is nonzero, (2.15)

‖xa‖ = ‖ax‖ = |a| · ‖x‖ for a ∈ R
n+1, (2.16)

‖xa‖ = ‖ax‖ ≤ 2n−1|a|‖x‖ for a ∈ Rn (2.17)

and
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‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.18)

Remark 2.2.4 In view of (2.15), (2.16) and (2.18), the fact thatH is complete and the
definition of a Clifford module (see Definition 2.1.6), it is very easy to see that Hn

together with ‖ · ‖ can be viewed as a complex Banach space over CI for any choice
of I ∈ S.

Definition 2.2.5 (Orthonormal basis inHn) We will call (ξi )i∈I ⊆ Hn linearly inde-
pendent if for any finite subset Ĩ ⊆ I, we have that the equation

∑

i∈Ĩ
ξi ai = 0,

where (ai )i∈Ĩ ⊆ Rn , only has the trivial solution, i.e., ai = 0 for all i ∈ Ĩ. Next,
we will say that B := (ξi )i∈I ⊆ Hn is an orthonormal basis for Hn if B is linearly
independent, the closed right linear span of B isHn , i.e., every x ∈ Hn belongs to the
closure (with respect to the norm topology onHn) of the set

⎧
⎨

⎩

∑

i∈Ĩ
ξi ai : ai ∈ Rn for all i ∈ Ĩ with Ĩ finite

⎫
⎬

⎭

(in this case, we will utilise the short-hand x = ∑
i∈I ξi ai ) and

〈ξi , ξ j 〉 =
{
1 if i = j,

0 if i 	= j .

While, it is not true that

‖x‖ = 〈x, x〉1/2 for x ∈ Hn,

we do have the following facts which are reminiscent of the classical Hilbert space
setting.

Lemma 2.2.6 Let Hn be a Clifford module over Rn. Then the following facts hold:

(i) ‖x‖2 = Re 〈x, x〉 for x ∈ Hn.
(ii) |〈x, y〉| ≤ ‖x‖ ‖y‖ for x, y ∈ Hn.
(iii) Every Clifford moduleHn has an orthonormal basis. Moreover, if B := (ξi )i∈I is

a basis for H, then B is an orthonormal basis for Hn.
(iv) For any orthonormal basis (ξi )i∈I , we have

x =
∑

i∈I
ξi 〈x, ξi 〉. (2.19)
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Proof See, e.g., Proposition 1.9 in [55] for (i) and (ii). We will now prove (iii). Let
B := (ξi )i∈I be an orthonormal basis for the real Hilbert space H. Then, in view of
(2.5), B is a basis forHn . In view of (2.9), we have

〈ξi , ξ j 〉 = 〈ξi , ξ j 〉H =
{
1 if i = j

0 if i 	= j .

Thus, B is an orthonormal basis ofHn .
Let B be as above. Since B is a basis for the real Hilbert basis H, we may use the

classical orthonormal expansion for a real Hilbert space to obtain

x =
∑

α

xαeα

=
∑

α

(
∑

i∈I
〈xα, ξi 〉

)

eα

=
∑

i∈I

∑

α

ξi 〈xα, ξi 〉eα

=
∑

i∈I

∑

α

ξi 〈xαeα, ξi 〉

=
∑

i∈I
ξi 〈x, ξi 〉.

��
In the following lemma, by dimS(Rn), we mean the dimension of the real vector

space of self-adjoint Clifford numbers in Rn (see Definition 2.1.5). For example,
dimS(R0) = dimS(R1) = dimS(R2) = 1 and dimS(R3) = 4.

Lemma 2.2.7 ([38], Polarisation formula for a Clifford module) Let Hn be a Clifford
module over Rn. Then

4 dimS(Rn)〈x, y〉 =
∑

α

(〈x + yeα, x + yeα〉 − 〈x − yeα, x − yeα〉)eα (2.20)

for all x, y ∈ Hn.

Lemma 2.2.8 (Parallelogram law) Let Hn be a Clifford module. Then for any x, y ∈
Hn, we have

‖x‖2 + ‖y‖2 = 2‖x‖2 + 2‖y‖2, (2.21)

where ‖ · ‖ is defined by (2.14).

Proof Since

‖x + y‖2 + ‖x + y‖2 = Re(〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉)
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+ Re(〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉)
= 2Re 〈x, x〉 + 2Re 〈y, y〉
= 2‖x‖2 + 2‖y‖2,

we have (2.21). ��
Definition 2.2.9 Let K ⊆ Hn . We will call K convex if for any choice of x, y ∈ K ,
we have

c x + (1− c) y ∈ K for 0 ≤ c ≤ 1.

The next lemma provides a natural generalisation of the closed point in a closed
convex subset property that holds for any complex Hilbert space.

Lemma 2.2.10 Let K be a non-empty, closed and convex subset of a Clifford module
Hn. For any x ∈ K, there exists a unique vector y ∈ K such that ‖x − y‖ is as small
as possible.

Proof We begin by letting

m := inf
z∈K ‖x − z‖.

Let (yi )∞i=1 be any minimising sequence for x , i.e.,

lim
i→∞mi = m for mi := ‖x − yi‖. (2.22)

Next, if we apply (2.21) to the vectors x = (x− yi )/2 and y = (x− y j )/2, we obtain

∥
∥
∥
∥x −

yi + y j
2

∥
∥
∥
∥

2

+
∥
∥
∥
∥
yi − y j

2

∥
∥
∥
∥

2

= d2i + d2j
2

. (2.23)

Since K is a convex set, we must have that (yi + y j )/2 ∈ K . Consequently, we
have ‖x − (yi + y j )/2‖ ≥ m. Thus, (2.22) and (2.23) imply that (yi )∞i=0 is a Cauchy
sequence inHn . Thus, as K is closed, we have that

y := lim
i→∞ yi ∈ K .

Notice that y has the property that ‖x − y‖ is as small as possible, since

‖x − y‖ = lim
i→∞‖x − yi‖ = m.

Finally, suppose y′ ∈ K such that ‖x − y′‖ = m. Then simply use (2.21) with
x − y and x − y′ to deduce that y = y′. ��
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Theorem 2.2.11 Let Y be a closed right submodule of a Clifford module Hn and

Y⊥ := {x ∈ Hn : 〈x, y〉 = 0 for all y ∈ Y }.

Then the following statement hold:

(i) Y⊥ is a closed right submodule ofHn.
(ii) Hn = Y ⊕ Y⊥.
(iii) (Y⊥)⊥.

Proof We will first show (i). Fix any y ∈ Y and suppose x, z ∈ Y⊥ and a ∈ Rn . Then

〈xa + z, y〉 = 〈x, y〉a + 〈z, y〉
= 0+ 0 = 0.

Thus, Y⊥ is a right submodule ofHn . Next, suppose (xi )∞i=0 is a convergent sequence,
where xi ∈ Y⊥ for i = 0, 1, . . . and let

x := lim
i→∞ xi .

Then

〈x, y〉 = 〈x − xi , y〉 + 〈xi , y〉 = 〈x − xi , y〉

and hence for any ε > 0, we have

|〈x, y〉| = |〈x − xi , y〉| ≤ ‖x − xi‖ · ‖y‖
< ε for i sufficiently large.

But then we have |〈x, y〉| = 0, in which case x ∈ Y⊥. Thus, (i) holds.
We will now prove (ii). Suppose x ∈ Hn is arbitrary. Then by Lemma 2.2.10, we

can find a unique vector y ∈ Y such that ‖x− y‖ is as small as possible. Consequently,
if we put z := x − y, then for any v ∈ Y and t ∈ R, we have

‖z‖2 ≤ ‖z + t v‖2.

Thus,

‖z‖2 ≤ Re 〈z + t v, z + t v〉
= Re 〈z, z〉 + t(Re〈z, v〉 + Re 〈v, z〉)+ t2Re 〈v, v〉
= ‖z‖2 + 2t Re〈z, v〉 + t2‖v‖2,

in which case we have

Re 〈z, v〉 = 0 for v ∈ Y . (2.24)
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Since Y is a submodule, we can replace y by yeα in (2.24) and realise that 〈z, v〉 = 0
for all y ∈ Y . Thus, z ∈ Y⊥ and we have the decomposition Hn = Y ⊕ Y⊥.

To prove that the decomposition Hn = Y ⊕ Y⊥ is unique, suppose x ∈ Hn

can be written as x = y + z and x = y′ + z′, where y, y′ ∈ Y and z, z′ ∈ Y⊥.
But then y − y′ = z − z′ will simultaneously belong to Y and Y⊥. Consequently,
〈y − y′, y − y′〉 = 0 forces y = y′ (see Definition 2.2.1) and hence z = z′.

Finally, we note that (iii) is a direct consequence of (ii). ��

3 Linear operators on Cliffordmodules

Definition 3.0.1 (Linear operator on a Clifford module) Let L(Hn) denote the set of
linear operators T̃ : D(T̃ ) → H, where D(T ) ⊆ Hn . The subspace D(T̃ ) ⊆ Hn

will be called the domain of T̃ ∈ L(Hn). We shall let L(Hn) denote the set of all
operators T : D(T )→ Hn of the form T = ∑

α eαTα , where Tα ∈ L(Hn)which acts
on D(T ) = ⋂

α D(Tα) ⊆ Hn via

T x =
∑

α,β

Tα(xβ)eαeβ for x =
∑

α

xαeα ∈ D(T ). (3.1)

Remark 3.0.2 Let T ∈ L(Hn). One can use (3.1) to check that for all x, y ∈ D(T )

and a ∈ Rn , we have

T (xa + y) = (T x)a + T y (3.2)

Thus, in view of (3.2), L(Hn) consists of right linear operators.

Definition 3.0.3 (Kernel and range) Given T ∈ L(Hn), with domain of T denoted
by D(T ). Then the range and kernel of T will be given by

Ran T = {y ∈ Hn : T x = y for x ∈ D(T )}

and

Ker T = {x ∈ D(T ) : T x = 0},

respectively.

Definition 3.0.4 (Bounded linear operator on a Clifford module) We will call an
operator T ∈ L(Hn) bounded if

D(T ) = Hn (3.3)

and

‖T ‖ := sup
‖x‖≤1

‖T x‖ <∞ for x ∈ Hn . (3.4)
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We will let B(Hn) denote the set of all operators T ∈ L(Hn) such that (3.3) and (3.4)
hold.

Remark 3.0.5 One can use (2.15), (2.16) and (2.18) and the definition of the operator
norm on B(Hn) (see (3.4)) to see that δ(T ,W ) = ‖T − W‖ is a metric on B(Hn).
One can proceed as in the classical case when Hn is a complex Hilbert space to see
that B(Hn) is complete with respect to the metric δ.

Definition 3.0.6 (Graph of a linear operator) Suppose T ∈ L(Hn). The graph of T
is the set

G(T ) := {(x, T x) : x ∈ D(T )}.

Lemma 3.0.7 LetHn be a Clifford module overRn. A right submoduleK ofHn⊕Hn

satisfies

K = {(x, T x) : x ∈ D(T )}, (3.5)

for some T ∈ L(Hn) if and only if

(0, y) ∈ K �⇒ y = 0. (3.6)

Proof If K is as in (3.5), then (3.6) obviously holds. Conversely, if (3.6) holds, then
(x, y) and (x, z) belonging to K implies that y = z, i.e., there exists a function
T : D(T ) → Hn . The fact that T ∈ L(Hn) follows easily from the right linearity of
K. Thus, (3.5) holds. ��

A very simple consequence of the polarisation formula (2.20) is the following
lemma.

Lemma 3.0.8 Suppose T ∈ L(Hn) is a densely defined operator. If 〈T x, x〉 = 0 for
all x ∈ D(T ), then T x = 0 for all x ∈ D(T ).

Lemma 3.0.9 Suppose S, T ∈ L(Hn) such that S ⊆ T , S is surjective and T is
injective. Then S = T .

Proof Fix x ∈ D(T ). Thus, as S is surjective, we can find y ∈ D(S) such that
Sy = T x . Since S ⊆ T , we have T y = T x . By the injectivity of T , we have x = y.
Thus, D(T ) ⊆ D(S) and hence D(T ) = D(S), in which case S = T . ��
Definition 3.0.10 (Graph norm) Suppose T ∈ L(Hn). It is easy to check thatD(T ) is
a right submodule of Hn which can be endowed with 〈·, ·〉T : D(T ) × D(T ) → Rn

given by

〈x, y〉T := 〈x, y〉 + 〈T x, T y〉 for x, y ∈ D(T ), (3.7)

where 〈·, ·〉T obeys (2.10)-(2.13) and the corresponding norm

‖x‖T := (‖x‖2 + ‖T x‖2)1/2 for x ∈ D(T ). (3.8)
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Definition 3.0.11 (Closed operator) An operator T ∈ L(Hn) is called closed if the
set {(x, T x) : x ∈ Hn} is a closed subset of Hn × Hn (endowed with the product
topology). Let S and T both belong L(Hn). We will write S = T if D(S) = D(T )

and Sx = T x for all x ∈ D(S) = D(T ). We will write S ⊆ T if D(S) ⊆ D(T ) and
Sx = T x for all x ∈ D(S). Clearly, S = T if and only if S ⊆ T and T ⊆ S. An
operator T ∈ L(Hn) is called closable if there exists a closed operator X ∈ L(Hn) so
that T ⊆ X .

Theorem 3.0.12 Let T ∈ L(Hn). The follow statements are equivalent:

(i) T is closed.
(ii) For any sequence (xi )∞i=1, with xi ∈ D(T ) for i = 1, 2, . . ., such that

lim
i→∞ xi = x,

where x ∈ D(T ), and

lim
i→∞ T (xn) = y,

where y ∈ Hn, we have T x = y.
(iii) D(T ) together with ‖·, ·‖T (see (3.11)) is a complete normed right module over

Rn.

Proof In view of Definition 3.0.11, (i) ⇐⇒ (ii) is immediate. We will now show
(i) ⇐⇒ (iii). In view of (3.8), D(T ) together with ‖ · ‖T is a complete normed right
module over Rn if and only if G(T ) is complete, i.e., G(T ) is a closed. ��
Theorem 3.0.13 Let T ∈ L(Hn). The following statements are equivalent:

(i) T is closable.
(ii) {(x, T x) : x ∈ D(T )} = {(x,Wx) : for some operator W ∈ L(Hn)}.
(iii) For any sequence (xi )∞i=1, where xi ∈ D(T ) for i = 1, 2, . . ., such that

lim
i→∞ xi = 0

and

lim
i→∞ T (xi ) = y,

where y ∈ Hn, then y = 0.

Proof We will first show (i) �⇒ (ii). If S ∈ L(Hn) is any closed operator such that
T ⊆ S, then

{(x, T x) : x ∈ D(T )} ⊆ {(x, Sx) : x ∈ D(S)}.
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Hence, as S is closed,

{(x, T x) : x ∈ D(T )} ⊆ {(x, Sx) : x ∈ D(S)}.

Therefore, in view of Lemma 3.0.7, (ii) holds.
We will now show (ii) �⇒ (i). If (ii) holds, then T ⊆ W and hence W is closed

since

{(x,Wx) : x ∈ D(W )}

is closed. Thus, T is closable.
The proof of (ii �⇒ (iii) follows immediately from the Lemma 3.0.7 and the fact

that (0, y) ∈ G(T ) implying that y = 0.
��

Definition 3.0.14 Let T ∈ L(Hn) be closable. We let

T x := lim
i→∞ T (xi )

denote the operator in L(Hn) with domain

D(T ) =
{

x ∈ Hn : x = lim
i→∞ in for(xi )

∞
n=0 ⊆ D(T ) and {T (xi )}∞i=0

converges inHn

}

.

In view of Theorem 3.0.13, the definition of T is independent of the choice of
sequence (xi )∞i=0. Note that for any closed operator W ∈ L(Hn) such that T ⊆ W ,

T ⊆ W .

Definition 3.0.15 (Continuous operator) Let T ∈ L(Hn). T will be called continuous
if for any sequence (xi )∞i=1, where xi ∈ D(T ) for i = 1, 2, . . ., such that

lim
i→∞ xi = x,

where x ∈ D(T ), we have

lim
i→∞ T xi = T x .

Theorem 3.0.16 Let T ∈ L(Hn). Then T is continuous if and only if T ∈ B(Hn).

Proof The proof can be carried out as in the classical complex Hilbert space case, see,
e.g., [51]. ��
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Definition 3.0.17 Let T ∈ L(Hn). A subset E of D(T ) will be called core of D(T ) if
E is a right submodule of D(T ) and E is dense in (D(T ), ‖ · ‖T ).

Definition 3.0.18 (Adjoint operator) Given T ∈ L(Hn) which is densely defined, we
let T ∗ ∈ L(Hn) denote the unique operator so that

〈T x, y〉 = 〈x, T ∗y〉, x ∈ D(T ), y ∈ D(T ∗),

where the domain of T ∗ is given by

D(T ∗) = {y ∈ Hn : there exists z ∈ Hn with 〈T x, y〉 = 〈x, z〉
for every x ∈ D(T )}.

Remark 3.0.19 Let T ∈ B(Hn). Then, in view of Definition 3.0.18, it is easy to check
that (T ∗)∗ = T .

Lemma 3.0.20 Let T ,W ∈ B(Hn). Then TW ∈ B(Hn),

‖TW‖ ≤ ‖T ‖ · ‖W‖ (3.9)

and

‖T ∗T ‖ = ‖T ∗‖2 = ‖T ‖2. (3.10)

Proof The fact that TW ∈ B(Hn), (3.9) and (3.10) can be proved exactly as in the
classical complex Banach algebra case, see, e.g., Theorem 8 on page 168 of [51] for
a proof of the classical complex Hilbert space case of (3.9) and [28] for a classical
complex Hilbert space case of (3.10). ��
Definition 3.0.21 (Self-adjoint, anti self-adjoint and unitary) Let T ∈ L(Hn). We
will call T self-adjoint, anti self-adjoint and unitary if T = T ∗ with D(T ) = D(T ∗),
T = −T ∗ with D(T ) = D(T ∗) and T T ∗ = T ∗T = I , respectively.

Remark 3.0.22 In view of Theorem 3.0.23(i), we have that if T ∈ L(Hn) is self-adjoint
or anti self-adjoint operator, then T is closed.

Theorem 3.0.23 If T ∈ L(Hn) is densely defined and W ∈ L(Hn), then:

(i) T ∗ ∈ L(Hn) is closed.
(ii) Ran (T )⊥ = Ker(T ∗).
(iii) If T ⊆ W, then W ∗ ⊆ T ∗.

Proof The proofs can completed in much the same way as the case when Hn is a
complex Hilbert space (see, e.g., Proposition 1.6 in [66]). ��
Theorem 3.0.24 If T ∈ L(Hn) is densely defined, then:

(i) T is closable if and only if D(T ∗) is dense inHn.
(ii) If T is closable, then T = T ∗∗, where T ∗∗ := (T ∗)∗.
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(iii) T is closed if and only if T = T ∗∗.
(iv) If T is closable and Ker(T ) = {0} and Ran (T ) is dense in Hn, then T ∗ is

invertible and (T ∗)−1 = (T−1)∗.
(v) If T is closable andKer (T ) = {0}, then T−1 is closable if and only ifKer (T ) =

{0}. In this case, we have (T )−1 = T−1.
(vi) Suppose T is invertible. Then T is closed if and only if T−1 is closed.

Proof The proofs can completed in much the same way as the case when Hn is a
complex Hilbert space (see, e.g., Theorem 1.8 in [66]). ��
Lemma 3.0.25 Let T ∈ L(Hn) be a densely defined operator. Then the graph of T ∗
satisfies

G(T ∗) = V (G(T ))⊥ = V (G(T )⊥), (3.11)

where V : Hn ⊕Hn → Hn ⊕Hn denotes the unitary operator given by

V (x, y) = (−y, x).

Proof Suppose x ∈ D(T ) and y ∈ D(T ∗). Using Definition 3.0.18, we have

〈〈V (x, T x), (y, T ∗y)〉 = 〈(−T x, x), (y, T ∗y)〉
= 〈−T x, y〉 + 〈x, T ∗y〉
= 0,

in which case we have G(T ∗) ⊆ V (G(T ))⊥.
Conversely, suppose (y, z) ∈ V (G(T ))⊥. Then for any x ∈ D(T ), we have

〈V (x, T x), (y, z)〉 = 〈−T x, y〉 + 〈x, z〉 = 0,

and hence 〈T x, y〉 = 〈x, z〉. But then we have again use Definition 3.0.18 to obtain
y ∈ D(T ∗) and z = T ∗y, i.e., (y, z) ∈ G(T ∗). Therefore, we have V (G(T ))⊥ ⊆
G(T ∗).

The second equality is an immediate consequence of V being unitary onHn⊕Hn .
��

Theorem 3.0.26 (Riesz representation theorem for Clifford modules) Let Hn be a
Clifford module over Rn. Suppose B : Hn ×Hn → Rn is bounded, i.e., there exists
M ≥ 0 such that

|B(x, y)| ≤ M‖x‖‖y‖ for x, y ∈ Hn,

and satisfies the following:

(i) B(x + y, z) = B(x, z) + B(y, z) and B(x, y + z) = B(x, y) + B(x, z) for
x, y, z ∈ Hn.
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(ii) B(x a, y) = B(x, y)a and B(x, y a) = ā B(x, y) for x, y ∈ Hn and a ∈ Rn.

Then there exists a unique T ∈ B(Hn) such that

B(x, y) = 〈T x, y〉 for x, y ∈ Hn . (3.12)

Proof The proof of Corollary 1.11 in [55] can easily be adjusted to our present right
Clifford module setting. ��

The following theorem appears in [55].

Theorem 3.0.27 (Hahn–Banach theorem for a Clifford module) LetHn be a Clifford
module over Rn and Sn be a right submodule of Hn. Suppose L : Sn → Rn is
continuous (i.e., bounded) and satisfies

L (xa + y) = L (x)a +L (y) for x, y ∈ Sn and a ∈ Rn . (3.13)

Then L has a continuous extension L : Hn → Rn (with a slight abuse of notation,
we shall use L to denote the extension) such that (3.13) holds for all x, y ∈ Hn and
a ∈ Rn.

Theorem 3.0.28 (Closed graph theorem for a Clifford module) Suppose T ∈ L(Hn)

is a closed operator with D(T ) = Hn. Then T ∈ B(Hn).

Proof The proof given in Theorem 2.2.7 in [62] can easily be adjusted to the present
Clifford module setting. ��
Lemma 3.0.29 Suppose C ∈ B(Hn) is invertible in B(Hn). Then the following state-
ments hold:

(i) C − D is invertible in B(Hn) whenever

‖D‖ <
1

‖C−1‖ .

(ii) Suppose C is invertible in B(Hn) and ‖C − D‖ < ‖C−1‖−1. Then D is invertible
in B(Hn).

Proof The proof of (i) and (ii) is exactly the same as in the classical case, see, e.g.,
Theorem 2 in Chapter 17 of [51] for the proof of (i). ��
Definition 3.0.30 (Normal operator on a Clifford module) Suppose T ∈ L(Hn).
We will call T normal if T is densely defined, T is closed, D(T ) = D(T ∗) and
T T ∗ = T ∗T .
Lemma 3.0.31 Let T ∈ L(Hn) be normal. If S ∈ L(Hn) so that T ⊆ S and D(S) ⊆
D(S∗), then S = T .

Proof If T ⊆ S, then S∗ ⊆ T ∗ and hence

D(T ) ⊆ D(S) ⊆ D(S∗) ⊆ D(T ∗) = D(T ),

i.e., D(S) = D(T ). Therefore, S = T . ��
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3.1 S-resolvent set, S-spectrum for a linear operator and the spectral radius
formula

Definition 3.1.1 (S-resolvent set and S-spectrum for T ∈ L(Hn)) Let T ∈ L(H) be
densely defined and Qs(T ) : D(T 2) → H be given by

Qs(T )x = (T 2 − 2Re(s)T + |s|2 I )x for x ∈ D(T 2). (3.14)

The S-resolvent set of T is defined as follows

ρS(T ) = {s ∈ R
n+1 : Ker Qs(T ) = {0},Ran Qs(T ) is dense inHn and

Qs(T )−1 : RanQs(T )→ D(T 2) is bounded}.

The S-spectrum is defined as

σS(T ) = R
n+1 \ ρS(T ).

Remark 3.1.2 In [27], the S-spectrum for T ∈ L(Hn) was considered for paravector
operators, i.e., operators of the form

T =
n∑

i=0
ei Ti ,

because the purpose of this theory was to define a functional calculus for (n + 1)-
tuples of noncommuting operators. Quite early on in our investigation of the Clifford
spectral theorem, we directed our attention to fully Clifford operators because of the
crucial decomposition

T = A + J0B. (3.15)

of normal bounded operators given in Theorem 8.0.4. This decomposition implies
that, even if T is a paravector operator, the operators J0 and B will not be paravector
operators in general.

A further observation is that in the case T is a paravector operator with noncom-
muting components the S-spectrum is defined by the operator T 2 − 2Re(s)T + |s|2 I
that is not a paravector.

For an explanation of why this theory is so flexible see the introduction of the paper
[18], where some considerations are made on various Cauchy formulas that define
various holomorphic functional calculi. The properties of the S-spectrum and the S-
resolvent operators for fully Clifford operators remain the same with the same proofs
valid for paravector operators, see [17,18,37].

Remark 3.1.3 For any T ∈ L(Hn), it is easy to show that the S-resolvent set is equal
to

ρS(T ) = {s ∈ R
n+1 : Qs(T )−1 : Ran Qs(T )→ D(T 2)

is bijective and bounded} (3.16)
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Definition 3.1.4 (Left and right S-resolvent operator) Suppose T ∈ B(Hn). For any
choice of s ∈ ρS(T ), we shall define the left S-resolvent operator via

S−1L (s, T ) := −Qs(T )−1(T − s̄ I ) ∈ B(Hn) (3.17)

and the right S-resolvent operator via

S−1R (s, T ) := −(T − s̄ I )Qs(T )−1 ∈ B(Hn). (3.18)

Remark 3.1.5 One can check that S−1L (s, T ) : ρS(T ) → B(Hn) is a right slice hyper-
holomorphic function (see Lemma 3.10 in [17] for details). Analogously, one can
check that S−1R (s, T ) : ρS(T ) → B(Hn) is a left slice hyperholomorphic function.

Definition 3.1.6 (Axially symmetric) We will call a set � ⊆ R
n+1 axially symmetric,

if whenever s = s0 + s1I ∈ �, where s0, s1 ∈ R and I ∈ S, then s0 + s1J ∈ � for all
J ∈ S.

Remark 3.1.7 (the S-spectrum is axially symmetric) Let T ∈ L (Hn). Then σS(T ) is
axially symmetric. If σS(T ) = ∅, then there is nothing to prove. If σS(T ) 	= ∅, then
one need only notice that s ∈ ρS(T ) depends only on Re(s) and |s|.
Theorem 3.1.8 (properties of the S-spectrum for T ∈ B(Hn)) Suppose T ∈ B(Hn).
Then σS(T ) is a non-empty compact subset of

{s ∈ R
n+1 : 0 ≤ |s| ≤ ‖T ‖}.

Proof We will first show that σS(T ) is non-empty. For any choice of ε > 0, the series∑∞
i=0 T i s−i−1 converges uniformly in norm on s ∈ �ε := {a ∈ R

n+1 : |a| =
‖T ‖ + ε} to S−1L (s, T ). Thus, for any I ∈ S, we may use the fact that

∫

�ε∩CI

s−i−1 ds(−I) =
{
2π if i = 0,

0 if i 	= 0,

to obtain

∫

�ε

S−1L (s, T )ds(−I) =
∞∑

i=0
T i

(∫

�ε

s−i−1ds(−I)

)

= 2π I . (3.19)

If Mε := {a ∈ Rn+1 : |a| ≤ ‖T ‖ + ε} ⊆ ρS(T ), then Remark 3.1.5 asserts that
S−1L (s, T )|Mε is a right slice hyperholomorphic B(Hn)-valued function. However,
an analogue of Cauchy’s integral formula for B(Hn)-valued functions asserts that
(3.19) must be 0, which is clearly not the case. Thus, Mε is not a subset of ρS(T ). But
then σS(T ) cannot be empty.

We will now show that σS(T ) is a closed subset of Rn+1. Notice that ϕ : Rn+1 →
B(Hn) given by ϕ(s) = Qs(T ) is a continuous function. Lemma 3.0.29 can be used to
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show that the set of invertible operators in B(Hn) is open. Thus, ρS(T ) = ϕ−1({W ∈
B(Hn) : W−1 ∈ B(Hn)}) is open. Consequently, σS(T ) = R

n+1\ρS(T ) is closed.
Next, we will show that σS(T ) ⊆ {s ∈ R

n+1 : |s| ≤ ‖T ‖}. In view of (3.9), we
have ‖T i‖ ≤ ‖T ‖i for i = 0, 1, . . .. Thus, as s ∈ R

n+1, we have the estimate

‖T i s−i−1‖ ≤ 2n−1|s−i−1| · ‖T i‖ = ‖T ‖i
|s|i+1 for i = 0, 1, . . .

and hence

∞∑

i=0
‖T i s−i−1‖ converges if and only if |s| < ‖T ‖. (3.20)

We now claim that

(T 2 − 2Re(s)T + |s|2 I )
( ∞∑

i=0
T i s−i−1

)

= s̄ I − T . (3.21)

Indeed, notice that

(T 2 − 2Re(s)T + |s|2 I )
( ∞∑

i=0
T i s−i−1

)

=
∞∑

i=0

(
T i+1s−i−1 − T i+1s−i−1(s + s̄)+ T i s−i−1ss̄

)

=
∞∑

i=0

(
T i+1s−i − T i+1s−i − T i+1s−i−1s̄ + T i s−i s̄

)

= s̄ I − T .

Thus, we have (3.21). Putting together (3.20) and (3.21), we have that σS(T ) ⊆ {s ∈
R
n+1 : |s| ≤ ‖T ‖}. As σS(T ) is closed, we have that is a closed subset of a compact

set, i.e., σS(T ) is compact.
Finally, we will show that σS(T ) is closed. Suppose s ∈ ρS(T ) and s̃ ∈ R

n+1 be
such that |s − s̃| is sufficiently small. Then

Qs(T )−Qs̃(T ) = 2Re(s̃ − s)T + (|s|2 − |s̃|2)I
= 1

|s|2 − |s̃|2
(
2Re(s̃ − s)

|s|2 − |s̃|2 T + I

)

,

one can use Lemma 5.3.11 to see thatQs̃ is invertible in B(Hn). Thus, s̃ ∈ ρS(T ) and
ρS(T ) is open, i.e., σS(T ) is closed. ��
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Definition 3.1.9 (Spectral radius) Let T ∈ B(Hn). Then we shall denote the spectral
radius of T by rS(T ) which is given by

rS(T ) := sup
s∈σS(T )

|s| = max
s∈σS(T )

|s|. (3.22)

Theorem 3.1.10 (Spectral radius formula) Let T ∈ B(Hn) be normal. Then

‖T ‖ = rS(T ). (3.23)

Proof Theorem 6.7 in [[17] asserts, in particular, that for any T ∈ B(Hn), we have

lim
i→∞(‖T i‖1) 1

i = rS(T ),

where

‖T ‖1 :=
∑

α

‖Tα‖H for T =
∑

α

Tαeα.

Notice that

‖T ‖ := sup
‖x‖=1

‖T x‖ = sup
‖x‖=1

‖
∑

α,β

Tαxβeαeβ‖

≤ sup
‖x‖=1

∑

α,β

‖Tαxβeαeβ‖

≤ 2n−1 sup
‖x‖=1

∑

α,beta

‖Tαxβ‖H · |eαeβ |

≤ 2n−12n−1
∑

α,β

(

sup
‖x‖=1

‖Tαxβ‖H
)

≤ 22(n−1)
∑

α,β

‖Tα‖H

= 23n−2‖T ‖1.

In view of (3.10), one can use induction on i to show that ‖T 2i ‖ 1
2i = ‖T ‖. In view

of Theorem 3.1.8, we have rS(T ) ≤ ‖T ‖. Thus,

rS(T ) ≤ ‖T ‖ = ‖T 2i ‖ 1
2i for i = 1, 2, . . .

and hence

rS(T ) ≤ lim
i→∞‖T

2i ‖ 1
2i
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= lim
i→∞

(

2
3n−2
i (‖T 2i ‖1)

1
2i

)

= rS(T ).

and hence we have (3.23). ��
Following the possible splittings of the classical spectrum for operators on complex

Banach space we can give the same spitting also for fully linear operators on Clifford
modules. We recall that the splitting of the spectrum is defined according to where an
operators is not invertible. We will mention two possible splittings. The first one is the
point, residual, continuous S-spectrum of a Clifford operator.

Definition 3.1.11 (Point, residual, continuous S-spectrum) Let T : D(T ) → Hn . We
split the S-spectrum into the three disjoint sets:

(P) The point S-spectrum of T :

σPS(T ) = {s ∈ R
n+1 : Ker(Qs(T )) 	= {0}}.

(R) The residual S-spectrum of T :

σRS(T ) =
{
s ∈ R

n+1 : Ker(Qs(T )) = {0}, Ran(Qs(T )) 	= Hn

}
.

(C) The continuous S-spectrum of T :

σCS(T ) =
{

s ∈ R
n+1 : Ker(Qs(T )) = {0}, Ran(Qs(T )) = Hn

and Qs(T )−1 /∈ B(Hn)

}

.

Remark 3.1.12 Notice that if A ∈ B(Hn) that satisfies the two conditions:

(i) There exists K > 0 such that ‖Av‖ ≥ K‖v‖ for v ∈ D(A) (bounded from below)
(ii) the range of A is dense inHn ,

then A is invertible.

So in analogy to the classical case for the S-spectrum we have:

Definition 3.1.13 (Approximate point and compression S-spectrum) Let T be a Clif-
ford bounded linear operator. The approximate point S-spectrum of T , denoted by
�S(T ), is defined as

�S(T ) = {s ∈ R
n+1 : T 2 − 2Re(s)T + |s|2I is not bounded from below}.

The compression S-spectrum of T , denoted by �S(T ), is defined as

�S(T ) = {s ∈ R
n+1 : the range of T 2 − 2ReT + |s|2I is not dense}.

The set �S(T ) contains the S-eigenvalues.
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3.2 Basic facts for normal operators

In this section we are defining self-adjoint, anti self-adjoint operators and positive
operators on a Clifford module. We are also formulating and proving a number of
facts which will be useful when proving the spectral theorem for a bounded self-
adjoint operator (see Sect. 6) and also the spectral theorem for an unbounded normal
operator (see 10).

For the quaternionic setting similar properties hold, see the book [16] and the
references therein.

Lemma 3.2.1 Let T ∈ L(Hn) be given. The following statements are equivalent:

(i) T is self-adjoint.
(ii) 〈T x, x〉 = 〈T x, x〉 for all x ∈ D(T ).

Proof If T is self-adjoint, then

〈T x, x〉 = 〈x, T x〉 for x ∈ D(T )

and hence

〈x, T x〉 = 〈T x, x〉 for x ∈ D(T ). (3.24)

On the other hand, if (ii) is in force, then (2.20) can be used to show that 〈T x, y〉 =
〈x, T y〉 for all x, y ∈ D(T ). Thus, (i) holds. ��
Definition 3.2.2 (Positive operator on a Clifford module) Let T ∈ L(Hn) be given.
The operator T is called positive if 〈T x, x〉 � 0 for all x ∈ D(T ).

The following theorem will be useful when considering the unbounded case of the
spectral theorem for normal operators.

Theorem 3.2.3 Suppose T ∈ L(Hn) is a densely defined closed operator. Then the
following statement hold:

(i) I + T ∗T is a bijective mapping on Hn. If CT := (I + T ∗T )−1 ∈ B(Hn), then
CT ∈ B(Hn), CT is positive and I − CT is positive.

(ii) The operator T ∗T ∈ L(Hn) is positive andD(T ∗T ) is a core for T . In particular,
if T is self-adjoint, then D(T 2) is a core for T .

Proof Wewill first prove (i). In view of Lemma 3.0.25, we have G(T ∗) = V (G(T ))⊥,
where V denotes the unitary operator in the statement of Lemma 3.0.25. Notice that
Hn ⊕Hn = G(T ∗)⊕ V (G(T )). Consequently, corresponding to every z ∈ Hn , there
exist x ∈ D(T ) and y ∈ D(T ∗) such that

(0, z) = (y, T ∗y) = V (x, T x) = (y − T x, T ∗y + x).

Thus, y = T x and z = x+T ∗y = (I +T ∗T )x , in which case the operator I +T ∗T ∈
L(Hn) is surjective. To see that I+T ∗T is injective, notice that for any x, y ∈ D(T ∗T ),
we have
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‖(I + T ∗T )(x − y)‖2 = Re〈(x − y)+ T ∗T (x − y), (x − y)+ T ∗T (x − y)〉
= Re 〈x − y, x − y〉 + 2Re 〈T (x − y), T (x − y)〉 (3.25)

+ Re 〈T ∗T (x − y), T ∗T (x − y)〉
= ‖x − y‖2 + 2‖T (x − y)‖2 + ‖T ∗T (x − y)‖2. (3.26)

Thus, as I + T ∗T is injective and surjective, we have that I + T ∗T is bijective and
let CT := (I + T ∗T )−1.

Suppose z = (I + T ∗T )x for some x ∈ D(T ∗T ). Then CT z = x and one can use
(3.26) with y = 0 to obtain

‖CT z‖ = ‖x‖ ≤ ‖(I + T ∗T )x‖ = ‖z‖

and hence CT ∈ B(Hn). The fact that CT is self-adjoint is an immediate consequence
of

〈CT z, z〉 = 〈x, z〉 = 〈x, (I + T ∗T )x〉 = 〈(I + T ∗T )x, x〉.

The remaining conclusions in (i) can be easily justified via (3.26).
We will now prove (ii). Since CT ∈ B(Hn) is self-adjoint, we have that C

−1
T is also

self-adjoint by Theorem 3.0.24(iv), i.e., I + T ∗T is self-adjoint. The fact that T ∗T is
positive follows from

〈T ∗T x, x〉 = 〈T x, T x〉 � 0 for x ∈ D(T ∗T ).

To check that D(T ∗T ) is a core for T , we must check that D(T ∗T ) is dense in the
Cliffordmodule (D(T ), ‖·‖T ). If y ∈ D(T ) satisfies 〈y, x〉T = 0 for all x ∈ D(T ∗T ),
then realise that

0 = 〈y, x〉 + 〈T y, T x〉 = 〈y, (I + T ∗T )x〉

for every x ∈ D(T ∗T ). Consequently, y = 0 since Ran (I + T ∗T ) = Hn , in which
case we have that D(T ∗T ) is a core for T .

The second assertion is very obvious. ��
Lemma 3.2.4 Let T ∈ L(Hn) be self-adjoint. Then σS(T ) ⊆ R.

Proof In order to show that σS(T ) ⊆ R, it suffices to show that ρS(T ) ⊆ {s ∈ R
n+1 :

Re(s) = 0}. Let s = s0 + s1 ∈ R
n+1, where s0 ∈ R and s1 ∈ Im(Rn+1)\{0}. Notice

that

Qs(T ) := T 2 − 2Re(s)T + |s|2 I = (T − s0 I )
2 + |s1|2 I

and henceD(T 2) = D((T−s0 I )2) and as T is self-adjoint, we have that (T−s0 I )2+
|s|2 I is self-adjoint. Moreover, in view of the second assertion in Theorem 3.2.3(ii),
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we have that D(T 2) is dense in Hn . We claim that Re(〈(T − s0 I )2 x, x〉) ≥ 0 for all
x ∈ D(T 2). Indeed,

Re(〈(T − s0 I )
2x, x〉 = Re(〈(T − s0 I )x, (T − s0 I )x〉)

= ‖(T − s0 I )x‖2 ≥ 0 for x ∈ Hn .

Notice that

‖Qs(T )x‖2 = Re〈{(T − s0 I )
2 + |s1|2 I }x, {(T − s0 I )

2 + |s1|2 I }x〉
= ‖(T − s0 I )

2x‖2 + 2Re〈(T − s0 I )
2x, |s1|2x〉 + |s1|4‖x‖2

= ‖(T − s0 I )
2x‖2 + 2|s1|2‖(T − s0 I )x‖2 + |s1|4‖x‖2

≥ |s1|4‖x‖2 for x ∈ D(T 2) (3.27)

and henceQs(T )−1 : RanQs(T )→ D(T 2) is bounded (just take x = Qs(T )−1y for
y ∈ RanQs(T ) in (3.27)) and KerQs(T ) = {0}. As Qs(T ) is self-adjoint, we have
that

RanQs(T ) = Ran (Qs(T )⊥)⊥

= Ker (Qs(T )∗)⊥

= KerQs(T ))⊥

= {0}⊥ = Hn .

Thus, for all s = s0 + s1, with s1 ∈ Im(Hn)\{0}, we have s ∈ ρS(T ), i.e., ρS(T ) ⊆
R
n+1\R, i.e., σS(T ) ⊆ R.

��
Lemma 3.2.5 Let T ∈ L(Hn) be a positive operator. Then σS(T ) ⊆ [0,∞).

Proof Acareful inspection of the proof of Lemma 3.2.4, bearing inmind the additional
hypothesis that T is a positive operator, will reveal that for all s < 0, we have that
Qs(T )−1 ∈ B(Hn) and hence (−∞, 0) ⊆ ρS(T ), i.e., σS(T ) ⊆ [0,∞). ��
Lemma 3.2.6 Let T ∈ L(Hn) be anti self-adjoint. Then

σS(T ) ⊆ Im(Rn+1) := {a ∈ R
n+1 : Re(a) = 0}. (3.28)

Proof Since T = −T ∗, we have

‖Qs(T )x‖2 = Re〈T 2x, T 2x〉 + 2(s20 − |s1|2)Re〈T x, T x〉 + (s20 + |s1|2)Re〈x, x〉
= ‖T 2x‖ + 2(s20 − |s1|2)‖T x‖2 + (s20 + |s1|2)‖x‖2 for x ∈ D(T 2).

(3.29)

Therefore, if |s0| ≥ |s1|, then we have

‖Qs(T )x‖2 ≥ s40‖x‖2 for x ∈ D(T 2) (3.30)
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and we may proceed as in Lemma 3.2.4 to show that s = s0+ s1 ∈ ρS(T ), i.e., (3.28)
holds.

If |s0| < |s1|, then (s20 − |s1|2)‖T 2x‖‖x‖ ≤ ‖(s20 − |s1|2)‖T x‖2 for x ∈ D(T )

together with (3.29) can be used to show that (3.30) holds. But then we may proceed
as above to obtain (3.28). ��
Theorem 3.2.7 Let T ∈ B(Hn) be a normal operator. Then we have

σPS(T ) = σPS(T
∗), σRS(T ) = σRS(T

∗) = 0, σCS(T ) = σCS(T
∗).

Proof Since T is normal andQs(T )∗ = Qs(T ∗) it is clear thatQs(T )∗ is normal. For
bounded linear operators the kernel T and the kernel of its adjoint are equal so

Ker (Qs(T )) = Ker (Qs(T
∗))

so by the definition of point S-spectrum se have

σPS(T ) = σPS(T
∗).

The fact that σRS(T ) = σRS(T ∗) = 0 follows by contradiction, in fact if 0 	= s ∈
σRS(T ) we get

{0} = Ker (Qs(T )) = Ker (Qs(T
∗)) = (Ran (Qs(T ))⊥ 	= {0}.

In the same way we can prove that σRS(T ∗) = 0. Since T and T ∗ have the same
S-spectrum and the three components of the S-spectrum, by definition, are pairwise
disjoint it follows that σCS(T ) = σCS(T ∗).

��

4 Measure theory and integration theory forRn-valuedmeasures

Definition 4.0.1 (PositiveRn-valuedmeasure) Let� be a non-empty set andA denote
a σ -algebra on �. We will call μ : A → Rn ∪ {∞} positive if μ(M) � 0 (see
Definition 2.1.6) for every M ∈ A such that μ(M) 	= ∞ and μ is σ -additive, i.e.,

μ

( ∞⋃

i=1
Mn

)

=
∞∑

i=1
μ(Mn) (4.1)

for every sequence M := (Mi )
∞
i=1, where Mi ∩ Mj = ∅ for i 	= j and Mi ∈ A for

i = 1, 2, . . .. In this case, we shall write μ is P(Rn)-valued.

Definition 4.0.2 (Finite, semi-finite and σ -finite P(Rn)-valued measure) Let � be a
non-empty set andA denote a σ -algebra on �. We will call aP(Rn)-valued measure
μ finite if μ(�) <∞, semi-finite if for every M ∈ A such that

μ(M) = ∞, there exists N ∈ A such that μ(N ) <∞ and N ⊆ M
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and σ -finite if

� =
∞⋃

i=1
Mi ,

where μ(Mi ) < ∞ for i = 1, 2, . . .. Note that if μ is finite, then the finite additivity
of μ together with μ(�) <∞ implies that μ(M) <∞ for every M ∈ A .

Definition 4.0.3 (Borel measure) Let X be a Hausdorff space. We will call a P(Rn)-
valued measure μ on the Borel σ -algebra generated by X a positive Rn-valued Borel
measure.

Definition 4.0.4 (Rn-valued measure) Let � be a non-empty set and A denote a σ -
algebra on �. We will call μ : A → Rn a Rn-valued measure if μ is σ -additive. In
this case, μ has the Jordan decomposition

μ =
∑

α

{μ(α)
+ − μ

(α)
− }eα, (4.2)

where μ
(α)
± are positive measures (in the usual sense) for every α ∈ ℘({1, . . . , n}).

The support of a Rn-valued measure μ shall be denoted by suppμ and is defined as
the set N which satisfies

μ(M) = μ(M ∩ N ) for M ∈ A .

We will call μ finite if μ(�) <∞.

Definition 4.0.5 (Integral with respect to a Rn-valued measure) Let μ be a finite Rn-
valued measure on a non-empty set �, A be a σ -algebra generated by �, I ∈ S

and μ = ∑
α{μ(α)

+ − μ
(α)
− }eα be the Jordan decomposition for μ. Then for any A -

measurable function f : �→ R, we shall define

∫

�

f (λ) dμ(λ) :=
∑

α

(∫

�

f (λ) dμ
(α)
+ −

∫

�

f (λ) dμ
(α)
−

)

eα (4.3)

and for any A -measurable function f : �→ CI, we shall define

∫

�

f (λ) dμ(λ) :=
∑

α

(∫

�

Re( f (λ)) dμ
(α)
+ −

∫

�

Re( f (λ)) dμ
(α)
−

)

eα

+
∑

α

(∫

�

Im( f (λ)) dμ
(α)
+ −

∫

�

Im( f (λ))dμ
(α)
−

)

I eα,

(4.4)

provided that all of the four integrals on the right-hand side exist and we do not end up
with the indeterminate expression∞−∞. Similarly, for anyA -measurable function
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f : �→ CI, we can define an integral with f (λ) on the right via

∫

�

dμ(λ) f (λ) :=
∑

α

(∫

�

Re( f (λ)) dμ
(α)
+ −

∫

�

Re( f (λ)) dμ
(α)
−

)

eα

+
∑

α

(∫

�

Im( f (λ)) dμ
(α)
+ −

∫

�

Im( f (λ)) dμ
(α)
−

)

I eα.

(4.5)

Definition 4.0.6 (Measure space and μ-integrability) Let � be a non-empty set and
A denote a σ -algebra on �. Suppose μ = ∑

α μ(α)eα is aP(Rn)-valued measure on
A . We shall call the triple (�,A , μ) a measure space. We will write that a property
holds μ-a.e. on �whenever the desired property holds except on a set M ∈ A , where
μ(M) = 0. A function f : � → R ∪ {∞} is called measurable if {λ ∈ � : f (λ) ≤
t} ∈ A for every t ∈ R. We will call a function f : � → CI ∪ {∞}, where I ∈ S,
μ-integrable if

∫

�
f (λ)dμ(α)(λ) converge for all α ∈℘({1, . . . , n}).

Theorem 4.0.7 Let X be a compact Hausdorff space and C (X ,R) denote the normed
space of real-valued continuous functions on X together with the supremum norm
‖ · ‖∞. Corresponding to any bounded positive linear functionalL : C (X ,R) → R,
there exists a unique positive Borel measure μ on X such that

L (p) =
∫

X
p(t) dμ(t) for p ∈ C (X ,R).

In this case, μ(M) ≤ ‖L ‖ for every set M that belongs to the Borel σ -algebra
generated by X, i.e., B(X).

Proof The existence and uniqueness of μ is a special case of Theorem D in Section
56 of [42]. The last assertion follows immediately from the fact that

‖L ‖ ≥ L (1) =
∫

X
dμ(t) = μ(X) ≥ μ(M) for M ∈ B(X).

��
Corollary 4.0.8 Let X be a compact Hausdorff space. Corresponding to any bounded
linear functionalL : C (X ,R) → Rn, there exists a uniqueRn-valued Borel measure
μ on X such that

L (p) =
∫

X
p(t) dμ(t) for p ∈ C (X ,R). (4.6)

In this case, |μ(M)| ≤ ‖L ‖ for every set M ∈ B(X).

Proof Write L ( f ) = ∑
α{L (α)

+ ( f ) − L (α)
− ( f )}eα , where L (α)

± : C (X ,R) → R

are positive linear functionals for α ∈ ℘({1, . . . , n}). It is easy to see that L (α)
± are
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bounded linear functionals and we may apply Theorem 4.0.7 to obtain the unique
positive Borel measures μ

(α)
± so that

L (α)
± ( f ) =

∫

X
f (t)dμ

(α)
± (t) for f ∈ C (X ,R).

Thus, if we let μ = ∑
α{μ(α)

+ − μ
(α)
− }eα , then we obtain (4.6).

To see that μ is unique, suppose there is another Rn-valued measure ν on X so
that (4.6) holds. Write the Jordan decomposition ν = ∑

α{ν(α)
+ − ν

(α)
− }eα , where ν

(α)
±

are positive Borel measures on X . Then, for any α ∈ ℘({1, . . . , n}), we must have
μ

(α)
± = ν

(α)
± . Thus, μ = ν.

The final assertion can be shown in much the same way as the final assertion of
Theorem 4.0.7. ��
Definition 4.0.9 (Transformation of a Rn-valued measure) Suppose μ is a positive
Rn-valued measure on a σ -algebra of sets A generated by a set � and ψ : � → �′.
LetA ′ be the family of sets given by M ′ ∈ A ′ if ψ−1(M ′) ∈ A . Notice thatA ′ is a
σ -algebra on �′ and μ′(M ′) := μ(ψ−1(M ′)) is a positive Rn-valued measure onA ′.

Theorem 4.0.10 Let �,�′,A ,A ′, μ and μ′ be as in Definition 4.0.9. Suppose f :
�′ → CI, where I ∈ S, is a μ′-a.e. finite �′-measurable function. Then f ◦ ψ is a
μ-a.e. finite A -measurable function on � and

∫

�′
f (λ′)dμ′(λ′) =

∫

�

f (ψ(λ))dμ(λ). (4.7)

Proof Let μ′ = ∑
α{ν(α)

+ − ν
(α)
− }eα and μ = ∑

α{μ(α)
+ − μ

(α)
− }eα be Jordan decom-

positions (see 4.2) for μ′ and μ, respectively. Applying the classical result to ν
(α)
± and

μ
(α)
± (which are just positive measures in the usual sense), see, e.g., Theorem C in

Section 39 of [42], we obtain both assertions. ��
Theorem 4.0.11 Let X be a compact Hausdorff space. Corresponding to any bounded
positive linear functional L : C (X ,R) → S(Rn), there exists a unique positive
Rn-valued Borel measure μ on X such that

L (p) =
∫

X
p(t) dμ(t) for p ∈ C (X ,R). (4.8)

In this case, |μ(M)| ≤ ‖L ‖ for every set M ∈ B(X).

Proof First, let K ≥ 0 be such that

|L (p)| ≤ K‖p‖∞ for every p ∈ C (X ,R).

Next, note that for every p ∈ C (X ,R),wemayuniquely decomposeL (p) asL (p) =∑
α Lα(p)eα , where Lα(p) ∈ R. Let L(p) : C (X ,R) → χ(Rn) given by L(p) =
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χ(L (p)) for p ∈ C (X ,R). Since χ is a ∗-homomorphism and L : C (X , RR) →
S(Rn),wehave that L(p) is a realHermitianmatrix for every p ∈ C (X ,R).Moreover,
in view of the first assertion in Remark 2.1.8 and the estimate

‖L(p)‖∞ = ‖χ(L (p))‖ =
∑

α

|Lα(p)|

≤ 2n/2
( ∑

α

Lα(p)2
)1/2

= 2n/2|L (p)|
≤ 2n/2K‖p‖∞

where ‖ · ‖∞ denotes the maximum row sum norm of a matrix, we have that L(p) is a
bounded positive R2n×2n -valued linear functional. Consequently, a finite dimensional
version of the operator-valued version of the Riesz representation theorem (see, e.g.,
Theorem 19 in [8]) gives us the existence of a uniquely determined positive R2n×2n -
valued measure ν := (νik)

2n
i, j=1 such that

L(p) =
∫

X
p(t) dν(t) :=

(∫

X
p(t)dνi j (t)

)2n

i, j=1
for p ∈ C (X ,R).

If we write L(p) = (Li j (p))2
n

i, j=1, then Li j : C (X ,R) → R is a bounded linear
functional such that

Li j (p) =
∫

X
p(t)dνi j (t) for p ∈ C (X ,R). (4.9)

Consequently, Corollary 4.0.8, with n = 0, asserts that νi j is the only R-valued
Borel measure such that (4.9) holds. If we use the fact that L(p) = χ(L (p)) and the
aforementioned uniqueness of theR-valuedmeasure in (4.9), then for anyM ∈ B(X),
we have that ν(M) = χ(aM ) for some aM ∈ Rn . In view of Remark 2.1.8, the fact
that ν(M) is a positive semidefinite matrix implies and ν(M) = χ(aM ) implies that
aM ∈ P(Rn) for all M ∈ B(X). It is easy to check that μ(M) := aM = χ−1(ν(M))

is a positive Rn-valued measure with the property that

L (p) = χ−1(L(p)) =
∫

X
p(t) dμ(t) for p ∈ C (X ,R),

i.e., (4.8) holds.
The uniqueness ofμ such that (4.8) holds follows immediately from the uniqueness

of ν and the injectivity of χ . The final assertion can be proved in much the same way
as the proof of the final assertion in Theorem 4.0.7. ��
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5 Spectral integrals

Throughout this section, A will denote an algebra of subsets of �, Hn will denote a
Clifford module over Rn and all infinite sums of operators in B(Hn) will be meant in
the strong operator topology, i.e.,

∑∞
k=1 Tk = T if and only if

T x = lim
k→∞

k∑

j=1
Tj x for x ∈ Hn .

5.1 Basic properties

Definition 5.1.1 (Orthogonal projection) An operator T ∈ B(Hn) is called an orthog-
onal projection if T is self-adjoint and T 2 = T . The set of orthogonal projections on
Hn will be denoted by P(Hn).

Definition 5.1.2 (Spectral premeasure and spectral measure) LetA be an algebra of
subsets in �. We will call E : A → P(Hn) a spectral premeasure if the following
conditions hold:

(i) E is countably additive, i.e.,

E

( ∞⋃

i=1
Mi

)

=
∞∑

i=1
E(Mi )

for every sequence of mutually disjoint sets (Mi )
∞
i=1 such that Mi ∈ � for i =

1, 2, . . . and ∪∞i=1Mi ∈ �.
(ii) E(�) = I .

If A is a σ -algebra, then E will be called a spectral measure. In this case, we will
write that E is a spectral premeasure (resp., measure) on (�,A ).

Lemma 5.1.3 LetA be an algebra of sets in�. Suppose E : A → P(Hn) is a finitely
additive map, i.e.,

E

(
k⋃

i=1
Mi

)

=
k∑

i=1
E(Mi )

for every collection of mutually disjoint sets (Mn)
k
i=1 such that Mi ∈ � for i =

1, . . . , k and
⋃k

i=1 Mi ∈ �. Then

E(M)E(N ) = E(M ∩ N ) for M, N ∈ A . (5.1)

In particular, we have E(M)E(N ) = 0 if M ∩ N = ∅.
Proof The proof can be carried out in the same way as the complex Hilbert space case
(see, e.g., Lemma 4.3 in [66]). ��
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Lemma 5.1.4 Suppose A is an algebra of sets in �. The mapping E : A → P(Hn)

is a spectral premeasure if and only if the following conditions hold:

(i) For any x ∈ Hn, the set function Ex (·) given by

Ex (M) := 〈E(M)x, x〉,

where M ∈ A , is a countably additive P(Rn)-valued set function.
(ii) E(�) = I .

Proof Suppose E is a spectral premeasure. Then, by Definition 5.1.2, (ii) holds. It
follows from Lemma 5.1.3 with M = N that E(M)2x = E(M)x for x ∈ Hn and
M ∈ A , we have

Ex (M) = 〈E(M)x, E(M)x〉 ∈ P(Rn) for M ∈ A and x ∈ Hn .

Thus, (i) holds.
Conversely, suppose (i) and (ii) hold. Suppose (Mi )

∞
i=1 be a sequence of mutually

disjoint sets such that Mi ∈ A for i = 1, 2, . . . and hence M := ∪∞i=1Mn ∈ A , since
A is a σ -algebra. For any x ∈ Hn , we note that Ex is finitely additive and hence E is
finitely additive as well. Thus, we may use Lemma 5.1.3 to deduce that (E(Mi ))

∞
i=1

is a sequence of orthogonal projections such that E(Mj )E(Mi ) = 0 whenever j 	= n.
Consequently,

∑∞
i=1 E(Mi ) has a limit in the strong operator topology of B(Hn).

Since

Ex (M) =
∞∑

i=1
Ex (Mi )

=
∞∑

i=1
〈E(Mi )x, x〉

=
〈 ∞∑

i=1
E(Mi )x, x

〉

for x ∈ Hn,

we may use the polarisation formula (2.20) to obtain

〈E(M)x, y〉 = 〈
∞∑

i=1
E(Mi )x, y〉 for x, y ∈ Hn,

i.e., E(M) = ∑∞
i=1 E(Mi ). Thus, E is a spectral premeasure. ��

Remark 5.1.5 In the event that A is a σ -algebra, a careful inspection of the proof
of Lemma 5.1.4 shows that we can easily adapt the proof to obtain the following
result where spectral premeasure and countably additive P(Rn)-valued set function
are replaced by spectral measure and P(Rn)-valued measure, respectively.
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Lemma 5.1.6 SupposeA is a σ -algebra of sets in �. The mapping E : A → P(Hn)

is a spectral measure if and only if the following conditions hold:

(i) For any x ∈ Hn, the set function Ex (·) given by Ex (M) := 〈E(M)x, x〉, where
M ∈ A , is a P(Rn)-valued measure.

(ii) E(�) = I .

Moreover, Ex (·) is a finite P(Rn)-valued measure.

Proof See Remark 5.1.5 for the characterisation of spectral measures. The second
assertion is a direct consequence of E(�) = I . Indeed, Ex (�) = 〈E(�)x, x〉 =
〈x, x〉 <∞. ��
Remark 5.1.7 Fix x, y ∈ Hn and let E be a spectral measure onA . Then consider the
Rn-valuedmeasure Ex,y(M) := 〈E(M)x, y〉 forM ∈ A . One can use the polarisation
formula (2.20) to verify

Ex,y =
∑

α(Ex+yeα − Ex−yeα )eα

4 dimS(Rn)
. (5.2)

It turns out that the Rn-valued measure Ex,y has the properties detailed in the
following lemma.

Lemma 5.1.8 LetA be an algebra of sets in�. Suppose E is a spectral premeasure on
A . Then for any sequences of sets (Mi )

∞
i=1 and (Ni )

∞
i=1 in A such that Mi+1 ⊆ Mi ,

Ni ⊆ Ni+1 for i = 1, 2, . . . and M := ∩∞i=1Mi ∈ A , we have

E(M) = s − lim
i→∞ E(Mi ) and E(N ) = s − lim

i→∞ E(Ni ), (5.3)

where N := ∪∞i=1Ni .

Proof The proof is very straight forward. ��
We will now define the support of a spectral measure. We shall suppose � is a

Hausdorff topological space which has a countable base of open sets. In what follows,
B(�) will denote the Borel σ -algebra of sets generated by �, i.e., the smallest σ -
algebra which contains all open sets in �. For the sake of brevity, we shall sometimes
write that E is a spectral measure on B(�) in place of E is a spectral measure on
(�,B(�)).

Definition 5.1.9 (Support of a spectral measure) Let E be a spectral measure on
B(�). We shall define the support of E by

supp E := �\
⋃

M∈B (�) open
E(M)=0

M .

The following lemma will be important when proving the bounded case for the
spectral theorem for normal operators on a Clifford module.
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Lemma 5.1.10 Let E be a spectral measure on (�,B(�)). Then

supp E = {λ ∈ � : E(M) 	= 0 for every open set M ∈ B(�) with λ ∈ M}. (5.4)

Proof The characterisation (5.4) is a straight forward consequence of Definition 5.1.9.
��

Let A be an algebra of sets in �. For any Rn-valued measure ν on �, we shall let
the total variation of ν be given by

|ν| := sup
(Mi )

k
i=1
|ν(Mi )|, (5.5)

where (Mi )
k
i=1 is any sequence ofmutually disjoint sets withMi ∈ A for i = 1, . . . , k

and k ∈ N is arbitrary.

Definition 5.1.11 (An L2-space with respect to Rn-valued measure) Let A be an
algebra of sets in �, I ∈ S and ν be a Rn-valued measure on A . Then we shall let

L2(�,A ,CI, ν) :=
{

A -measurable f : �→ CI :
∫

�

| f (λ)|2d|ν|(λ) <∞
}

.

For x ∈ Hn and a spectral measure E on B(�) we let μx (M) = 〈E(M)x, x〉 for
M ∈ B(�) and

L2(�,A ,CI, Ex ) :=
{

A -measurable f : �→ CI :
∫

�

| f (λ)|2d|μx |(λ) <∞
}

.

Remark 5.1.12 Let �,A ,I, E , x , Ex and ν be as in Definition 5.1.11. Write the
Jordan decomposition ν = ∑

α = {ν(α)
+ − ν

(α)
− }eα for ν. Then it is easy to see that

L2(�,A ,CI, ν) =
⋂

α∈℘({1,...,n})
{L2(�,A ,CI, ν

(α)
+ ) ∩ L2(�,A ,CI, ν

(α)
− )},

(5.6)

and

L2(�,A ,CI, Ex ) =
{

A -measurable f : �→ CI :
∫

�

| f (λ)|2d(Reμx (λ))

<∞
}

, (5.7)

where μx (M) := 〈E(M)x, x〉 for M ∈ A .

Lemma 5.1.13 Let E ′ be a spectral premeasure on (�,A ′). Then there exists a spec-
tral measure E on (�,A ), where A is the σ -algebra generated by A ′, such that
E(M) = E ′(M) for all M ∈ A ′.
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Proof For any x ∈ Hn , we may use Lemma 5.1.4 to see that μ′x (·) given by μ′x (M) =
〈E(M)x, x〉 is a premeasure on A ′. Moreover, using Lemma 2.2.6, we obtain

|μ′x (�)| = |〈μ′(�)x, x〉| = |〈x, x〉|
≤ ‖x‖2.

Thus,μ′x is a finiteRn-valued premeasure onA ′ and hence all of the positive measure
components in the Jordan decomposition of

μ′x =
∑

α

(μ′x,α,+ − μ′x,α,−)eα,

namely (μx,α,±)
α∈℘({1,...,n}), are also finite positive measures. Thus, we may

appeal to Theorem A in §13 of [42] to produce uniquely determined measures
(μx,α,+)

α∈℘({1,...,n}) on the σ -algebra A . Consequently, μx := ∑
α(μx,α,+ −

μx,α,−)eα is the unique S(Rn)-valued measure on A such that μx (M) = μ′x (M)

for M ∈ A ′.
Let x, y ∈ Hn and μx,y be the Rn-valued measure given by

μx,y(M) :=
∑

α(μx+yeα − μx−yeα )eα

4 dimS(Rn)
for M ∈ A . (5.8)

Next, let

˜A := {M ∈ A : the map x �→ μx,y(M) is right linear for all y ∈ Hn}.

One can use (5.8) and Lemma 5.1.8 to show that ˜A has the following property. The
union ∪∞m=1Mi ∈ ˜A for every sequence of sets (Mi )

∞
m=1 such that Mi ∈ ˜A for

i = 1, 2, . . . with Mi ⊆ Mi+1. Thus, as A ′ ⊆ ˜A , we may use Theorem B in §6 of
[42] to deduce that A ⊆ ˜A and hence ˜A = A .

In much the same way as above, one can show that the map y �→ μx,y(M) is anti-
right linear, i.e., μx,ya+z(M) = āμx,y(M)+μx,z(M) for all M ∈ A and x, z ∈ Hn .
It is easy to check that

μ′x+xeα (M)− μ′x−xeα (M) = 2(μ′x,x (M)eα − eαμ′x,x (M))

and hence by the uniqueness of μ we have

μx+xeα (M)− μx−xeα (M) = 2(μx (M)eα − eαμx (M)).

Consequently,

μx,x (M) = 2
∑

α

(μx (M)− eαμx (M)eα),
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in which case μx,x (M) ∈ P(Rn) and Reμx,x (M) ≥ 0 for all M ∈ A and x ∈
HN . For any M ∈ A , we may use the polarisation formula (2.20) to check that
〈E ′(M)x, y〉 = μ′x,y(M) and Lemma 2.2.6(ii) to deduce

|μx,y(M)| ≤ |μx,y(�)|
= |μ′x,y(�)|
= |〈E ′(�)x, y〉| = |〈x, y〉
= ‖x‖2‖y‖2 for x, y ∈ Hn .

Thus, for any M ∈ A , we may invoke Theorem 3.0.26 to obtain a positive operator
E(M) ∈ B(Hn) such that 〈E(M)x, y〉 = μx,y(M) for x, y ∈ Hn . For M ∈ A ′, we
have

E ′(M)x, x〉 = 〈E(M)x, x〉 for x ∈ Hn

and, hence, one can use the polarisation formula (2.20) to check that E ′(M) = E(M)

for M ∈ A ′.
Finally, let P := {M ∈ A : E(M) ∈ P(Hn)}. It is very easy to see that P has

the monotone property and hence A ′ ⊆ P . But then A ⊆ P . Thus, we may use
Lemma 5.1.6 to deduce that E is a spectral measure. ��
Lemma 5.1.14 Suppose � is a locally compact Hausdorff space which has a count-
able base of open sets and E is a spectral measure on B(�). For any x ∈ Hn, let
μx (M) := 〈E(M)x, x〉 for M ∈ B(�) and let μx = ∑

α{μ(α)
x,+ − μ

(α)
x,−}eα be the

Jordan decomposition for μx . Then

μ
(α)
x,+ is a finite positive Borel measure for every α ∈℘({1, . . . , n}). (5.9)

Proof The last assertion of Lemma 5.1.6 ensures that μx is a finite P(Rn)-valued
Borel measure. Consequently, μ

(α)
x,+ is a finite positive Borel measure for all α ∈

℘({1, . . . , n}). But then we may use the well-known fact that every positive Borel
measure on a locally compact Hausdorff space which has a countable base of open
sets is regular (see, e.g., Proposition 7.2.3 in [13]) to obtain (5.9). ��
Theorem 5.1.15 Suppose�i is a locally compact Hausdorff space which has a count-
able base of open sets and Ei : B(�i )→ P(Hn) is a spectral measure onB(�i ) for
i = 1, . . . , d. If Ei E j = E j Ei for i, j = 1, . . . , d, then there exists a unique spectral
measure E : B(�)→ P(Hn), where � := �1 × · · · ×�d , such that

E(M1 × · · · × Md) = E(M1) · · · E(Md) for Mi ∈ B(�i ) and i = 1, . . . , d.

(5.10)

Proof Let us consider the case d = 2 (the more general case follows in much the same
way). LetA ′ denote the algebra of sets generated by sets of the form M1×M2, where
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Mi ∈ B(�i ) for i = 1, 2. Thus, every N ∈ A ′ can be written as N = ∪kj=1N j ,
where N1, . . . Nk are mutually disjoint and are of the form

N j = M1 j × M2 j ∈ A ′ for j = 1, . . . , k.

We shall now define E(N ) := ∑k
j=1 E1(M1 j )E2(M2 j ).

We claim that E(N ) ∈ P(Hn). To this end, note that if i 	= j , then Ni ∩ N j = ∅
forces M1i ∩ M1 j = ∅ or M2i ∩ M2 j = ∅. In either case, we can make use of
Lemma 5.1.3 to deduce

0 = E1(M1i ∩ M1 j )E2(M2i ∩ M2 j )

= E1(M1i )E1(M1 j )E2(M2i )E2(M2 j )

= E1(M1i )E2(M2i )E1(M1 j )E2(M2 j ).

Consequently, E(N ) ∈ P(Hn). One can easily modify the proof of Theorem E in
§8 of [42] to show that E is independent of the representation that we choose for
N ∈ B(�).

What remains is to show that E is countably additive, i.e., for any monotone
sequence of sets (Ni )

∞
i=1, where Ni ∈ B(�′), with N := ∪∞i=1Ni , we must show

that E(N ) = ∑∞
i=1 E(Ni ). In view of the fact that Re〈E(N ′)x, x〉 is a positive mea-

sure for any choice of N ′ ∈ B(�′) and x ∈ Hn , we can prove

Re〈E(N )x, x〉 ≤
∞∑

i=1
Re〈E(Ni x, x〉

in much the same way as the proof of Theorem 4.10 in [66] with the caveat that terms
of the form 〈E(N ′)x, x〉 must be replaced by Re〈E(N ′)x, x〉. Since Ni ⊆ N , we
immediately have

∑k
i=1 Re〈E(Ni )x, x〉 ≤ Re〈E(N )x, x〉 and hence we arrive at

Re 〈E(N )x, x〉 =
∞∑

i=1
Re 〈E(Ni )x, x〉. (5.11)

Since E ∈ P(Hn), we have

‖E(N ′)x‖2 = Re 〈E(N ′)x, E(N ′)x〉 = Re 〈E(N ′)x, x〉 for N ′ ∈ B(�)

and thus we may use (5.11) and the fact that all sums are taken with respect to the
strong operator topology to obtain E(N ) = ∑∞

i=1 E(Ni ), i.e., E is countably additive.
Finally, since the σ -algebra generated by A ′ isB(�), we may use Lemma 5.1.13

to deduce that the spectral premeasure E has an extension to a spectral measure.With a
slight abuse of notation, the aforementioned spectralmeasure onB(�)will be denoted
by E . One can use the definition of E to verify (5.10). The uniqueness of a spectral E
which obeys (5.10) drops out immediately from the fact that the σ -algebra generated
by the algebra of sets of the form M1×M2, where Mi ∈ B(�i ) for i = 1, 2, isB(�).

��
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5.2 Spectral integrals of boundedmeasurable functions

We anticipate the definition of imaginary operator given in Definition 8.0.2. We will
call an operator J0 ∈ B(Hn) a partial imaginary operator if J0 is a partial isometry
and J ∗0 = −J0. We will call J ∈ B(Hn) an imaginary operator if J is unitary and
J ∗ = −J .

Definition 5.2.1 Given a spectral measure E on (�,A ) and an imaginary operator
J ∈ B(Hn), we will say that J is associated with the spectral measure E if

J E(M) = E(M)J for M ∈ A . (5.12)

Given a spectral measure E on (�,A ) as above and an imaginary J associatedwith
E , we wish to give meaning to the integral of a measurable function f : � → CI,
where I ∈ S, against a spectral measure E . Let B(�,A ,CI) denote the Banach
space of all bounded A -measurable functions f : � → CI, where I ∈ S, equipped
with the norm

‖ f ‖∞ = sup{| f (λ)| : λ ∈ �}.

We let χM denote the characteristic function with respect to M ∈ �, i.e.,

χM (λ) =
{
1 if λ ∈ M

0 if λ /∈ M .

LetBs(�,A ,CI) denote the subspace of simple functions inB(�,A ,CI), i.e., the
subspace of functions f ∈ B(�,A ,CI) which are of the form

f (λ) =
k∑

j=1
c j χMj (λ), (5.13)

where c1, . . . , ck ∈ CI and M1, . . . , Mk are pairwise disjoint sets belonging to
B(�,A ,CI).

Given f ∈ Bs(�,A ,CI), we shall let

I( f ) :=
k∑

j=1
{Re(c j )E(Mi )+ Im(c j )E(Mj )J } ∈ B(Hn). (5.14)

It can be easily checked that the finite additivity of E implies that the definition of
I( f ) in (5.14) is independent of the (5.13).

Lemma 5.2.2 Let f ∈ Bs(�,A ,CI). Then ‖I( f )‖ ≤ ‖ f ‖∞.
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Proof Since M1 . . . , Mk are mutually disjoint sets belonging to B(�), Lemma 5.1.3
asserts that E(Mi )E(Mj ) = 0 whenever i 	= j . Thus, for any x ∈ Hn , we have

‖I( f )x‖2 =
k∑

i, j=1
Re

〈{Re(ci )I + Im(ci )J }E(Mi )x, {Re(c j )I + Im(c j )J }E(Mj )x
〉

=
k∑

i=1
Re 〈{Re(ci )I + Im(ci )J }E(Mi )x, {Re(ci )+ Im(ci )J }x〉

=
k∑

i=1
Re 〈{Re(ci )I + Im(ci )J }E(Mi )x, {Re(ci )I + Im(ci )J }E(Mi )x〉

=
k∑

i=1
‖(Re(ci )I + Im(ci )J )E(Mi )x‖2

≤
k∑

i=1
|ci |2‖E(Mi )x‖2

≤
k∑

i=1
‖ f ‖2∞‖E(Mi )x‖2 = ‖ f ‖2∞

∥
∥
∥
∥
∥

k∑

i=1
E(Mi )x

∥
∥
∥
∥
∥

2

≤ ‖ f ‖2∞‖x‖2.

Consequently, ‖I( f )‖ ≤ ‖ f ‖∞ holds. ��
Definition 5.2.3 (I( f ) for f ∈ B(�,A ,CI)) We will now give a definition for
I( f ) when f ∈ B(�,A ,CI). SinceBs(�,A ,CI) is a dense subset of the Banach
space B(�,A ,CI) with respect to the supremum norm ‖ · ‖∞, given any f ∈
B(�,A ,CI), we have the existence of a Cauchy sequence ( f j )∞j=1, where f j ∈
Bs(�,A ,CI) for j = 1, 2 . . ., such that

lim
j→∞‖ f − f j‖∞ = 0.

Lemma 5.2.2 can be used to show that (I( f j ))∞j=1 is a Cauchy sequence of operators
belonging to B(Hn). As B(Hn) is a complete metric space (see Remark 3.0.5), we
have the existence of an operator I( f ) ∈ B(Hn) such that

lim
j→∞‖I( f )− I( f j )‖ = 0.

Moreover, Lemma 5.2.2 can be used to show that the limit I( f ) does not depend on
the choice of Cauchy sequence.

Theorem 5.2.4 For any f , g ∈ B(�,A ,CI), we have the following:

(i) I( f̄ ) = I( f )∗.
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(ii) I( f g) = I( f )I(g).
(iii) I(I) = J and I(c f + g) = c I( f )+ I(g) for all c ∈ CI and I ∈ S.
(iv) 〈I( f )x, y〉 = ∫

�
Re( f (λ))d〈E(λ)x, y〉 + ∫

�
Im( f (λ))d〈J E(λ)x, y〉 for all

x, y ∈ Hn.
(v) ‖I( f )x‖2 = ∫

�
| f (λ)|2d(Re 〈E(λ)x, x〉) for all x ∈ Hn.

(vi) ‖I( f )‖ ≤ ‖ f ‖∞.
(vii) For any sequence of functions ( f j )∞j=1, where f j ∈ B(�,A ,CI) for j =

1, 2, . . ., which converges pointwise E-a.e. on � to f and there exists κ > 0
such that | f j (λ)| ≤ κ for all λ ∈ � and j = 1, 2, . . ., we have

s − lim
j→∞ I( fn) = I( f ).

Proof In viewofDefinition5.2.3, it suffices to prove (i)–(vi) for f , g ∈ Bs(�,A ,CI).
Let f (λ) = ∑k

j=1 c jχMj (λ) and g(λ) = ∑k
j=1 d jχN j (λ). Using the fact that

J E(M) = E(M)J for all M ∈ A and J ∗ = −J , we have

I( f )∗ =
k∑

j=1
E(Mj )

∗{Re(c j )I + Im(c j )J
∗}E(Mj )

=
k∑

j=1
E(Mj ){Re(c j )I − Im(c j )J }E(Mj )

=
k∑

j=1
{Re(c j )I − Im(c j )J }E(Mj )

= I( f̄ ).

Thus, we have proved (i).
Next, since

I( f )I(g) =
(

k∑

i=1
{Re(ci )I + Im(ci )J }E(Mi )

) ⎛

⎝
k∑

j=1
{Re(d j )I + Im(d j )J }E(N j )

⎞

⎠

=
k∑

i, j=1
{Re(ci )Re(d j )I − Im(ci )Im(d j )I

+ (Re(ci )Im(d j )+ Re(d j )Im(ci ))J }E(Mi ∩ N j )

= I( f )I(g),

we have proved (ii).
To prove the first statement in (iii), simply observe that f (λ) = Iχ�(λ) = I and

hence I(I) = J . The second statement in (iii) is an easy consequence of (ii) and the
fact that I(I) = J .
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The proof of (iv) is very straight forward. To prove (v), we may use (i), (ii) and (iv)
to verify that

‖I( f )x‖2 = Re〈I( f )x, I( f )x〉
= Re 〈I( f̄ )I( f )x, x〉
= Re 〈I(| f |2)x, x〉
= Re

(∫

�

| f (λ)|2d〈E(λ)x, x〉
)

=
∫

�

| f (λ)|2d(Re 〈E(λ)x, x〉) for x ∈ Hn .

Statement (v) is a direct consequence of (iv). Indeed, using (iv), we have

‖I( f )x‖2 ≤ ‖ f ‖∞ Re〈x, x〉 = ‖ f ‖∞‖x‖2 for x ∈ Hn,

in which case we have (v).
Finally, to prove (vii), we may use (vi) to see that

‖{I( f )− I( fn)}x‖2 =
∫

�

| f (λ)− fn(λ)|2d(Re〈E(λ)x, x〉) for x ∈ Hn

and hence (vii) follows immediately from the Lebesgue dominated convergence the-
orem. ��
Lemma 5.2.5 Let A be an algebra of sets in � and E be a spectral measure on A .
Then the following facts hold:

(i) |Ex,y |(M) ≤ √Re Ex (M)
√
Re Ey(M) for all x, y ∈ Hn and M ∈ A .

(ii) Let f ∈ L2(�,CI, Ex ) and g ∈ L2(�,CI, Ey). Then

∣
∣
∣
∣

∫

�

Re( f (λ)g(λ)) d〈E(λ)x, y〉 +
∫

�

Im( f (λ)g(λ)) d〈E(λ)J x, y〉
∣
∣
∣
∣

≤
∫

�

| f (λ)g(λ)|d|Ex,y |(λ)

≤ 2n‖ f ‖L2(�,CI,Ex )‖g‖L2(�,CI,Ey), (5.15)

where Ex,y(M) = 〈E(M)x, y〉 for M ∈ B(�) and for all x, y ∈ Hn.

Proof Wewill first prove (i). Suppose M = ∪p
k=1Mk , where Mk ∈ A and Mk ∩Mj =

∅ whenever k 	= j . Using Lemma 2.2.6, we have

|Ex,y(Mk)| = |〈E(Mk)x, y〉| = |〈E(Mk)x, E(Mk)y〉|
≤ ‖E(Mk)x‖‖E(Mk)y‖
= √

Re Ex (Mk)

√

Re Ey(Mk).
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Consequently, we have

p∑

k=1
|Ex,y(Mk)| ≤

p∑

k=1

√
Re Ex (Mk)

√

Re Ey(Mk)

≤
( p∑

k=1
Re Ex (Mk)

)1/2 ( p∑

k=1
Re Ey(Mk)

)1/2

= √
Re Ex (M)

√

Re Ey(M).

Finally, if we take the supremum over all possible disjoint unions of M inA , then we
obtain (i).

We will now prove (ii). We will verify (5.15) for simple functions, in which case
(5.15) will hold by the density of simple functions in both L2-spaces. Suppose f (λ) =∑p

k=1 fkχMk (λ) and g(λ) = ∑p
k=1 gkχMk (λ) are simple functions in L2(�,CI, Ex )

and L2(�,CI, Ey), respectively. Using (2.4), Assertion (i) and (2.4), we have

∣
∣
∣
∣

∫

�

Re( f (λ)g(λ))d〈E(λ)x, y〉 +
∫

�

Im( f (λ)g(λ))d〈E(λ)J x, y〉
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

p∑

k=1
{Re( fkgk)〈E(Mk)x, y〉 + Im( fkgk)〈E(Mk)J x, y〉}

∣
∣
∣
∣
∣

≤ 2n−1
p∑

k=1
| fk gk ||{|Ex,y |(Mk)+ |EJx,y |(Mk)}

≤ 2n−1
p∑

k=1
| fk gk |

(√
Re Ex (Mk)

√

Re Ey(Mk)+
√
Re EJx (Mk)

√

Re Ey(Mk)
)

= 2n−1
p∑

k=1
| fk gk |

(√
Re Ex (Mk)

√

Re Ey(Mk)+
√
Re Ex (Mk)

√

Re Ey(Mk)
)

≤ 2n
( p∑

k=1
| fk |2Re Ex (Mk)

)1/2

×
( p∑

k=1
|gk |2Re Ey(Mk)

)1/2

.

Thus, (5.15) holds for simple functions. ��

5.3 Spectral integrals of unboundedmeasurable functions

Fix I ∈ S. Let F(�,A ,CI, E) denote the set of all A -measurable functions f :
�→ CI ∪ {∞} which are E-a.e. finite, i.e., E({λ ∈ � : f (λ) = ∞}) = 0.
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Definition 5.3.1 (Bounding sequence) Let (Mj )
∞
j=1 be a sequence of sets, where

Mj ∈ B(�,A ,CI) and Mj ⊆ Mj+1 for j = 1, 2, . . .. We will call (Mj )
∞
j=1 a

bounding sequence for a subset G of F(�,A ,CI, E) if every f ∈ G is bounded on
Mj and E(∪∞j=1Mj ) = I .

Remark 5.3.2 We note that if (Mj )
∞
j=1 is a bounding sequence, then for the results

appearing in Sect. 5.1, we have E(Mj ) � E(Mj+1) for j = 1, 2, . . .,

lim
j→∞ E(Mj )x = x for x ∈ Hn

and ∪∞j=1E(Mj )Hn is dense inHn .

Remark 5.3.3 Every finite subset { f1, . . . , fk} ⊆ F(�,A ,CI, E) has a bounding
sequence. To see this, let

Mj := {λ ∈ � : | f j (λ)| ≤ n for j = 1, . . . , k}

and M = ∪∞j=1Mj . Thus, � \M ⊆ ∪kj=1{λ ∈ � : f j (λ) = ∞}, in which case
E(� \M) = 0. Consequently, (Mj )

∞
j=1 is a bounding sequence for { f1, . . . , fk}.

Theorem 5.3.4 Let f ∈ F(�,A ,CI, E) and

D(I( f )) :=
{

x ∈ Hn :
∫

�

| f (λ)|2d(Re〈E(λ)x, x〉) <∞
}

. (5.16)

For any bounded sequence (Mj )
∞
j=1 for f , we have the following:

(i) D(I( f )) = {x ∈ Hn : (I( f χMj )x)
∞
j=1 converges inHn} = {x ∈ Hn :

sup j∈N ‖I( f χMj )x‖ <∞}.
(ii) For any x ∈ D(I( f )), the limit of the sequence (I( f χMj )

∞
k=1 does not depend on

the choice of the bounding sequence (Mj )
∞
j=1. Moreover, there is a linear operator

I( f ) ∈ L(Hn) with domain D(I( f )) given by

I( f )x = lim
j→∞ I( f χMj )x for x ∈ D(I( f )). (5.17)

(iii) The right submodule ∪∞j=1E(Mj )Hn ⊆ D(I( f )) ⊆ Hn and is a core for I( f ).
Moreover,

E(Mj )I( f ) ⊆ I( f )E(Mj ) = I( f χMj ) for j = 1, 2, . . . . (5.18)

Proof The proof is broken into steps.

Step 1 Prove (i).
Let x ∈ D(I( f )). Thus, by definition, f ∈ L2(�,A ,CI, Ex ) and we may use

Lebesgue’s dominated convergence theorem to obtain f χMi → f in L2(�,CI, Ex ).
Since (Mj )

∞
j=1 is a bounding sequence for f , we have that f is bounded on Mj . Thus,
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f χMj ∈ B(�,A ,CI) and I( f χMj ) ∈ B(Hn) given by Definition 5.2.3. Using
Theorem 5.2.4(v), we obtain

‖I( f χMi )x − I( f χMj )x‖2 = ‖I( f χMi − f χMj )x‖2

=
∫

�

| f (λ)χMi (λ)− f (λ)χMj (λ)|2d(Re〈E(λ)x, x〉)
= ‖ f χMi − f χMj ‖2L2(�,CI,Ex )

for i, j = 1, 2, . . . .

Thus, putting all of the above observations together, we have that (I( f χMi )x)
∞
i=1 is a

Cauchy sequence inHn and hence I( f χMi )x)
∞
i=1 converges inHn .

Next, if {I( f χMi )x : i = 1, 2, . . .} converges in Hn , then {‖I( f χMi )x‖ : i =
1, 2, . . .} is bounded.

Finally, suppose that {‖I( f χMi )x‖ : i = 1, 2, . . .} is bounded. Then

sup
i∈N
‖I( f χMi )x‖ <∞.

Since | f (λ)χMi (λ)|2 converges monotonically to | f (λ)|2 Ex -a.e. on �, we may use
Lebesgue’s monotone convergence theorem to obtain

∫

�

| f (λ)|2d(Re〈E(λ)x, x〉) = lim
i→∞

∫

�

f (λ)χMi (λ)|2d(Re〈E(λ)x, x〉)
= lim

i→∞‖I( f χMi )x‖2 <∞.

Thus, f ∈ L2(�,A ,CI, Ex ) and hence x ∈ D(I( f )). We have managed to show

D(I( f )) ⊆ {x ∈ Hn : (I( f χMj )x)
∞
j=1 converges inHn}

⊆
{
x ∈ Hn : sup

j∈N
‖I( f χMj )x‖ <∞

}

⊆ D(I( f )),

in which case we have (i).

Step 2 Prove (ii).
Suppose (Ni )

∞
i=1 is also a bounding sequence for f and x ∈ D(I( f )). Using

Theorem 5.2.4(i) and (v), we have

‖I( f χMi x − I( f χN j )x‖ = ‖I( f χMi − f χN j )x‖L2(�,CI,Ex )

≤ ‖ f χMi − f ‖L2(�,A ,CI,Ex )

+ ‖ f χN j − f ‖L2(�,A ,CI,Ex ) → 0 as i, j →∞.

Thus,

lim
i→∞ I( f χMi )x = lim

j→∞ I( f χN j )x for x ∈ D(I( f )).
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By (i), we have that D(I( f )) is a right linear subspace of Hn and (5.17) gives rise to
a right linear operator I( f ) ∈ L(Hn).

Step 3 Prove (iii).
Suppose y ∈ Hn . Recall that E(Mi ) = I(χMi ) andhencewemayuseTheorem5.2.4

to obtain

I( f χMi )y = I( f χMi χMj )y = I( f χMi )E(Mj )y

= E(Mj )I( f χMi )y whenever i ≥ j . (5.19)

Consequently, sup{‖I( f χMi )y‖ : i = 1, 2, . . .} < ∞ and hence E(Mi )y ∈ D(I( f )),
i.e., the union ∪∞i=1E(Mi )Hn ⊆ D(I( f )).

Letting i →∞ in (5.19), we obtain

I( f )E(Mi )y = I( f χMi )y for y ∈ Hn .

Suppose x ∈ D(I( f )) and letting i →∞ in (5.19), we obtain the equality in (5.18).
Finally, using the fact that E(Mi )y → y as i → ∞ for all y ∈ Hn

and I( f )E(Mi )x = E(Mi )I(y) → I( f )x for all x ∈ D(I( f )), we have that
∪∞i=1E(Mi )Hn is a core for I( f ). ��
Remark 5.3.5 If f ∈ B(�,A ,CI, E), then (Mi )

∞
i=1, whereMi = � for i = 1, 2, . . .,

is a bounding sequence for f . Consequently, the operator I( f ) ∈ L(Hn) given by
(5.17) coincides with I( f ) ∈ B(Hn) in Definition 5.2.3.

Theorem 5.3.6 Suppose f , g ∈ F(�,A ,CI, E). Then

〈I( f ))x, I(g)y〉 =
∫

�

Re( f (λ)g(λ))d〈E(λ)x, y〉

+
∫

�

Im( f (λ)g(λ))d〈J E(λ)x, y〉 (5.20)

for x ∈ D(I( f )) and y ∈ D(I(g)) and

‖I( f )x‖2 =
∫

�

| f (λ)|2d(Re〈E(λ)x, x〉 for x ∈ D(I( f )). (5.21)

Proof We will first show (5.20). Let (Mi )
∞
i=1 be a bounding sequence for { f , g} and

hence f gχMi ∈ B(�,A ,CI, E). We may make use of Theorem 5.2.4(i) and (ii) to
obtain

∫

�

Re( f (λ)g(λ))d〈E(λ)x, y〉 +
∫

�

Im( f (λ)g(λ))d〈J E(λ)x, y〉
= 〈I( f ḡχMi )x, y〉
= 〈I( f χMi )x, I(gχMi )y〉. (5.22)
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Since x ∈ D(I( f ), we have f ∈ L2(�,A ,CI, Ex ) by (5.16). Similarly, since
y ∈ D(I(g), we have g ∈ L2(�,A ,CI, Ey). One can use Lemma 5.2.5(ii) to see
that the integrals

∫

�

Re( f (λ)g(λ)d〈E(λ)x, y〉 and
∫

�

Im( f (λ)g(λ))d〈E(λ)J x, y〉

are both convergent. We may also use Lemma 5.2.5(ii) and the fact that f → f χMi

in L2(�,A ,CI, Ex ) to see that

|
∫

�

Re( f (λ)g(λ))χMi (λ)d〈E(λ)x, y〉 −
∫

�

Re( f (λ)g(λ))d〈E(λ)x, y〉

+
∫

�

Im( f (λ)g(λ))χMi (λ)d〈E(λ)J x, y〉 −
∫

�

Im( f (λ)g(λ))d〈E(λ)J x, y〉|

= |
∫

�

Re({ f (λ)χMi (λ)− f (λ)}g(λ))d〈E(λ)x, y〉

+
∫

�

Im({ f (λ)χMi (λ)− f (λ)}g(λ))d〈E(λ)J x, y〉|
≤ 2n‖ f χMi − f ‖L2(�,A ,CI,Ex )‖g‖L2(�,A ,CI,Ey)

→ 0 as i →∞.

Thus, if we let i →∞ in (5.22), we obtain (5.20).
Formula (5.21) is easily obtained from (5.20) by putting y = x and g = f . ��

Theorem 5.3.7 Let J be an imaginary operator associated with the spectral measure
E. For any f , g ∈ F(�,A ,CI, E) and c ∈ CI, where I ∈ S, we have the following:

(i) I( f̄ ) = I( f )∗.
(ii) I( f g) = I( f )I(g).
(iii) I( f c + g) = I( f )(Re(c)I + Im(c)J )+ I(g) for all c ∈ CI.
(iv) I( f ) is a closed normal operator belonging to L(Hn).
(v) D(I( f )I(g)) = D(I( f g)) ∩D(I(g)).

Proof Let (Mi )
∞
i=1 be a bounding sequence f , g ∈ F(�,A ,CI, E)

(see Remark 5.3.3).We note that it is easy to check that (Mi )
∞
I=1 is a bounded sequence

for the functions f + g, f g and f . Consequently, Theorem 5.3.4(iii) can be used to
see that

E :=
{ ∞⋃

i=1
E(Mi )x : x ∈ Hn

}

(5.23)

is a core for I( f + g) and I( f g). The remainder of the proof is broken into steps.

Step 1 Prove (i).
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Suppose x ∈ D(I( f )) and y ∈ D(I(g)). Using (5.18) and Theorem 5.2.4(i) we
obtain

〈E(Mi )I( f )x, y〉 = 〈I( f χMi )x, y〉 = 〈x, I( f χMi y)〉 = 〈x, I( f χMi )y〉
= 〈x, E(Mi )I( f )y〉.

Letting i → ∞ above results in 〈I( f )x, y〉 = 〈x, I( f )y〉, i.e., I( f ) ⊆ I( f )∗. Next,
suppose x ∈ Hn and y ∈ D(I( f )∗). Then we can again make use of (5.18) and
Theorem 5.2.4(i) to obtain

〈x, E(Mi )I( f )
∗y〉 = 〈I( f )E(Mi )x, y〉 = 〈I( f χMi ) x, y〉 = 〈x, I( f χMi )y〉.

Thus, E(Mi )I( f )∗y = I( f χMi )y and hence

‖I( f χMi )y‖2 = Re〈I( f χMi )y, I( f χMi )y〉
= Re〈E(Mi )I( f )

∗y, E(Mi )I( f )
∗y〉

= ‖E(Mi )I( f )
∗y‖2.

But then

sup
i=1,2,...

‖I( f χMi )‖ ≤ ‖I( f )∗y‖,

inwhich case, Theorem5.3.4(i) ensures that y ∈ D(I( f )). Thus,D(I( f )∗) ⊆ D(I( f ))
and hence I( f ) ⊆ I( f )∗ implies that I( f )∗ = I( f ) as required.

Step 2 Prove (ii).
We begin by noting that (5.18) asserts that E is a dense right submodule such that

E ⊆ D(I(g)I( f )). Consequently, we may use (i) and Theorem 3.0.24 to see that
I( f )I(g) is closable. One can use (5.18) and Theorem 5.2.4(i) to check that

I( f g)E(Mi ) = I( f )I(g)E(Mi ) (5.24)

and hence

E(Mi )I( f )I(g) ⊆ I( f )I(g)E(Mi ) = I( f g)E(Mi ). (5.25)

If we let i → ∞ in (5.24) and we make use of the fact that E is a core for I( f g),
then we obtain I( f g) ⊆ I( f )I(g). On the other hand, as I( f g)E(Mi ) ∈ B(Hn),
we may use (5.25) to conclude E(Mi )I( f )I(g) ⊆ I( f g)E(Mi ). Letting i → ∞ in
E(Mi )I( f )I(g) ⊆ I( f g)E(Mi ) and using (5.17), we obtain I( f )I(g) ⊆ I( f g). But
then we have (ii).

Step 3 Prove (iii).
The fact that I( f c) = I( f )(Re(c)I + Im(c)J ), where I is the identity operator

and J is the imaginary operator, is an immediate consequence of Theorem 5.2.4(iii)
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and (ii) in the present theorem. Thus, in order to prove (iii), we need only consider
I( f + g). Let E be as in (5.23). Then, in view of (i), the set containments

E ⊆ D(I( f )+ I(g)) = D(I( f )∗ + I(g)∗) ⊆ D({I( f )+ I(g)}∗)

demonstrate that I( f ) + I(g) is closable. Moreover, E is a dense right submodule of
Hn . Using (5.18) and Theorem 5.2.4(i), we obtain

(I( f )+ I(g))E(Mi ) = I( f χMi )+ I(gχMi )

= I( f χMi + gχMi )

= I( f + g)E(Mi ) (5.26)

and

E(Mi )(I( f )+ I(g)) = E(Mi )I( f )+ E(Mi )I(g)

⊆ {I( f )+ I(g)}E(Mi )

= I( f + g)E(Mi ). (5.27)

If we let i →∞ in (5.26) and make use of the fact that

{ ∞⋃

i=1
E(Mi )x : x ∈ Hn

}

is a core for I( f + g), then we obtain I( f + g) ⊆ I( f )+ I(g). Finally, (5.27) implies
that E(Mi )I( f )+ I(g) ⊆ I( f + g)E(Mi ) and letting i →∞we have I( f )+ I(g) ⊆
I( f + g).

Step 4 Prove (iv).
It follows from (i) and (ii) that I( f )∗I( f ) = I( f )I( f ) ⊂ I( f f ). Note that

I( f )∗I( f ) ∈ L(Hn) is closed. Thus, we may use Theorem 3.2.3(ii) to conclude that
I( f )∗I( f ) is self-adjoint. On the other hand, (i) implies that I( f f ) is self-adjoint, in
which case, we have I( f )∗I( f ) = I( f f ). We can replicated the above argument to
obtain I( f )I( f )∗ = I( f f ) and hence we have I( f )∗I( f ) = I( f )I( f )∗.

Step 5 Prove (v).
We begin by noting that (ii) implies that D(I( f )I(g)) ⊆ D(I( f g)) ∩ D(g). Thus,

in order to prove (v), we need only show the opposite set containment. Suppose
x ∈ D(I( f g)) ∩ D(I(g)). Then we may use (5.24) to obtain I( f g)E(Mi )x =
I( f )I(g)E(Mi )x and letting i → ∞ and using the fact that I( f ) is closed, we have
I(g)x ∈ D(I( f )). Thus, we have x ∈ D(I( f )I( f )) as required. ��
Theorem 5.3.8 For any f , g ∈ F(�,A ,CI, E), we have the following:

(i) If f = g E-a.e. on �, then I( f ) = I(g).
(ii) If f is real-valued E-a.e. on �, then I( f ) ∈ L(Hn) is a self-adjoint operator.
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(iii) If f (λ) ≥ 0 E-a.e. on �, then I( f ) ∈ L(Hn) is a positive operator. Moreover,
(I(
√

f ))2 = I( f ) and hence I( f ) has a positive square root.

Proof Suppose f = g E-a.e.. Then E({λ ∈ � : f (λ) 	= g(λ)}) = 0 and then
it follows from (5.16) that D(I( f )) = D(I(g)). We also have that any bounding
sequence (Mi )

∞
i=1 for f is also a bounding sequence for g. Consequently, we may use

(5.17) to deduce that I( f ) = I(g). Thus, we have proved (i).
Next, suppose f is real-valued E-a.e.. Then from (5.20) with g(λ) = 1 and y = x

we obtain

〈I( f )x, x〉 =
∫

�

Re( f (λ))d〈E(λ)x, x〉 =
∫

�

f (λ)d〈E(λ)x, x〉 ∈ S(Rn) (5.28)

for all x ∈ D(I( f )). Thus, I( f ) is self-adjoint and we have proved (ii).
Next, suppose f ≥ 0 E-a.e.. Then (5.28) can be used to show that I( f ) is a positive

operator. Finally, in view of the first part of (iii), it is obvious that I(
√

f ) is a positive
operator. The fact that (I(

√
f ))2 = I( f ) is a direct consequence of Theorem 5.3.7(ii)

and (v). ��
Definition 5.3.9 (L∞(�,A ,CI, E)) Let f ∈ F(�,A ,CI, E). We shall let

L∞(�,A ,CI, E) := {E-measurable f : �→ CI : f is bounded on �}

be endowed with the norm

‖ f ‖∞ := inf
M∈A

with E(M)=0
sup{| f (λ)| : λ ∈ � \M}.

Lemma 5.3.10 Let f ∈ F(�,A ,CI, E). The operator I( f ) ∈ B(Hn) if and only if
f ∈ L∞(�,A ,CI, E). In this case, ‖I( f )‖ = ‖ f ‖∞.

Proof Suppose f ∈ L∞(�,A ,CI, E). Then | f (λ)| ≤ κ E-a.e. for some κ > 0 and

‖I( f )x‖2 =
∫

�

| f (λ)|2d(Re〈E(λ)x, x〉) ≤ ‖ f ‖∞‖x‖2.

Thus, I( f ) ∈ B(Hn).
Next, suppose I( f ) ∈ B(Hn) and put

Mi := {λ ∈ � : | f (λ)| ≥ ‖I( f )‖ + 2−i } for i = 1, 2, . . . .

and M := ∪∞i=1Mi . Note that M = {λ ∈ � : | f (λ)| > ‖I( f )‖}. Using Theorem
5.3.7(ii) and (5.21), we obtain

‖I( f )‖2 · ‖E(Mi )x‖2 ≥ ‖I( f )E(Mi )x‖2
= ‖I( f χMi )x‖2
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=
∫

�

| f (λ)χMi (λ)|2d(Re〈E(λ)x, x〉)

=
∫

�

| f (λ)|2d(Re〈E(λ)x, x〉)
≥ (‖I( f )‖ + 2−i )2‖E(Mi )x‖2 for i ∈ N and x ∈ Hn .

But then E(Mi ) = 0 for all i = 1, 2, . . ., in which case E(M) = 0, i.e., ‖ f ‖∞ ≤
‖I( f )‖. Thus, we have the characterisation of elements in L∞(�, E) and ‖I( f )‖ =
‖ f ‖∞. ��
Lemma 5.3.11 Let f ∈ F(�,A ,CI, E). The right linear operator I( f ) ∈ L(Hn) is
invertible if and only if f (λ) 	= 0 E-a.e. on �. In this case, I( f )−1 = I(1/ f ), with
the understanding that 1

∞ = 0 and 1
0 = ∞.

Proof Let N := {λ ∈ � : f (λ) = 0}. We may use Theorem 5.3.7(iii) and (v) to
obtain

I( f )E(N ) = I( f χN ) = I(0) = 0.

Consequently, I( f ) is not invertible whenever E(N ) 	= 0.
Next, suppose E(N ) = 0 and hence 1/ f ∈ F(�, E). We may use the fact that

f (1/ f ) = 1 E-a.e. on� to see thatD(I( f (1/ f ))) = D(I(g)) = Hn , where g(λ) = 1.
Consequently, Theorem 5.3.7(v) implies that

D(I(1/ f )I( f )) = D(I( f )).

Moreover, Theorem 5.3.7(iii) implies that

I(1/ f )I( f ) ⊆ I((1/ f ) f ) = I(1) = I .

Thus, putting these observations together, we have that I( f ) is invertible and I( f )−1 ⊆
I(1/ f ). To see that I(1/ f ) ⊆ I( f ), we may simply replace f by 1/ f in the above
proof. ��
Definition 5.3.12 (Intrinsic function) Let I ∈ S. Let � ⊆ R

n+1 be an axially sym-
metric open set and let U = {(u, v) ∈ R

2 : u + Sv ⊆ �}. A function f : � → Rn is
called a left slice function, if it is of the form

f (λ) = f0(u, v)+ I f1(u, v) for λ = u + Iv ∈ �

with two functions f0, f1 : U → Rn that satisfy the compatibility conditions

f0(u,−v) = f0(u, v), (5.29)

f1(u,−v) = − f1(u, v). (5.30)

We say that f is an intrinsic function if in addition f0, and f1 are real valued. We
denote by S(�) the set of intrinsic functions defined on �.
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Remark 5.3.13 For intrinsic functions, when we restrict f to �I ⊆ CI, we have
that f (�I) belongs to CI, since f0, and f1 are real-valued. To stress this fact we
will often use the notation F(�I,B(�I),CI) instead of F(�,B(�)) when we
work on a complex plane CI, and when we consider the half plane C

+
I we write

F(�+I ,B(�I)+,C+I ). Observe that condition (5.30) forces f1(u, v) = 0 for every
u + Iv ∈ �+I ∩ R whenever v = 0.

Theorem 5.3.14 Let E be a spectral measure onB(�+I ), where �+I ⊆ C
+
I for I ∈ S,

and f ∈ F(�+I ,B(�+I ),CI, E) be an intrinsic function. Then

σS(I( f )) ∩ C
+
I = {s ∈ C

+
I : E({λ ∈ � : | f (λ)2 − 2Re(s) f (λ)+ |s|2| < ε})

	= 0 for all ε > 0}.

Remark 5.3.15 The assumption that f ∈ F(�,B(�),CI, E) is intrinsic (see Defini-
tion 5.3.12) is necessary for preserving the fact that σS( f (T )) is axially symmetric
(see Remark 3.1.7).

Proof (Proof of Theorem 5.3.14) Notice that s ∈ ρS(I( f )) if and only if (I( f )2 −
2Re(s)I( f ) + |s|2 I )−1 ∈ B(Hn). Thus, Lemma 5.3.10 and Lemma 5.3.11 imply
that s ∈ ρS(I( f )) ∩ C

+
I if and only if f 2 − 2Re(s) f + |s|2 	= 0 E-a.e. on � and

1/( f 2−2Re(s) f +|s|2) ∈ L∞(�,B(�),CI, E), or, equivalently, there exists κ > 0
such that

E({λ ∈ � : | f (λ)− 2Re(s) f (λ)− |s|2| ≥ κ}) = 0.

Thus, s ∈ σS(I( f )) ∩ C
+
I if and only if

E({λ ∈ � : | f (λ)2 − 2Re(s) f (λ)+ |s|2| < ε}) 	= 0

for all ε > 0. ��
Remark 5.3.16 Wewish to highlight that Theorem 5.3.14 will be very useful for show-
ing that an operator-valued integral (9.3) appearing in the spectral theorem for a
bounded normal operator is on the S-spectrum of T .

Theorem 5.3.17 Let E be a spectral measure on B(�) and W ∈ B(Hn). Then
E(M)W = WE(M) for all M ∈ B(�) if and only if W I( f ) ⊆ I( f )W for every
f ∈ F(�,B(�),CI, E).

Proof Suppose E(M)W = WE(M) for all M ∈ B(�). Then, as I(χM ) = E(M),
we have W I( f ) ⊆ I( f )W for every f ∈ F(�,B(�),CI, E). Conversely, suppose
W I( f ) ⊆ I( f )W for every f ∈ F(�,B(�),CI, E). Then

Re 〈E(M)Wx,Wx〉 = ‖E(M)Wx‖2
= ‖WE(M)x‖2
≤ ‖W‖2‖E(M)x‖2
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= ‖W‖2Re〈E(M)x, x〉

for all M ∈ B(�) and x ∈ Hn . Thus, Wx ∈ D(I( f )) whenever x ∈ D(I( f )). It is
immediate to see that W I( f ) = I( f )W whenever f ∈ Bs(�,A ,CI, E) and that
this observation can be extended to all f ∈ B(�,A ,CI, E). Consequently, we have
WD(I( f )) ⊆ D(I( f )) and hence W I( f ) ⊆ I( f )W . ��
Theorem 5.3.18 Suppose S ∈ B(Hn) and E is a spectral measure on (�,A ). Then
SE(M) = E(M)S for every M ∈ A if and only if SI( f ) ⊆ I( f )S for every f ∈
F(�,B(�),CI, E).

Proof If SI( f ) ⊆ I( f )S for every f ∈ F(�,A , E), then SE(M) = E(M)S for
every M ∈ A is obvious. Conversely, suppose SE(M) = E(M)S for every M ∈ A .
Since

Re(ESx (M)) = Re(〈E(M)Sx, E(M)Sx〉) = Re(〈SE(M)x, SE(M)x〉)
= ‖SE(M)x‖2
≤ ‖S‖2‖E(M)x‖2
= ‖S‖2Re(〈E(M)x, E(M)x〉,

we may use (5.16) to conclude that Sx ∈ D(I( f )) whenever x ∈ D(I( f )). Since
SE(M) = E(M)S for every M ∈ A , we have that SI( f0) = SI( f0) for every simple
function f0 ∈ Bs , which can easily be extended, by taking limits, to SI( f ) = I( f )S
for every f ∈ B. The fact that SI( f ) = I( f )S for every f ∈ F(�,A , E) follows
immediately from (5.17). ��
Definition 5.3.19 (Transformation of a spectral measure) Let E be a spectral measure
on a Borel σ -algebra A generated by a set �, J be an associated imaginary operator
with E and ψ be a function such that ψ : � → �′ and A ′ be the σ -algebra of all
subsets M ′ ⊆ �′ such that ψ−1(M ′) ∈ A . We shall let

E ′(M ′) := E(ψ−1(M ′)) for M ′ ∈ A ′. (5.31)

Remark 5.3.20 It is very easy to check that E ′ : A ′ → B(Hn) is a spectral measure
on A ′. Moreover, in view of (5.31) if J is an imaginary operator associated with E ,
then J is also an imaginary operator associated with the E ′.

Theorem 5.3.21 Let �,�′, ψ, J , E and E ′ be as in Definition 5.3.19. Suppose h ∈
F(�′,A ′, F). Then h ◦ ψ ∈ F(�,A , E) and

∫

�′
Re(h(λ′)) dE ′(λ′)+

∫

�′
Im(h(λ′)) dE ′(λ′)J

=
∫

�

Re(h(ψ(λ))) dE(λ)+
∫

�

Im(h(ψ(λ))) dE(λ)J (5.32)
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Proof The fact that h ◦ψ ∈ F(�,A , E) follows immediately from Definition 5.3.19.
Since 〈E(·)x, x〉 and 〈F(·)x, x〉 are positive Rn-valued measures on A and A ′ for
any x ∈ Hn , respectively, we have invoke Theorem 4.0.10 to obtain

∫

�′
|h(λ′)|2d〈E ′(λ′)x, x〉 =

∫

�

|h(ψ(λ))|2d〈E(λ)x, x〉 for x ∈ Hn

and

∫

�′
Re(h(λ′))d〈E ′(λ′)y, y〉 +

∫

�′
Im(h(λ′))d〈E ′(λ′)J y, y〉

=
∫

�

Re(h(ψ(λ)))d〈E(λ)y, y〉 +
∫

�

Im(h(ψ(λ)))d〈E(λ)J y, y〉 (5.33)

for all y ∈ Hn such that h is 〈E ′(·)y, y〉-integrable on �′. We may use (5.16) and
(5.33) to realise thatD(IE ′(h)) = D(IE (h ◦ψ)), where IE ′ and IE denote the spectral
integrals with respect to E ′ and E , respectively. Notice that (5.20) with g(λ) = 1 and
(5.33) can be used to obtain 〈IE ′(h)y, y〉 = 〈IE (h ◦ψ)y, y〉 for all y ∈ D(IE (h ◦ψ))

(which coincides with IE ′(h)). Finally, the polarisation formula (2.20), to deduce
(5.32).

��

6 Spectral theorem for a bounded self-adjoint operator

Themain goal of this section is to formulate and prove the spectral theorem for bounded
self-adjoint operators on a Clifford module (see Theorem 6.0.1).

Theorem 6.0.1 (Spectral theorem for bounded self-adjoint operators) Let T ∈ B(Hn)

be self-adjoint. Then there exists a spectral measure E on the Borel σ -algebra
B(σS(T )) such that

T =
∫

σS(T )

t dE(t). (6.1)

The spectral measure E is unique in the sense that if F is a spectral measure on
B(R) such that T = ∫

R
t dF(t), then E(M ∩ σS(T )) = F(M) for all M ∈ B(R).

Moreover, W ∈ B(Hn) commutes with T if and only if W E(M) = E(M)W for every
M ∈ B(σS(T )).

Before we can prove Theorem 6.0.1, we need a number of lemmas. In the following
one, we wish to stress that the polynomial p appearing in the spectral mapping identity
(6.2) is a polynomial with real coefficients.
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Lemma 6.0.2 Let T ∈ B(Hn) be self-adjoint. Then

σS(p(T )) = p(σS(T )) for p ∈ R[t]. (6.2)

Proof Suppose p(t) = ∑k
j=0 p j t j ∈ R[t], with pk 	= 0. We begin by noting that

p(T ) := ∑n
j=0 p j T j ∈ B(Hn) is self-adjoint. Thus, Lemma 3.2.4 asserts that

σS(p(T )) ⊆ R. If k = 0, then (6.2) holds trivially.
Suppose k > 0. We will first show that p(σS(T )) ⊆ σS(p(T )). We will only

show that σS(p(T )) ⊆ p(σS(T )) (the proof of the other containment is very standard
and does not divert at all from the classical case). Choose t0 ∈ σS(p(T )). Consider
the polynomial ϕ(t) := p(t) − t0 ∈ R[t]. If ϕ has all real zeros, say t1, . . . tk (not
necessarily distinct), then ϕ(t) = c

∏k
j=1(t− t j ) for some constant c ∈ R. Therefore,

ϕ(T ) = p(T )− t0 I = c
k∏

j=1
(T − t j I ).

Since ϕ(T ) is not invertible, T − t j ′ I must not be invertible for some j ′ ∈ {1, . . . , k}.
Thus, t j ′ ∈ σS(T ), in which case p(t j ′) = t0.

Next, if ϕ has non-real zeros, say ζ1, ζ̄1, . . . , ζ, ζ̄. Then

ϕ(t) = ψ(t)
∏

j=1
(t − ζk)(t − ζ̄m)

for some polynomial ψ ∈ R[t] which is constant or has all real zeros. Write ζ j =
u j + v j I, where v j 	= 0 for j = 1, . . . , . Since

(t − ζ j )(t − ζ̄ j ) = (t − u j )
2 + v2j for j = 1, . . . , ,

we have

ϕ(T ) = ψ(T )

∏

j=1
{(T − u j I )

2 + v2j I }.

Since T−u j I ∈ B(Hn) is self-adjoint, we have that (T−u j I )2 is a positive operator,
in which case (T − u j I )2 + v2j I is invertible for j = 1, . . . , . Consequently, ϕ(T )

not being invertible implies thatψ(T ) is not invertible. Hence, ψ cannot be a constant
polynomial. We may now proceed as in the case when ϕ has all real zeros to obtain
the desired conclusion. ��
Lemma 6.0.3 Let T ∈ B(Hn) be self-adjoint. Then

‖p(T )‖ = max
t∈σS(T )

|p(t)| for p ∈ R[t]. (6.3)

Proof In view of (3.10) and (3.23), we have
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‖p(T )‖2 = ‖p(T )∗ p(T )‖ = ‖p(T )2‖ = rS(p(T )2)

= max{|τ | : τ ∈ σS(p(T )2)}
= max{p(t0)2 : t0 ∈ σS(T )},

i.e., (6.3) holds. ��
Theorem 6.0.4 (Functional calculus for bounded self-adjoint operators) Let T ∈
B(Hn) be self-adjoint. Then corresponding to any f , g ∈ C (σS(T ),R), there exist
self-adjoint operators f (T ), g(T ) ∈ B(Hn) which exhibit the following properties:

(i) ( f g)(T ) = f (T )g(T ).
(ii) ( f + g)(T ) = f (T )+ g(T ).
(iii) ‖ f (T )‖ = ‖ f ‖∞.
(iv) If f |σS(T ) ≥ 0, then f (T ) is a positive operator.

Proof Fix f ∈ C (σS(T ),R). By the Weierstraß approximation theorem, R[t] is uni-
formly dense in C (σS,R) with supremum norm

‖ f ‖∞ := sup
t∈σS(T )

| f (t)| for f ∈ C (σS(T ),R).

Thus, there exists a sequence of real-valued polynomials ( fi )∞i=1 such that f is the
uniform limit of ( fi )∞i=1 on σS(T ), i.e.,

lim
n→∞ max

t0∈σS(T )
| f (t0)− fn(t0)|.

Therefore, ( fi )∞i=1 is a Cauchy sequence and (6.3) applied to fi implies that

lim
i, j→∞‖ fi (T )− f j (T )‖ = 0.

Since B(Hn) is complete, as must have that ( fi (T ))∞i=1 has a limit in the uniform
operator topology, which we will denote by f (T ). One can easily check that f (T )

does not depend on the choice of the Cauchy sequence ( fi )∞i=1.
Assertions (i)–(iii) are a direct consequence of the definition of f (T ) for f ∈

C (σS(T ),R), given above, just as in the classical complex Hilbert space setting.
To prove (iv), observe that if f |σS(T ) ≥ 0, then there exists g ∈ R[t] such that
fσS(T ) = g2|σS(T ). Thus,

〈 f (T )x, x〉 = 〈g(T )2x, x〉
= 〈g(T )x, g(T )x〉
� 0 for x ∈ Hn .

Thus, f (T ) is a positive operator. ��
We are now ready to prove Theorem 6.0.1.
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Proof (Proof of Theorem 6.0.1) Fix T ∈ B(Hn) and x ∈ Hn . We shall utilise the func-
tional calculus given in Theorem 6.0.4 to make sense of f (T ) for f ∈ C (σS(T ),R).
Let x : C (σS(T ),R) → S(Rn), where S(Rn) denotes the real vector space of
self-adjoint Clifford number in Rn , be the linear functional given by

x ( f ) = 〈 f (T )x, x〉 for f ∈ C (σS(T ),R).

The fact that x ( f ) ∈ S(Rn) follows at once from the fact that f (T ) = f (T )∗ (see
Theorem 6.0.4 and x ( f ) = 〈 f (T )x, x〉.

We claim that x is a positive linear functional. If f |σS(T ) ≥ 0, then f |σS(T ) =
g2|σS(T ) for some g ∈ C (σS(T ),R). Thus,

x ( f ) = 〈g(T )2x, x〉
= 〈g(T )x, g(T )x〉
≥ 0 for x ∈ Hn,

in which case, x : C (σS(T ),R) → S(Rn) is a positive linear functional. Conse-
quently, it follows from Theorem 4.0.11 that there exists a unique positive Rn-valued
Borel measure μx on B(σS(T )) such that

x ( f ) =
∫

σS(T )

f (t) dμx (t) for f ∈ C (σS(T ),R). (6.4)

Fix x, y ∈ Hn . Utilising the polarisation formula (2.20), one can check that

〈 f (T )x, y〉 =
∫

σS(T )

f (t) dμx,y(t) for f ∈ C (σS(T ),R), (6.5)

where μx,y denotes the Rn-valued measure on B(σS(T )) given by

μx,y :=
∑

α(μx+yeα − μx−yeα )eα

4 dimS(Rn)
for x, y ∈ Hn . (6.6)

Moreover, one can use (6.6) and the uniqueness of the positive Borel measure in (6.4)
to show that for any x, y ∈ Hn , there is one and only one Rn-valued measure on
B(σS(T )) such that (6.5) holds.

An immediate consequence of the uniqueness ofμx,y in (6.5) is for any x, y, z ∈ Hn

and a, b ∈ Rn , we have

μxa+yb,z(M) = μx,z(M) a + μy,z(M)b

and

μx,ya+zb(M) = āμx,y(M)+ b̄μx,z(M)
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for all M ∈ B(σS(T )). We can also use (6.5) to show that for any x, y ∈ Hn , we have

|μx,y(M)| ≤ |μx,y(σS(T ))|
= |〈x, y〉|
≤ ‖x‖‖y‖ for M ∈ B(σS(T )).

Thus, for any M ∈ B(σS(T )) we may use Theorem 3.0.26 to obtain an operator
E(M) ∈ B(Hn) such that

〈E(M)x, y〉 := μx,y(M). (6.7)

We now wish to show that E : B(σS(T )) → B(Hn) is a spectral measure (see
Definition 5.1.2). To see that E is a spectral measure, we shall make use of Lemma
5.1.6. Since 〈E(·)x, x〉 = μx is a positive Borel measure (and hence μx is countably
additive) for any x ∈ Hn , it suffices to show that E(σS(T )) = I , E(M) = E(M)∗
and E(M)2 = E(M) for M ∈ B(σS(T )).

Putting f (t) = 1 into (6.5), we obtain 〈x, y〉 = μx,y(σS(T )) = 〈E(σS(T )x, y〉 for
all x, y ∈ Hn and hence E(σS(T )) = I . Next, since

〈 f (T )x, y〉 =
∫

σS(T )

f (t)dμ̄x,y(t) for f ∈ C (σS(T ),R).

On the other hand,

〈 f (T )x, y〉 = 〈y, f (T )x〉
= 〈 f (T )y, x〉
=

∫

σS(T )

f (t)dμy,x (t) for f ∈ C (σS(T ),R).

Thus, for any x, y ∈ Hn , we have

∫

σS(T )

f (t)dμ̄x,y(t) =
∫

σS(T )

f (t)dμy,x (t) for f ∈ C (σS(T ),R)

and the aforementioned uniqueness of the Rn-valued measure μx,y such that (6.5)
forces μ̄x,y = μy,x . Consequently, (6.7) implies that E(M) = E(M)∗ for all M ∈
B(σS(T )).

We will now prove that E(M)2 = E(M) for all M ∈ B(σS(T )). Using the defini-
tion of f (T ) for f ∈ C (σS(T ),R), one can extend the identity in Theorem 6.0.4(i)
to the case when f , g ∈ C (σS(T ),R). Thus, for any x, y ∈ Hn , we have

〈 f (T )g(T )x, y〉 = 〈( f g)(T )x, y〉 =
∫

σS(T )

f (t)g(t)dμx,y(t)
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for all f , g ∈ C (σS(T ),R). On the other hand,

〈 f (T )g(T )x, y〉 =
∫

σS(T )

f (t)dμg(T )x,y for f , g ∈ C (σS(T ),R).

Thus, using the uniqueness of the Rn-valued measure μx,y in (6.5), we have
dμg(T )x,y = g dμx,y for all x, y ∈ Hn . Consequently, for any x, y ∈ Hn , we have
〈E(M)g(T )x, y〉 = ∫

M g(t)dμx,y for all M ∈ B(σS(T )). Putting these observations
together, for any x, y ∈ Hn , we have

∫

σS(T )

g(t)dμx,E(M)y =
∫

σS(T )

g(t)χM (t)dμx,y(t)

for all g ∈ C (σS(T ),R). Thus, using the uniqueness of the Rn-valued measure in
(6.5), we have dμx,E(M)y = χMdμx,y , i.e.,

μx,E(M)y(N ) =
∫

N
χM (t)dμx,y(t) = μx,y(M ∩ N ) for N ∈ B(σS(T )),

i.e., 〈E(N )x, E(M)y〉 = 〈E(M ∩ N )x, y〉. Using the fact that E(M) = E(M)∗, we
arrive at 〈E(M)E(N )x, y〉 = 〈E(M ∩ N )x, y〉 for all M, N ∈ B(σS(T )). Setting
N = M , we get E(M)2 = E(M) for all M ∈ B(σS(T )). Thus, E is a spectral
measure on σS(T ).

Formula (6.1) follows at once from (6.5) with f (t) = t together with (6.7).
Let F be another spectral measure on B(R) such that (6.1) holds with F in place

of E . We shall let IF ( f ) denote the spectral integral for f ∈ F(B(R), F) (see Theo-
rem 5.3.7). Let g : σS(T ) → R given by g(t) = t . Then

T = IF (g) =
∫

B(R)

t dF(t).

Theorem 5.3.14 asserts that

σS(I(g)) = {s ∈ R : F({t ∈ B(R) : |g(t)2 − 2Re(s)g(t)+ |s|2| < ε}) 	= 0

for all ε > 0}
= {s ∈ R : F({t ∈ B(R) : |t2 − 2st + s2| < ε}) 	= 0

for all ε > 0}
= {s ∈ R : F({t ∈ B(R) : |t − s|2 < ε}) 	= 0

for all ε > 0}
= supp F,

where we used (5.4) to obtain the last equality. Thus, as σS(T ) = σS(IF (g)), we
have σS(T ) = supp F . On the other hand, let I(g) denote the spectral integral of
g ∈ F(σS(T ), E). Then, using the argument above, with F replaced by E , we obtain
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σS(T ) = supp E and hence σS(T ) = supp E = supp F . Using Theorem 5.2.4(v), we
obtain for any x ∈ Hn ,

∫

σS(T )

| f (t)|2d(Re〈E(t)x, x〉) =
∫

σS(T )

| f (t)|2d(Re〈F(t)x, x〉)

for every f ∈ B and, in particular, for every f ∈ C (σS(T ),R). Thus, Theorem 4.0.7
forces 〈E(M)x, x〉 = 〈F(M)x, x〉 for all M ∈ B(σS(T )). Consequently, the polari-
sation formula (2.20) forces E = F |σS(T ).

Finally, suppose WT = WT for W ∈ B(Hn). Using Theorem 5.2.4(iv), we have
for any x, y ∈ Hn ,

〈 f (T )Wx, y〉 =
∫

σS(T )

Re( f (t))d〈E(t)Wx, y〉 for f ∈ B.

In view of Definition 5.2.3, we have that W f (T ) = f (T )W for every f ∈ B and
hence, for any x, y ∈ Hn ,

〈 f (T )Wx, y〉 = 〈 f (T )x,W ∗y〉 =
∫

σS(T )

Re( f (t))d〈E(t)x,W ∗y〉 for f ∈ B.

Putting these observations together, we have, in particular,

∫

σS(T )

f (t)d〈E(t)Wx, y〉 =
∫

σS(T )

f (t)d〈E(t)x,W ∗y〉 for f ∈ C (σS(T ),R).

Thus, using Corollary 4.0.8, we have 〈E(M)Wx, y〉 = 〈E(M)x,W ∗y, i.e.,
〈E(M)Wx, y〉 = 〈WE(M)x, y〉 for every x, y ∈ Hn and M ∈ B(σS(T )), i.e.,
E(M)W = WE(M) for every M ∈ B(σS(T )).

��
Remark 6.0.5 Let T and E be as in Theorem 6.0.1. We wish to record that in the proof
of Theorem 6.0.1 we showed that the support of the spectral measure of A is precisely
the S-spectrum of T , i.e.,

supp E = σS(T ).

Corollary 6.0.6 Let T ∈ B(Hn) be a positive operator. Then there exists a unique
positive operator A ∈ B(Hn) such that A2 = T . Moreover, if ( f j )∞j=1 is any sequence
of polynomials such that f j (t) → t1/2 uniformly on [0, d], where d = max σS(T ),
then

lim
j→∞‖ f j (T )− T 1/2‖ = 0. (6.8)

Proof The spectral theorem for a bounded self-adjoint operator (see Theorem 6.0.1
asserts that there exists a uniquely determined spectral measure E on σS(T ) such that
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T = ∫

σS(T )
t dE(t). In view of Lemma 3.2.5, we have σS(T ) ⊆ [0, d], where d ≥ 0.

Notice that have that f (t) = t1/2 ∈ B(σS(T ),B(σS(T )),CI) (see Definition 5.2.3),
where I ∈ S, and

A := f (T ) =
∫

σS(T )

t1/2 dE(t).

Thus,

〈Ax, x〉 =
∫

[0,d]
t1/2d〈E(t)x, x〉 � 0 for x ∈ Hn

and hence A is a positive operator and we may use Theorem 5.2.4(i) to check that
A2 = T . The limit (6.8) is an immediate consequence of Theorem 5.2.4(vii). We will
now prove that there is only one positive operator W ∈ B(Hn) such that W 2 = T .
Suppose Ã ∈ B(Hn) is a positive operator such that Ã2 = T . Then it is easy to see
that ÃT = T Ã and hence Ãg(T ) = g(T ) Ã for any g ∈ R[t]. Consequently, we have

Ã

(

lim
j→∞ f j (T )

)

=
(

lim
j→∞ f j (T )

)

Ã,

where ( f j )∞j=0 is any sequence of polynomials in R[t] such that f j (t) → t1/2 uni-
formly on [0, d], i.e.,

ÃA = AÃ. (6.9)

For any x ∈ Hn , let y := (A − Ã)x . Thus, using (6.9), we obtain

〈Ay, y〉 + 〈 Ãy, y〉 = 〈(A + Ã)(A − Ã)x, y〉 = 〈(A2 − Ã2)x, y〉 = 0. (6.10)

Therefore, as 〈Ay, y〉 � 0 and 〈 Ãy, y〉 � 0, we must have

〈Ay, y〉 = 〈 Ãy, y〉 = 0. (6.11)

But then, as A = D∗D for some D ∈ B(Hn) and Ã = D̃∗ D̃ for some D̃ ∈ B(Hn),
we have that (6.11) implies that 〈Dy, Dy〉 = 〈D̃y, D̃y〉 = 0 ∈ Rn , i.e.,

Re 〈Dy, Dy〉 = Re 〈D̃y, D̃y〉 = 0.

Thus, ‖Dy‖ = ‖Dy‖ = 0, i.e., Dy = D̃y = 0. But then we have

Ay = D∗Dy = D̃∗D = Ãy = 0.

Therefore, for any x ∈ Hn , we have
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‖(A − Ã)x‖2 = Re 〈(A − Ã)x, (A − Ã)x〉
= Re 〈(A − Ã)2x, x〉
= Re 〈(A − Ã)y, x〉
= 0

and hence (A − Ã)x = 0 for every x ∈ Hn , i.e., A = Ã. ��
Corollary 6.0.7 Suppose A ∈ B(Hn) and B ∈ B(Hn) are self-adjoint operators
with spectral measures EA and EB, respectively. Then AB = BA if and only if
EA(M)EB(M) = EB(M)EA(M) for all M ∈ B(R).

Proof The last assertion in Theorem 6.0.1 with T = A and W = B ensures that
AB = BA if and only if BEA(M) = EA(M)B. Applying the last assertion in
Theorem 6.0.1 with T = B and W = EB(M) we see that

AB = BA⇐⇒ BEA(M) = EA(M)B ⇐⇒ EA(M)EB(M) = EB(M)EA(M)

for any M ∈ B(R). ��

7 Polar decomposition for bounded operators

Let T ∈ B(Hn). The aim of this section it show that there exists a uniquely determined
positive operator P ∈ B(Hn) and a partial isometry Q such that T = UQ. This will
be important for the spectral theorem for a normal operator in Sect. 9.

Theorem 7.0.1 (Polar decomposition for bounded operators) Every T ∈ B(Hn)

admits a factorisation

T = UQ, (7.1)

where Q := |T | is uniquely determined, where |T | := (T ∗T )1/2, and U : Ran(Q)→
Ran(T ) is a partial isometry. In the particular case that T ∈ B(Hn) is normal, we
can choose U such that U is unitary and we have the following:

WT = TW and WT ∗ = T ∗W �⇒ WQ = QW for W ∈ B(Hn) (7.2)

and

WT = TW and WT ∗ = T ∗W �⇒ WU = UW for W ∈ B(Hn). (7.3)

Moreover, T is normal if and only if QU = UQ.

Proof Note that T ∗T ∈ B(Hn) is a positive operator and has a unique positive square
root Q := (T ∗T )1/2 ∈ B(Hn) (see Corollary 6.0.6). For any x ∈ Hn , we have
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‖T x‖2 = Re 〈T x, T x〉
= Re 〈T ∗T x, x〉
= Re 〈Q2x, x〉
= Re 〈Qx, Qx〉
= ‖Qx‖2. (7.4)

Thus, if we let x = y − z, with y, z ∈ Hn , then (7.4) implies that T y = T z whenever
Qy = Qz for any y, z ∈ Hn . Consequently, we may let U : Ran Q → Ran T denote
the operator belonging to B(Hn) given by U (Qx) = T x for x ∈ Hn . Next, extend U
to all of Hn via

Uy =
{
T x if y = Qx,

0 if y ∈ Ran Q
⊥
.

(7.5)

Since 〈Uy, z〉 = 〈y,U∗z〉 = 0 for all y ∈ Ran Q and z ∈ Hn , we have U∗ : Hn →
Ran Q

⊥
and hence Ran U ⊆ Ran Q.

We now wish to show that

U∗Ux = x for x ∈ Ran Q. (7.6)

Suppose y, z ∈ Ran Q. Then

〈y, z〉 = 〈Uy,Uz〉 = 〈y,U∗Uz〉

and hence 〈U∗Uy − y, w〉 = 0 for all w ∈ Ran Q. We have already noted that
U∗ : Hn → Ran Q. Hence for all y ∈ Ran Q, we have U∗Uy − y ∈ Ran Q.
Consequently, we have (7.6). Putting all of these observations together, we arrive at
the factorisation (7.1). The asserted uniqueness can be justified precisely the same
way as the complex Hilbert space case.

Let us now suppose that T is normal. We first note that 〈T T ∗x, x〉 = 〈T ∗T x, x〉
implies that 〈T x, T x〉 = 〈T ∗x, T ∗ x〉 and hence Re 〈T x, T x〉 = Re 〈T ∗x, T ∗ x〉,
i.e., ‖T x‖ = ‖T ∗x‖ for all x ∈ Hn . Therefore, Ker T = Ker T ∗ and hence

Ran Q⊥ = Ker Q = Ker T = Ker T ∗ = Ran T
⊥
.

Thus, we can extendU : Ran Q → Ran Q from (7.5) toU : Hn → Hn (with a slight
abuse of notation we shall denote the extension of U by U as well) via

Uy = y if y ∈ Ran Q
⊥
.

AsHn = Ran Q ⊕ Ran Q
⊥
, we have that U : Hn → Hn is unitary.
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The implication 7.2 is an immediate consequence of the final assertion of Theo-
rem 6.0.1 and Corollary 6.0.6. We will now show (7.3). In view of (7.2), we have

(WU −UW )Q = 0. (7.7)

Thus, as T ∈ B(Hn) is normal, we have Hn = KerT ⊕ Ran T . Thus we may write
any x ∈ Hn as x = y+ z, where y ∈ Ker T = Ker Q and z ∈ Ran T , we may use the
fact that Ker Q = Ker T and (7.7) to obtain

(WU −UW )x = (WU −UW )(y + z) = 0,

i.e., WU = UW .
The final assertion can be justified in the same way as the complex Hilbert space

case (bearing inmind that onemust use Corollary 6.0.6 which guarantees that bounded
positive operators have a unique positive square root). ��

8 An additive decomposition for bounded operators and imaginary
operators

In this section, we will show that all bounded operators on a Clifford module admit an
additive decomposition which is analogous to the well-known additive decomposition

T =
(
T + T ∗

2

)

+ i

(
T − T ∗

2i

)

,

which holds in the complex Hilbert space case. In the particular case that the bounded
operator is normal, this additive decomposition will be useful for proving the spectral
theorem for a bounded normal operators in Sect. 9.

Lemma 8.0.1 Let T ∈ B(Hn) be unitary. Then

σS(T ) ⊆ {s ∈ R
n+1 : |s| = 1}. (8.1)

Proof We claim that ρS(T ) ⊆ R
n+1\{s ∈ R

n+1 : |s| = 1}. Since T T ∗ = I , it is
obvious that ‖T ‖ = 1. Thus, Theorem 3.1.8 ensures that

{s ∈ R
n+1 : |s| > 1} ⊆ ρS(T ).

Since Q0(T ) = T 2 is a unitary operator, we have that Q0(T ) is invertible, i.e., 0 ∈
ρS(T ). For any s = s0 + s1 ∈ R

n+1, with 0 < |s| < 1, we have

Qs(T ) = T 2 − 2Re(s)T + |s|2 I
= (|s|2)T 2{(T ∗)2 + 2Re(s−1)T ∗ + |s−1|2T 2}
= |s|2T 2Qs−1(T

∗).
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Thus, as T ∗ is unitary and |s−1| > 1, we have that s−1 belongs to ρS(T ∗), in which
case s ∈ R

n+1, with 0 < |s| < 1, belongs to ρS(T ). Putting everything together we
have (8.1). ��
Definition 8.0.2 (Imaginary operator) We will call an operator J0 ∈ B(Hn) a partial
imaginary operator if J0 is a partial isometry and J ∗0 = −J0. We will call J ∈ B(Hn)

an imaginary operator if J is unitary and J ∗ = −J .

Theorem 8.0.3 Corresponding to any operator T ∈ B(Hn), there exist a self-adjoint
operator A ∈ B(Hn), a partial imaginary operator J0 ∈ B(Hn) and a positive
operator B ∈ B(Hn) such that

T = A + J0B, (8.2)

where A := (T + T ∗)/2 and B := |T − T ∗|/2 are uniquely determined by T .
Moreover, we may choose J0 in (8.2) to be an imaginary operator.

Proof If we let A := (T +T ∗)/2, then A ∈ B(Hn) is obviously self-adjoint. Consider
the anti self-adjoint operator Y := T − A = (T −T ∗)/2 ∈ B(Hn). Since Y is normal,
wemay useTheorem7.0.1 to find a positive operator B ∈ B(Hn) and a partial isometry
J0 such that Y = J0B. Moreover, by Theorem 7.0.1, we have BJ0 = J0B. Since Y is
anti self-adjoint, we must have J ∗0 = −J0. Thus, J0 is a partial imaginary operator.

The uniqueness of A is obvious. The uniqueness of B follows from Theorem 7.0.1.
Finally, the fact that we may choose J0 to be unitary follows from Theorem 7.0.1
applied to the bounded normal operator (T − T ∗)/2. ��

In the case that T ∈ B(Hn) is normal, we have the following refinement of Theo-
rem 8.0.3.

Theorem 8.0.4 Corresponding to any normal operator T ∈ B(Hn), there exist a self-
adjoint operator A ∈ B(Hn), a partial imaginary operator J0 ∈ B(Hn) and a positive
operator B ∈ B(Hn) such that A, J0 and B mutually commute and satisfy

T = A + J0B. (8.3)

In this case, A and B are as in Theorem 8.0.3 and

T J0 = J0T . (8.4)

Moreover, we may choose J0 to be an imaginary operator (in this case we shall write
J in place of J0).

Proof In view of Theorem 8.0.4, we only have to show that A := (T + T ∗)/2, B :=
|T − T ∗|/2 and J0 mutually commute and that (8.4) holds. The fact that B and J0
commute follows from the fact that J0B is a polar factorisation for the bounded normal
operator Y := (T −T ∗)/2. Since T is normal, we have A(T −T ∗) = (T −T ∗)A and
A(T−T ∗)∗ = (T−T ∗)∗A. Thus, the fact that A, B and J0 mutually commute follows
at once from (7.2) and (7.3). The final assertion (8.4) is an immediate consequence of
(8.3) and the fact that A, J and B mutually commute. ��
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Theorem 8.0.5 Let J be an imaginary operator on a Clifford module Hn, fix I ∈ S

and define

H±(J ,I) := {x ∈ Hn : J x = x(±I)}. (8.5)

Then the following statements hold:

(i) H±(J ,I) are nontrivial, i.e.,H±(J ,I) 	= {0} and

H+(J ,I) ∩H−(J ,I) = {0}. (8.6)

(ii) H±(J ,I) are CI closed right linear subspaces ofHn, with respect to CI, i.e.,
if x, y ∈ H±(J ,I) and λ ∈ CI, then x λ + y ∈ H±(J ,I). Consequently,
H±(J ,I) may be both be viewed as a complex Hilbert space with respect to
the CI-valued inner product given by

〈x, y〉CI := Re(〈x, y〉)− Re(〈x, y〉I)I ∈ CI for x, y ∈ H±(J ,I). (8.7)

(iii) Hn = H+(J ,I)⊕H−(J ,I).
(iv) For any orthonormal basis (ηi )i∈I of the complex Hilbert spaceH+(J ,I), we

have that, for any choice of J ∈ Swith I J = −JI, (ηi J)i∈I is an orthonormal
basis of H−(J ,I).
Moreover, for any orthonormal basis (η̃)i∈I of the complex Hilbert space
H−(J ,I), we have that, for any choice of J ∈ S with I J = −JI, (ηi J)i∈I is
an orthonormal basis of H+(J ,I).

(v) For any orthonormal basis (η)i∈I of the complex Hilbert space H+(J ,I),
(ηi )i∈I is an orthonormal basis of the Clifford moduleHn.

(vi) σS(J ) ∩ C
+
I = {I}.

(vii) For any orthonormal basis (ηi )i∈I of the complex Hilbert spaceH+(J ,I) and
I ∈ S, we have

J x =
∑

i∈I
ηi I 〈x, ηi 〉 for x ∈ Hn . (8.8)

Proof Wewill first prove (i). Suppose there exists x ∈ Hn\{0} such that x− J xI 	= 0.
Then

J (x − x J xI) = J x + xI

= (x − J xI)I.

Thus, y := x − J xI ∈ Hn\{0} and J y = yI and hence H+(J ,I) 	= {0}.
On the other hand, if there exists x ∈ Hn\{0} such that x = J xI, then choose J ∈ S

such that IJ = −JI. Thus, J xIJ = xJ implies that −J (xJ)I = xJ and hence

J (xJ) = (xJ)I.
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Thus, we again arrive at the conclusion H+(J ,I) 	= {0}. The justification that
H−(J ,I) 	= {0} can be carried out in a similar fashion.

We will now show (8.6). Suppose to the contrary that there exists a nonzero vector
x ∈ H+(J ,I) ∩ H−(J ,I). Then we have xI = x(−I), i.e., xI = 0 which forces
x = 0, a contradiction.

We will now prove (ii). Suppose x, y ∈ H+(J ,I) and λ ∈ CI. Then

J (xλ+ y) = xIλ+ yI = (xλ+ y)I.

Thus,H+(J ,I) is a CI right linear subspace ofHn . The fact thatH+(J ,I) is closed
follows at once via the continuity of multiplication. The justification that H−(J ,I)

is a closed right-linear subspace, with respect to CI, can be carried out in a similar
fashion. Finally, the fact that H+(J ,I) and H−(J ,I) may be viewed as a complex
Hilbert spaces with respect to the CI-valued inner product given by (8.7) follows
immediately from H±(J ,I) being closed right subspaces of Hn and checking that
(8.7) is an CI-valued inner product (to this end, it will be helpful to use the easily
verified fact that 〈x, y〉λ = ±λ〈x, y〉 for all λ ∈ CI and x, y ∈ H±(J ,I)).

We will now prove (iii). Let y = (x − J xI)/2 and z = (x + J xI)/2. Then
y ∈ H+(J ,I) since

J y = 1

2
(J x + xI) = 1

2
(x − J xI)I.

Similarly, z ∈ H−(J ,I) since

J z = 1

2
(J x − xI) = 1

2
(x + J xI)(−I).

Thus, as x = y + z and (8.6) holds we have Hn = H+(J ,I)⊕H−(J ,I).
We will now prove (iv). Let J ∈ S be such that IJ = −JI. Then for any y ∈

H+(J ,I), we have

J y J = (yI)J = (ηiJ)(−I).

Thus, yJ ∈ H−(J ,I). One can easily push this observation further and establish that
ϕ : H+(J ,I) → H−(J ,I) given by ϕ(y) = yJ is an isomorphism. Consequently, if
(ηi )i∈I is an orthonormal basis of H+(J ,I), then (ηi J)i∈I is an orthonormal basis
of H−(J ,I).

We will now prove (v). Let (ηi )i∈I be any orthonormal basis of H+(J , I). Then
we may apply (iv) and (iii) to see that (ηi )i∈I is also an orthonormal basis ofHn .

We will now prove (vi). Recall that J ∗ = −J and J J ∗ = I . Thus, combining
(3.28) and (8.1), we have

σS(J ) ∩ C
+
I = {λ ∈ C

+
I : Re(λ) = 0} ∩ {λ ∈ C

+
I : |λ| = 1} = {I}.

Wewill now prove (vii). Let (ηi )i∈I be any orthonormal basis ofH+(J , I). In view
of (v), we have that (ηi )i∈I is an orthonormal basis of Hn . Consequently, in view of
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Lemma 2.2.6(iv), we have

x =
∑

i∈I
ηi 〈x, ηi 〉 for x ∈ Hn

and hence

J x =
∑

i∈I
J ηi 〈x, ηi 〉 =

∑

i∈I
ηi I〈x, ηi 〉 for x ∈ Hn .

��

9 Spectral theorem for a bounded normal operator and some
consequences

In this section we will be prove one of the main results of this manuscript, namely the
spectral theorem for a bounded normal operator on a Clifford module.

Let I ∈ S be arbitrary. In the following lemma, we shall identify R× [0,∞) with
C
+
I := {λ ∈ C

+
I : Im(λ) ≥ 0} in the natural way. Consequently, a spectral measure

onB(R× [0,∞)) may be viewed as a spectral measure onB(C+I ).

Lemma 9.0.1 Let E1 be a spectral measure on B(R), E2 be a spectral measure on
B([0,∞)) and I ∈ S. Suppose E1(M1)E2(M2) = E2(M2)E1(M1) for every M1 ∈
B(R) and M2 ∈ B([0,∞)) and let E(M1 × M2) := E(M1)E(M2) be the uniquely
determined spectral measure on B(C+I ) (see Theorem 5.1.15). For any real-valued
function f ∈ F(B(C+I , E), we have

∫

R

f (t) dE1(t) =
∫

C
+
I

f (Re(λ))dE(λ) (9.1)

and
∫

[0,∞)

g(u) dE2(u) =
∫

C
+
I

g(Im(λ))dE(λ) (9.2)

Proof We will verify (9.1) for simple functions. For any M ∈ B(R), we have

∫

C
+
I

χM (Re(λ)) dE(λ) = E(M × [0,∞))

= E1(M)E2([0,∞)) = E1(M)

=
∫

R

χM (t)dE1(t)

Thus, by linearity, (9.1) holds for simple functions. Passing to a limit, we obtain (9.1)
for any f ∈ F(B(C+I ), E).

Formula (9.2) can be justified in much the same way as (9.1).
��
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We are now ready to state and proof the spectral theorem for a bounded normal
operator on a Clifford module.

Theorem 9.0.2 (Spectral theorem for bounded normal operators) Let T ∈ B(Hn) be
normal. Then corresponding to any choice of I ∈ S, there exists a spectral measure
E on the Borel σ -algebra B(σS(T ) ∩ C

+
I ) such that

T =
∫

σS(T )∩C
+
I

Re(λ) dE(λ)+
∫

σS(T )∩C
+
I

Im(λ) dE(λ) J , (9.3)

where J an anti self-adjoint and unitary operator obeying (8.3). E is unique in the
sense that if F is a spectral measure on B(C+I ) such that

T =
∫

C
+
I

Re(λ) dF(λ)+
∫

C
+
I

Im(λ)dF(λ)J ,

then E(M ∩ σS(T ) ∩ C
+
I ) = F(M) for all M ∈ B(C+I ). Moreover, W ∈ B(Hn)

commutes with T if and only if W E(M) = E(M)W for every M ∈ B(σS(T )∩C
+
I ).

Proof Webegin by using (8.3) to write T = A+ J B, where A ∈ B(Hn) is self-adjoint,
B ∈ B(Hn) is positive and J is anti self-adjoint and unitary and A, B and J allmutually
commute. Since A is self-adjoint and B is positive,wemay useTheorem6.0.1 to obtain
spectral measures E1 (resp., E2) on B(σS(A)) (resp.,B(σS(B))) such that

A =
∫

σS(A)

t dE1(t) and B =
∫

σS(B)

t dE2(t).

Note that since A ∈ B(Hn) is self-adjoint, we have that σS(T ) is a non-empty compact
subset of R and since B ∈ B(Hn) is positive, we have that σS(B) is a non-empty
compact subset of [0,∞) (see Lemma 3.2.4). Moreover, in view of Remark 6.0.5, we
have

supp E1 = σS(A) and supp E2 = σS(B).

Since A and B commute, we have that E1(M1)E2(M2) = E1(M1)E2(M2) for every
M ∈ B(σ ). Thus, we invoke Theorem 5.1.15 with �1 = B(σS(A)) and �2 =
B(σS(B)) to obtain a uniquely determined spectral measure E onB(σS(A)×σS(B))

given by E(M1 × M2) = E(M1)E(M2) for M1 ∈ B(σS(A)) and M2 ∈ B(σS(B)).
Let I ∈ S be arbitrary and identify R× [0,∞) with C+I := {λ ∈ C

+
I : Im(λ) ≥ 0}

in the natural way. Consequently, we will view E as a spectral measure on the non-
empty compact subset σS(A)× σS(B) ⊆ B(C+I ). Lemma 9.0.1 with f (λ) = Re(λ)

and g(λ) = Im(λ) imply that

A =
∫

R

t dE1(t) =
∫

C
+
I

Re(λ)dE(λ) (9.4)
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and

B =
∫

[0,∞)

u dE2(u) =
∫

C
+
I

Im(λ)dE(λ), (9.5)

respectively. Since supp E1 = σS(A), supp E2 = σB(A) and supp E ⊆ σS(A) ×
σB(A), we may rewrite (9.4) and (9.5) as

A =
∫

σS(A)

t dE1(t) =
∫

σS(A)×σS(B)

Re(λ)dE(λ) (9.6)

and

B =
∫

σS(B)

u dE2(u) =
∫

σS(A)×σS(B)

Im(λ)dE(λ), (9.7)

respectively. Thus , as T = A + BJ , we can use (9.4) and (9.5) to obtain

T =
∫

C
+
I

Re(λ)dE(λ)+
∫

C
+
I

Im(λ)dE(λ) J . (9.8)

Theorem 5.3.14 with f (λ) = λ implies that

σS(T ) ∩ C
+
I = σS(I( f )) ∩ C

+
I

= {s ∈ C
+
I : E({λ ∈ � : | f (λ)2 − 2Re(s) f (λ)+ |s|2| < ε}) 	= 0

for all ε > 0}
= {s ∈ C

+
I : E({λ ∈ � : |λ2 − 2Re(s)λ+ |s|2| < ε}) 	= 0

for all ε > 0} (9.9)

= {s ∈ C
+
I : E({λ ∈ � : |λ− s| · |λ− s̄| < ε}) 	= 0

for all ε > 0} (9.10)

= {s ∈ C
+
I : E({λ ∈ � : |λ− s|2 < ε}) 	= 0

for all ε > 0}, (9.11)

since, ifwewriteλ = λ0+λ1I ∈ C
+
I , withλ0 ∈ R andλ1 ≥ 0, and s = s0+s1I ∈ C

+
I ,

with s0 ∈ R and s1 ≥ 0, then

|λ− s̄|2 = (λ0 − s0)
2 + λ21 + 2λ1s1 + s21

≥ (λ0 − s0)
2 + λ21 − 2λ1s1 + s21

= |λ− s|2.

Thus, in view of (5.4), (9.11) implies that σS(T ) ∩ C
+
I = supp E . Thus, we may

rewrite (9.8) to obtain (9.3).



The spectral theorem for normal operators on a Clifford… Page 77 of 92 25

We will now show that E is unique. Suppose E ′ on B(C+I ) is another spectral
measure such that (9.3) holds.One can argue as in the proof of Theorem6.0.1 to see that
supp E ′ = σS(T ) which is non-empty and compact by Theorem 3.1.8. Consequently,
we may use Theorem 5.2.4(iv) with y = x and f ∈ C (σS(T ) ∩ C

+
I ,R) to obtain

∫

σS(T )∩C+I
f (λ)d〈E(λ)x, x〉 =

∫

σS(T )∩C+I
f (λ)d〈E ′(λ)x, x〉.

Thus, one can show that E = E ′ as in the proof of Theorem 6.0.1.
The proof of the final assertion can be completed in the same way as the proof of

the final assertion in Theorem 6.0.1. ��

Remark 9.0.3 Let I, J ∈ S and γ : C+I → C
+
J denote the bijective map given by

γ (λ0 + λ1I) = λ0 + λ1J, (9.12)

whereλ0 ∈ R andλ1 ≥ 0.An immediate consequence of the proof ofTheorem9.0.2, is
that if EI, whereI ∈ S, is a spectralmeasure for a normal operator T ∈ B(Hn) and EJ,
where J ∈ S, then since γ (σS(T )∩C

+
I ) = σS(T )∩C

+
I and supp EI = σS(T )∩C

+
I ,

we have

EI(M) = EJ(γ (M)) for M ∈ B(σS(T ) ∩ C
+
I ). (9.13)

In view of the above observations, we are justified in calling a spectral measure E on
σS(T ) ∩ C

+
I the spectral measure of T .

Corollary 9.0.4 (Borel functional calculus in the bounded case) Let T ∈ B(Hn) be
normal, J be an imaginary operator satisfying (8.3) and E be the spectral measure of
T . FixI ∈ S and put�+I := σS(T )∩C+I . For any f , g ∈ B(�+I ,B(�+I ),CI, E) (see
Sect. 5.2), we have the spectral integrals I( f ), I(g) ∈ B(Hn) are normal operators
with the following properties:

(i) I( f̄ ) = I( f )∗.
(ii) I( f g) = I( f )I(g).
(iii) I(I) = J and I(c f + g) = (Re(c)I + Im(c) J )I( f )+ I(g) for all c ∈ CI and

I ∈ S.
(iv) For all x, y ∈ Hn, we have

〈I( f )x, y〉 =
∫

�+I
Re( f (λ))d〈E(λ)x, y〉 +

∫

�+I
Im( f (λ))d〈J E(λ)x, y〉

(v) ‖I( f )x‖2 = ∫

�
| f (λ)|2d(Re 〈E(λ)x, x〉) for all x ∈ Hn.

(vi) ‖I( f )‖ ≤ ‖ f ‖∞. Moreover, ‖I( f )‖ = ‖ f ‖∞ if and only if f ∈ L∞(�+I ,B

(�+I ,CI, E).
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(viii) For any sequence of functions ( f j )∞j=1, where f j ∈ B for j = 1, 2, . . ., which
converges pointwise E-a.e. on� to f and there exists κ > 0 such that | f j (λ)| ≤
κ for all λ ∈ � and j = 1, 2, . . ., we have

s − lim
j→∞ I( fn) = I( f ).

(viii) If we let �±(J ,I) denote the orthogonal projection onto the right complex
subspace H±(J ,I), respectively (see Theorem 8.0.5(ii)), then

〈I( f )x, y〉 =
∫

�+I
d〈E(λ)�+(J ,I)x, y〉 f (λ)

+
∫

�+I
d〈E(λ)�−(J ,I)x, y〉 f (λ) for x, y ∈ Hn,

where both integrals above are meant in the sense of (4.5).
(ix) If f ∈ B(�+I ,B(�+I ),CI, E) is nonnegative E-a.e., then I( f ) � 0.
(x) I( f )−1 ∈ B(Hn) if and only if f (λ) 	= 0 E-a.e. and

f −1 ∈ L∞(�+I ,B(�+I ),CI, E).

In this case,

I( f )−1 = I(1/ f ).

(xi) The spectral measure EI( f ) of I( f ) satisfies the identity

EI( f )(M) = E( f −1(M ∩ f (�+I )). (9.14)

Proof Let T ∈ B(Hn) be normal and fix I ∈ S. Then by Theorem 9.0.2, we can find a
spectral measure E on�+I := σS(T )∩C+I such that (9.3) holds. Thus, we may invoke
Theorem 5.2.4 with � = �+I andA = B(�+I ) to obtain (i)–(v), the first assertion in
(vi) and (vii). The fact that I( f ) ∈ B(Hn) is normal is an easy consequence of (i) and
(ii). Indeed, as

I( f )I( f )∗ = I( f f̄ ) = I( f̄ f ) = I( f )∗I( f ),

we have that I( f ) is normal.
The second assertion in (vi) follows immediately from Lemma 5.3.10. We will now

prove (vii). We may use Theorem 8.0.5(iii) to write x = x+ + x− and y = y+ + y−,
where x+, y+ ∈ H+(J ,I) and x−, y− ∈ H−(J ,I). We note that �±(J ,I)x = x±.
Then we may use (iv) and (8.5) to obtain
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〈I( f )x, y〉 =
∫

�+I
Re( f (λ)) d〈E(λ)x, y〉

+
∫

�+I
Im( f (λ)) d〈E(λ)J (x+ + x−), y〉

=
∫

�+I
Re( f (λ)) d〈E(λ)(x+ + x−), y〉

+
∫

�+I
Im( f (λ)) d〈E(λ)(x+I− x−I), y〉

=
∫

�+I
d〈E(λ)x+, y〉 f (λ)

+
∫

�+I
d〈E(λ)x−, y〉 f (λ),

in which case we have the desired identity.
We will now prove (ix). If we let y = x in (iv) with f (λ) ≥ 0 E-a.e., then we may

use the fact that E(M) � 0 for all M ∈ B(�+I to obtain

〈I( f )x, x〉 =
∫

�+I
f (λ)d〈E(λ)x, x〉 � 0.

Assertion (x) is an immediate consequence of Lemma 5.3.10 and Lemma 5.3.11.
Finally, we will prove (xi). Using Theorem 5.3.21 with � = �+I , �

′ = f (�+I )\{∞},
ψ(λ) = f (λ), h(λ′) = λ′ and F be the spectral measure given by (9.14), we obtain

∫

C
+
I

Re(λ′)dF(λ′)+
∫

C
+
I

Im(λ′)dF(λ′)J

=
∫

f (�+I )\{∞}
Re(λ′)dF(λ′)+

∫

f (�+I )\{∞}
Im(λ′)dF(λ′)J

=
∫

f (�+I )\{∞}
Re( f (λ))dE(λ)+

∫

f (�+I )\{∞}
Im( f (λ))dE(λ)J

= I( f ).

Thus, the asserted uniqueness in Theorem 9.0.2 ensures that the spectral measure for
I( f ) is given by (9.14). ��
Corollary 9.0.5 (Subclasses of bounded normal operators) Let T ∈ B(Hn) be normal
with spectral measure E and J be an imaginary operator associated with T (see
Theorem 8.0.4). We have the following:

(i) T is self-adjoint if and only if σS(T ) ⊆ R. In this case,

T =
∫

R

t dE(t).
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(ii) T is positive if and only if σS(T ) ⊆ [0,∞). In this case,

T =
∫

[0,∞)

t dE(t).

(iii) T is anti self-adjoint if and only if σS(T ) ⊆ {s ∈ R
n+1 : Re(s) = 0}. In this case,

T =
∫

R

t dE(t)J .

(v) T is unitary if and only if σS(T ) ⊆ {s ∈ R
n+1 : |s| = 1}. In this case,

T =
∫

|λ|=1
Re(λ) dE(λ)+

∫

|λ|=1
Im(λ) dE(λ).

(vi) T is imaginary if and only if σS(T ) ∩ C
+
I = {I}. In this case,

T x =
∑

i∈I
ηi I〈x, ηi 〉 for x ∈ Hn,

where (ηi )i∈I is any orthonormal basis ofH+(T ,I) (see (8.5)).

Proof Let us prove the claims. We prove (i). If T is self-adjoint, then Lemma 3.2.4
asserts that σS(T ) ⊆ R. The integral representation T = ∫

R
t dE(t) appeared in

Theorem 6.0.1. Conservely, suppose T ∈ B(Hn) is normal and σS(T ) ⊆ R. Then the
fact that T = T ∗ follows at once from Corollary 9.0.4 with f (λ) = λ. Assertions (ii)
(with the help of Lemma 3.2.5), (iii) (with the help of Lemma 8.0.1) and (iv) (with the
help of Lemma 3.2.6) can be proved in much the same manner using Theorem 9.0.2
and Corollary 9.0.4.

Finally, Assertion (vi) is just (8.8). ��

10 Spectral theorem for an unbounded normal operator and some
consequences

Before we can formulate and prove the spectral theorem for an unbounded normal
operator on a Clifford module, we will need to define the bounded transform of a
densely defined closed operator and also a lemma which highlights various properties
of the aforementioned bounded transform.

Definition 10.0.1 Suppose T ∈ L(Hn) is a densely defined closed operator. Let CT

be as in the statement of Theorem 3.2.3, i.e., CT := (I + T ∗T )−1. In view of Theo-
rem 3.2.3(ii), CT ∈ B(Hn) and CT is positive. In view of Corollary 6.0.6, CT has a
unique positive square root C1/2

T ∈ B(Hn). If we let

ZT := TC1/2
T , (10.1)
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then ZT will be called the bounded transform of T (we will justify this nomenclature
in Lemma 10.0.2).

Lemma 10.0.2 Let T ∈ L(Hn) be densely defined. Then the following statements
hold:

(i) ZT ∈ B(Hn). Moreover,

‖ZT ‖ ≤ 1 (10.2)

and

CT = (I + T ∗T )−1 = I − Z∗T ZT . (10.3)

(ii) (ZT )∗ = ZT ∗ and hence ZT is self-adjoint whenever T is self-adjoint.
(iii) ZT is normal whenever T is normal.

Proof The proof in the classical complex Hilbert space (see, e.g., Lemma 5.8 in [66])
can be carried over into the Cliffordmodule setting. For completeness, wewill provide
the proof. The proof is broken into steps.

Step 1 Prove (i).
First note that

{Cx : x ∈ H} = D(I + T ∗T ) = D(T ∗T ) (10.4)

and hence if x ∈ Hn , then

‖TC1/2
T C1/2

T x‖2 = 〈T ∗TCT x,CT x〉
≤ 〈(I + T ∗T )CT x,CT x〉
= 〈C−1T CT x,CT x〉
= 〈x,CT x〉
= ‖C1/2

T x‖2.

Thus, if y ∈ {C1/2
T x : x ∈ Hn}, then

‖ZT y‖ = ‖TC1/2
T y‖ ≤ ‖y‖. (10.5)

Since Ker(CT ) = {0}, we have that Ker(C1/2
T ) = {0} and hence {C1/2

T x : x ∈ H} is a
dense subset of Hn . By assumption, T is a closed operator and since C1/2

T ∈ B(Hn),
we have that ZT is closed as well. Thus, we have

{C1/2
T x : x ∈ Hn} ⊆ D(T ), D(ZT ) = Hn

and, in view of (10.5), we have ‖ZT ‖ ≤ 1.
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Next, it follows from (10.5) and C1/2T ∗ ⊆ Z∗T that

(I − CT )C1/2
T = C1/2

T (I + T ∗T )CT − C1/2
T CT

= C1/2
T T ∗TC1/2

T C1/2
T

⊆ Z∗T ZTC
1/2
T .

Thus, Z∗T ZTC
1/2
T = (I − CT )C1/2

T and, as {C1/2
T x : x ∈ H} is a dense subset of Hn ,

we get (10.3).

Step 2 Prove (ii).
Using (10.3) we get that CT ∗ = (I + T T ∗)−1. If x ∈ D(T ∗), then let y = CT ∗x .

Therefore,

x = (I + T T ∗)y

and

T ∗x = T ∗(I + T T ∗)y = (I + T ∗T )T ∗y.

Thus, CT ∗x ∈ D(T ∗) and hence

CT T
∗x = T ∗y = T ∗CT ∗x . (10.6)

It follows easily from (10.6) and (10.3) that p(CT ∗)x ∈ D(T ∗) and

p(CT )T ∗x = T ∗ p(CT ∗)x

for any real polynomial p ∈ R[t]. By the Weierstraß approximation theorem, there
exists a sequence of real polynomials (pn)∞n=0 which converge uniformly in supremum
norm to the function t �→ t1/2 on [0, 1]. We may use Corollary 6.0.6 to obtain

lim
j→∞‖p j (CT )− C1/2

T ‖ = lim
j→∞‖p j (CT )− C1/2

T ‖ = 0.

Since T is a closed operator, T ∗ is also a closed operator. Thus, we have

C1/2
T T ∗x = lim

j→∞ p j (CT )T ∗x = lim
j→∞ T ∗ pn(CT ∗)x

= T ∗(CT ∗)
1/2x for x ∈ D(T ∗).

As C1/2
T T ∗ ⊆ (TC1/2

T )∗ = ZT ∗ , we get that

ZT ∗x = C1/2
T T ∗x = T ∗(CT ∗)

1/2x = (ZT )∗x
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for x ∈ D(T ∗). Finally, since D(T ∗) is dense in H and ZT ∈ B(Hn), we have that
ZT ∗x = (ZT )∗x for x ∈ Hn , i.e., ZT ∗ = (ZT )∗.

Step 3 Prove (iii).
Using the first of (ii) on T and T ∗ and the assumption T T ∗ = T ∗T , we have

I − (ZT )∗ZT = (I + T ∗T )−1 = (I + T T ∗)−1 = I − (ZT ∗)
∗ZT ∗

= I − ZT (ZT )∗

in which case it is clear that ZT is normal. ��
Suppose T ∈ L(Hn) is an unbounded normal operator and consider the bounded

transform ZT ∈ B(Hn) of T given by (10.1). In view of Lemma 10.0.2, we have ZT

is a bounded normal operator. Thus, we may use Theorem 8.0.4 to find a self-adjoint
operator AZT ∈ B(Hn), a positive operator BZT ∈ B(Hn) and a imaginary operator
J such that A, B and J mutually commute and obey

ZT = AZT + J BZT . (10.7)

Definition 10.0.3 (Strongly commuting operators) Suppose T , T̃ ∈ L(Hn) are
unbounded normal operators . We will say that T and T̃ strongly commute if the
bounded transforms of T and T̃ , i.e., ZT and ZT̃ , respectively, commute.

We are now ready to formulate and prove the spectral theorem for an unbounded
normal operator.

Theorem 10.0.4 Let T ∈ L(Hn) be an unbounded normal operator. Then correspond-
ing to any choice ofI ∈ S and an imaginary operator J in (10.7), there exists a spectral
measure E on the Borel σ -algebra B(σS(T ) ∩ C

+
I ) such that

T =
∫

σS(T )∩C
+
I

Re(λ) dE(λ)+
∫

σS(T )∩C
+
I

Im(λ) dE(λ) J . (10.8)

E is unique in the sense that if F is a spectral measure on B(C+I ) such that
T = ∫

C
+
I
Re(λ) dF(λ)+ ∫

C
+
I
Im(λ)dF(λ)J , then E(M ∩ σS(T )∩C

+
I ) = F(M) for

all M ∈ B(C+I ).

Remark 10.0.5 Before proceeding to the proof of Theorem 10.0.4, we wish to point
out that a consequence of Theorem 10.0.4 is that for any unbounded normal operator
T ∈ L(Hn), we have

σS(T ) 	= ∅. (10.9)

Indeed, for any choice of I ∈ S, Theorem 5.3.14 with f (λ) = λ implies that supp E =
σS(T ) ∩ C

+
I . Since supp E 	= ∅, we have (10.9).
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Proof (Proof of Theorem 10.0.4) The proof is broken into steps.

Step 1 Show that there exists a spectral measure E on σS(T ) ∩ C
+
I such that (9.3)

holds.
In view of Lemma 10.0.2, we have ZT is a bounded normal operator. Moreover,

‖ZT ‖ ≤ 1. Let J be the imaginary operator appearing in (10.7). Since ZT ∈ B(Hn) is
normal, we can use Theorem 6.0.1 to obtain a uniquely determined spectral measure

EZT on B(σS(ZT )) ⊆ D
+
I ,where

DI := {λ ∈ CI : |λ| < 1} for I ∈ S,

such that

ZT =
∫

DI

Re(λ)dEZT (λ)+
∫

DI

Im(λ)dEZT (λ)J . (10.10)

We may use (10.10) and (5.20) to see that, for any x ∈ Hn and M ∈ B(C+I ), we
have

〈(I − (ZT )∗ZT )EZT (M), EZT (M)x〉 =
∫

M
(1− |λ|2)d〈EZT (λ)x, x〉. (10.11)

A simple consequence of Theorem 3.2.3 is C−1T = I − (ZT )∗ZT is invertible and
positive. Thus, Ker (I−(ZT )∗(ZT )) = {0} and I−(ZT )∗ZT is positive. Thus, (10.11)

implies that σS(ZT ) ∩ C
+
I = supp EZT ⊆ D

+
I and EZT (T+I ) = 0. Consequently,

EZT (D+I ) = EZT (D+I \T+I ) = I ,

where TI := {λ ∈ CI : |λ| = 1}.
Let ψ(λ) = λ(1 − |λ|)−1/2. Notice that ψ is an intrinsic function (see Defin-

tion 5.3.12). We claim that I(ψ) = ZT (C1/2
T )−1, where I denotes the spectral integral

with respect to the spectral measure EZT . Indeed, since EZT (D+I ) = I andψ is clearly
finite EZT -a.e. on C

+
I , (5.16) asserts that D(I(ψ)) = D(I((1 − λ)−1/2)). Thus, we

may make us of Theorem 5.3.7(ii) and (iv) to obtain

I(ψ) = I(λ)I((1− |λ|2)−1/2).

Next, in view of Lemma 3.0.29, we have that

I((1− |λ|2)−1/2) = I((1− |λ|2)1/2)−1.

Finally, since ZT = I(λ) and the square root of a positive bounded operator is unique
(see Corollary 6.0.6), we have that

C1/2
T = (I − (ZT )∗ZT )1/2 = I((1− |λ|2)1/2).
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Therefore, we have proved the claim I(ψ) = ZT (C1/2
T )−1/2.

In what follows, with a slight abuse of notation, we will view ψ as ψ |
D
+
I
. Let

E(M) := EZT (ψ−1(M)) for M ∈ B(C+I ). In view of Remark 5.3.20, E is a spec-
tral measure on B(C+I ) and J is an imaginary associated operator with the spectral
measure E . Using the fact that T = ZT {(CT )1/2}−1, I(ψ) = ZT {(CT )1/2}−1 and
Theorem 5.3.21, we obtain

T = I(ψ) =
∫

D
+
I

Re(ψ(λ))dEZT (λ)+
∫

D
+
I

Im(ψ(λ))dEZT (λ)J

=
∫

D
+
I

1
√
1− |λ|2 dEZT (λ)

=
∫

C
+
I

Re(λ)dE(λ)+
∫

C
+
I

Im(λ)dE(λ)J . (10.12)

Finally, using Theorem 5.3.14, we have that supp E = σS(T ) ∩ C
+
I , i.e., (10.12) is

(10.8).

Step 2 Show that E is unique.
Suppose F is another spectral measure onB(C+I ) such that the imaginary operator

J is associated with F and

T =
∫

C
+
I

Re(λ) dF(λ)+
∫

C
+
I

Im(λ) dF(λ) J .

Let F ′(M) := F(ψ(M)) for M ∈ B(D+I ). In view of Remark 5.3.20, F ′ is a spectral
measure on B(D+I ) and the imaginary operator J is associated with F ′. Moreover,
since EZT (D+I ), we have

ZT =
∫

D
+
I

Re(λ)dF ′(λ)+
∫

D
+
I

Im(λ)dF ′(λ) J

=
∫

D
+
I

Re(λ)dEZT (λ)+
∫

D
+
I

Im(λ)dEZT (λ) J .

But then the Borel functional calculus applied to ZT ∈ B(Hn) (see Corollary 9.0.4)
asserts that for any real-valued polynomial p ∈ R[λ] and x ∈ Hn , we have

〈p(λ)x, x〉 =
∫

D
+
I

p(λ)dF ′(λ)x, x〉

=
∫

D
+
I

p(λ)dEZT (λ)x, x〉.

Since R[λ] is dense in the Banach space of real-valued continuous functions on the

compact set D+I (denoted by C (D+I ,R)), we can use Corollary 4.0.8 to see that
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〈F ′(M)x, x〉 = 〈EZT (M)x, x〉 for any M ∈ B(D+I ), But then the polarisation for-
mula (2.20) enables us to deduce that F ′ = EZT . Finally since F(M) = F ′(ψ−1(M))

for M ∈ B(C+I ), we have F = E on B(C+I ) as required. ��
Remark 10.0.6 Let I, J ∈ S and γ : C+I → C

+
J denote the bijective map given by

γ (λ0 + λ1I) = λ0 + λ1J, (10.13)

where λ0 ∈ R and λ1 ≥ 0. An immediate consequence of the proof of Theorem 10.0.4,
is that if EI, where I ∈ S, is a spectral measure for an unbounded normal operator
T ∈ L(Hn) and EJ, where J ∈ S, then since γ (σS(T ) ∩ C

+
I ) = σS(T ) ∩ C

+
I and

supp EI = σS(T ) ∩ C
+
I , we have

EI(M) = EJ(γ (M)) for M ∈ B(σS(T ) ∩ C
+
I ). (10.14)

In view of the above observations, we are justified in calling a spectral measure E on
σS(T ) ∩ C

+
I the spectral measure of T .

Corollary 10.0.7 (Borel functional calculus in the unbounded case) Let T , E and
J be as in Theorem 10.0.4 and �+I := σS(T ) ∩ C

+
I for I ∈ S. For any f , g ∈

F(�+I ,B(�+I ), E) and c ∈ CI, we have the spectral integrals I( f ), I(g) ∈ L(Hn)

have the following properties:

(i) I( f̄ ) = I( f )∗.
(ii) I( f g) = I( f )I(g).
(iii) I( f c + g) = I( f )(Re(c)I + Im(c)J )+ I(g) for all c ∈ CI.
(iv) I( f ) is a closed normal operator belonging to L(Hn).
(v) D(I( f )I(g)) = D(I( f g)) ∩D(I(g)).
(vi) If we let �±(J ,I) denote the orthogonal projection onto the right complex

subspace H±(J ,I), respectively (see Theorem 8.0.5(ii)), then

〈I( f )x, y〉 =
∫

�+I
d〈E(λ)�+(J ,I)x, y〉 f (λ)

+
∫

�+I
d〈E(λ)�−(J ,I)x, y〉 f (λ) for x ∈ D(T ),

where both integrals above are meant in the sense of (4.5).
(vii) If f ∈ F(�+I ,B(�+I ),CI, E) is nonnegative E-a.e., then I( f ) � 0.
(vii) I( f )−1 ∈ L(Hn) if and only if f (λ) 	= 0 E-a.e. In this case, I( f )−1 = I(1/ f ).
(viii) The spectral measure EI( f ) of I( f ) satisfies the identity

EI( f )(M) = E( f −1(M ∩ f (�+I )). (10.15)

Proof Let T ∈ L(Hn) be normal and fix I ∈ S. Then by Theorem 10.0.4, we can find
a spectral measure E on σS(T ) ∩ C

+
I such that (10.8) holds. Thus, we may invoke

Theorem 5.3.7 with � = σS(T ) ∩ C
+
I and A = B(σS(T ) ∩ C

+
I ) to obtain (i)–(v).
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Assertions (vi)–(viii) are straight forward adaptations of Theorem 5.2.4(viii)–(xi)
to the unbounded setting. The corresponding proofs can be completed in much the
same way as the bounded setting. ��
Corollary 10.0.8 (Subclasses of bounded normal operators) Let T , E and J be as in
Theorem 10.0.4 and �+I := σS(T ) ∩ C

+
I for I ∈ S. We have the following:

(i) T is self-adjoint if and only if σS(T ) ⊆ R. In this case,

T =
∫

R

t dE(t).

(ii) T is positive if and only if σS(T ) ⊆ [0,∞). In this case,

T =
∫

[0,∞)

t dE(t).

(iii) T is anti self-adjoint if and only if σS(T ) ⊆ {s ∈ R
n+1 : Re(s) = 0}. In this

case,

T =
∫

R

t dE(t)J .

Proof The proofs of (i)–(iii) can be completed in much the same way of the proofs of
Corollary 9.0.5(i)–(iii) with Theorem 10.0.4 in place of Theorem 9.0.2. ��

The following corollary is an unbounded analogue of the Teichmüller decomposi-
tion.

Corollary 10.0.9 Corresponding to any normal operator T ∈ L(Hn), there exist a
self-adjoint operator A ∈ L(Hn), an imaginary operator J ∈ B(Hn) and a positive
operator B ∈ L(Hn) such that A, J and B strongly commute and satisfy

T = A + J B. (10.16)

In this case, A = ∫

C
+
I
Re(λ) dE(λ) and B = ∫

C
+
I
Im(λ) dE(λ), where E is the

spectral measure for T , and

T and J strongly commute. (10.17)

Proof The additive decomposition (10.16) follows at once from (10.8). The fact that
A, B and J strongly commute follows from the fact that ZA = AZT , ZB = BZT ,
where AZT and BZT are as in (10.7), and the fact that AZT , BZT and J mutually
commute. Finally, (10.17) is an immediate consequence of (10.16) and the fact that
A, B and J strongly commute ��
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Theorem 10.0.10 (Spectral mapping theorem for an unbounded normal operator) Let
T ∈ L(Hn) be normal with spectral measure E and�+I := σS(T )∩C+I , where I ∈ S.
For any intrinsic continuous function f ∈ B(�+I ,B(�+I ),CI, E), we have

σS(I( f )) ∩ CI = f (σS(T ) ∩ CI), (10.18)

If T ∈ B(Hn) is normal, then (10.18) becomes

σS(I( f )) ∩ CI = f (σS(T ) ∩ CI). (10.19)

Proof We begin by noting that image of f is symmetric about the real axis in CI (see
(5.29) and (5.30)). We will first show that

f (σS(T ) ∩ CI) ⊆ σS(I( f )) ∩ CI.

Suppose w0 ∈ f (σS(T ) ∩ CI) and w0 ∈ C
+
I . For any ε > 0, we can find λ0 ∈

σS(T ) ∩ CI such that f (λ0) ∈ C
+
I and

| f (λ0)− w0| < ε

2
. (10.20)

Since f is continuous, we have the existence of δ > 0 such that

Uδ := {λ ∈ CI : |λ− λ0| < δ}
⊆ {λ ∈ CI : | f (λ)− f (λ0)| < ε

2
}

⊆ {λ ∈ CI : | f (λ)− w0| < ε}
=: Vε.

Sincew0 and f (λ0) both belong toC
+
I , wemay proceed as in the verification of (9.11)

and show that

Vε ∩ C
+
I = {λ ∈ C

+
I : | f (λ)2 − 2Re(w0) f (λ)+ |w0|2| < ε2}.

Thus, as λ0 ∈ σS(T ) ∩ C
+
I and λ0 ∈ Uδ , we have that E(Uδ) 	= ∅, in which case

E(Vε ∩ C
+
I ) 	= ∅. But then Theorem 5.3.14 ensures that w0 ∈ σS(I( f )) ∩ C

+
I .

If w0 and f (λ0) both belong to C
−
I , then we can use the fact that the image of f

is symmetric about the real axis and the fact that the S-spectrum is axially symmetric
(see Remark 3.1.7) and repeat the argument above with w̄0 and λ̄0 in place of w0 and
λ0, respectively, to arrive at the same conclusion.

Wewill now show that σS(I( f ))∩CI ⊆ f (σS(T ) ∩ CI). The inclusion σS(I( f ))∩
CI ⊆ f (σS(T ) ∩ CI) follows immediately fromcomparing the formula forσS(I( f )∩
CI coming from Theorem 5.3.14 and the formula for f (σS(T ) ∩ CI) derived from
(9.9).

Finally, (10.19) drops out easily from the fact that if T ∈ B(Hn), then σS(T )∩C
+
I

is compact. ��
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A background of the S-spectrum and connections with functional
calculi and function theory

In 1936,Birkhoff and vonNeumann, in their paper [9] on the logic of quantummechan-
ics, showed that an set-theoretic abstraction of quantum mechanics can be formulated
on Hilbert spaces over the reals, complex numbers and quaternions. Consequently,
there was a strong motivation to prove the spectral theorem in the quaternionic setting
(i.e., a Clifford module over R2) and since that time several attempts have appeared
in the literature. The main contributions are due to Teichmüller [67] in 1936 and to
Viswanath [69] in 1971. However, both authors do not make clear the notion of spec-
trum that is in use for quaternionic linear operators. Nevertheless, there are useful
results on quaternionic operator theory in [67] and [69].

The major breakthrough came in 2006 when I. Sabadini and the first author dis-
covered the S-spectrum σS(T ) and the S-functional calculus for a quaternionic linear
operator T . A primemotivation for this investigationwas to give quaternionic quantum
mechanics a rigorous mathematical foundation. The strategy for the identification of
the S-spectrum was purely based on hyperholomorphic analysis methods and not on
physical arguments (see the introduction of the book [16] for a detailed explanation).
The definition of S-spectrum σS(T ) for an linear operator T on a quaternionic Banach
space V is somewhat counter intuitive because it involves the second order operator

Qs(T ) := T 2 − 2s0T + |s|2 I

and is given by

σS(T ) = {s ∈ H : Qs(T ) is not invertible B(V )},

where H is the algebra of quaternions, s0 the real part of s ∈ H, |s|2 is the modulus
squared and B(V ) is the space of all bounded linear operators.

Before 2006 in the literature there were two different notions of spectrum in the
quaternionic setting (as well as in the Clifford setting): the left spectrum σL(T ) and
the right spectrum σR(T ) and both definitions mimic the eigenvalue problem for
complex operators.Wepoint out that just in the finite dimensional case the quaternionic
spectral theorem was precisely proved using the notion of right spectrum by Farenick,
Pidkowich in [30] that was published in 2003. We also want to point out that in the
literature on quaternionic quantum mechanics physicists used the right spectrum to
describe the bounded states where there are just the eigenvalues, see the book of Adler
[1] and for more recent advanced see the paper of Gantner [34] on the equivalence
of complex and quaternionic quantum mechanics. Only in 2015 the authors with D.
Alpay proved the spectral theorem for quaternionic normal operators based on the
S-spectrum σS(T ) in [4] which was published in 2016. Fairly recently, there has been
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a renewed quaternionic quantum mechanics, which utilises the notion of S-spectrum
(see, e.g., [57–59,68]).
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