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Abstract
We describe some radial Fock type spaces which possess Riesz bases of normalized
reproducing kernels, the spaces Fϕ of entire functions f such that f e−ϕ ∈ L2(C),
where ϕ(z) = ϕ(|z|) is a radial subharmonic function. We prove that Fϕ has Riesz
basis of normalized reproducing kernels for sufficiently regular ψ(r) = ϕ(er ) such
that ψ ′′(r) is bounded above.

Keywords Hilbert spaces · Entire functions · Reproducing kernels · Unconditional
bases · Riesz bases
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1 Introduction

We consider the radial weighted Fock spaces

Fϕ =
⎧
⎨

⎩
f ∈ H(C) : ‖ f ‖2 = 1

2π

∫

C

| f (z)|2e−2ϕ(z)dm(z) < ∞
⎫
⎬

⎭
,

where dm(z) being planar Lebesgue measure, ϕ(z) being a radial subharmonic func-
tion.Weassume that this space is not degenerate. It has a naturalHilbert space structure,
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the evaluations δλ : f → f (λ) are continuous. Since theHilbert spaces are self-dual, it
follows that each of these functionals is generated by an element kλ(z) = k(z, λ) ∈ Fϕ

in the sense that

1

2π

∫

C

f (z)k(z, λ)e−2ϕ(z)dm(z) = f (λ), for any f ∈ Fϕ and λ ∈ C.

The function k(z, λ) is called the reproducing kernel of the space Fϕ . Obviously,

‖δλ‖2 = k(λ, λ) := K (λ), λ ∈ C.

The system {k(z, λ j )}∞j=1 will be called an unconditional basis in the space Fϕ if it is
complete and for some C > 1 we have

1

C

∑

j

|a j |2K (λ j ) ≤
∥
∥
∥
∥
∥
∥

∑

j

a j k(z, λ j )

∥
∥
∥
∥
∥
∥

2

≤ C
∑

j

|a j |2K (λ j ),

for finite sequences {a j } of complex numbers. An unconditional basis {e j , j =
1, 2, ...} becomes Riesz basis if and only if 0 < infk ‖ek‖ ≤ supk ‖ek‖ < ∞. Equiva-
lently, Riesz basis is a linear isomorphic image of an orthonormal basis in a separable
Hilbert space.We study the existence ofRiesz bases of normalized reproducing kernels{

k(z,λ j )

‖k(·,λ j )‖
}∞
j=1

in Fϕ .

The issue on existence and construction of Riesz bases of normalized reproducing
kernels is actively studied due to the fact, in particular, that this question is closely
related to such classical problems of complex analysis as the problem of interpola-
tion (see, for example, [1–3]) and the problem of representing by exponential series
(see, for example, [4]). Summing up the studies of this issue in various aspects, we
can say that Riesz bases are a rare phenomenon (see [1,3,5]). In [5], an unexpected
result was obtained, which stated the existence of Riesz bases of normalized repro-
ducing kernels in the Fock spaces Fϕ with the weights ϕ = (ln+ |z|)α as α ∈ (1; 2].
Later, in paper [6], there was proved the existence of Riesz bases of normalized repro-
ducing kernels in the Fock spaces with radial weights of essentially more general
form. We prove that if ϕ is a radial function and the function ψ(r) = ϕ(er ) satisfies
the conditions: limr→∞ ψ ′(r) = ∞, ψ ′′ is a non-increasing positive function, and
∣
∣ψ ′′′(r)

∣
∣ = O(ψ ′′(r) 5

3 ), r → ∞, then Fϕ has a Riesz basis of normalized reproduc-
ing kernels. In this paper, we prove a weaker sufficient condition for the existence
of a Riesz basis of normalized reproducing kernels in Fock spaces with radial and
sufficiently regular weights.
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2 Notation, definitions, preliminaries, and statements of results

Definition 1 A convex function v is called regular if there exist a number q > 1 and
a function γ (x) ↑ +∞ such that

1

q
≤ v′′(x)

v′′(y)
≤ q as |x − y| ≤ γ (x)

√
1

v′′(x)
, x, y ∈ R+.

Conditions of this kind are used to find the asymptotic of the Laplace integrals.
In this paper we prove (see Theorem 3) that if ϕ is radial subharmonic function, the
function ψ(x) = ϕ(ex ) is regular, and

sup
x>0

ψ ′′(x) < ∞,

then the space Fϕ has a Riesz basis of normalized reproducing kernels.

Definition 2 The function ṽ(y) = sup
x

(xy − v(x)), y ∈ R, is the Young conjugate of

the convex function v.

Definition 3 Let v be a continuous function, and

d(v, y, r) = inf
l

{

max
t∈[y−r;y+r ]

|v(t) − l(t)|, l is a linear function

}

.

We set
ρ1(v, y, p) = sup{r : d(v, y, r) ≤ p}

for a positive number p.

This characteristic was introduced in [7].

Definition 4 Let v be a convex function on R, and p be a positive number. We let

ρ2(v, x, p) = sup

⎧
⎨

⎩
t > 0 :

x+t∫

x−t

∣
∣v′+(τ ) − v′+(x)

∣
∣ dτ ≤ p

⎫
⎬

⎭
,

where v′+ is the right derivative of v.

This characteristic was introduced in [8]. It was proved in [7] (see Lemma 3) that

ρ1(v, y, p) = ρ2(v, y, 2p) (1)

for convex function v.
In what follows we shall make use of the following notations. For positive functions

A, B, the writing A(x) 	 B(x), x ∈ X , means that for some constants C, c > 0 and
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for all x ∈ X the estimates cB(x) ≤ A(x) ≤ CB(x) hold. The symbol A(x) ≺ B(x),
x ∈ X , (A(x) � B(x), x ∈ X ), means the existence of a constant C > 0 such that
A(x) ≤ CB(x) (B(x) ≤ CA(x)).

We denote [x] the floor function (the integer part of x).

3 A sufficient condition for the existence of Riesz bases in general
Hilbert spaces

In this section, we consider a sufficient condition for the existence of Riesz bases of
normalized reproducing kernels in general Hilbert spaces of entire functions. Let H
be a radial functional Hilbert space of entire functions satisfying the division property,
i.e.:

1. all evaluation functionals δz : f → f (z) are continuous;
2. if F ∈ H , then ‖F‖ = ‖F(zeiϕ)‖ for any ϕ ∈ R;
3. if F ∈ H , F(z0) = 0, then F(z)(z − z0)−1 ∈ H .

The functional property of the space implies that it admits a reproducing kernel
k(z, λ).

It was proved in [9] (see Theorem A) that if H is a radial functional Hilbert space
satisfying the division property, admitting a Riesz basis of normalized reproducing
kernels, and monomials are complete in H , then there exists a convex sequence u(n),
n ∈ N ∪ {0}, such that ‖z‖n 	 eu(n), n ∈ N ∪ {0}. The convexity of {u(n)} means

u(n + 1) + u(n − 1) − 2u(n) ≥ 0, n ∈ N.

If u(t) be a convex piecewise linear function with integer non-negative breakpoints,
and u(t) ≡ u(0) as t < 0, then the convexity condition can be written in a more
compact form

u′+(n + 1) − u′+(n) ≥ 0.

In what follows, we assume that u(n) = ln ‖zn‖, n ∈ N ∪ {0}, is a convex sequence,
u(0) = 0, and u(t) is a piecewise linear function, u(t) ≡ 0 as t < 0. The following
theorem was proved in [10] (see Theorem 2).

Theorem A If the system of monomials {zn, n ∈ N ∪ {0}} is complete in a radial func-
tional Hilbert space H satisfying the division property, and the function ũ satisfies the
condition

sup
x>0

(̃u′+(x + 1) − ũ′+(x)) ≤ N < ∞, (2)

then the space H possesses Riesz bases of normalized reproducing kernels.

Let us prove following lemmas.

Lemma 1 For the convex piecewise linear function u(t), t ∈ R, condition (2) is equiv-
alent to

inf
x>1

ρ2(̃u, x, 1) > 0. (3)
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Proof Without loss of generality we can suppose that N ≥ 1 in (2). The monotonicity
of the function ũ′+(x) implies that if (2) holds, then

x+ 1
2N∫

x− 1
2N

|̃u′+(τ ) − ũ′+(x)|dτ ≤ 1.

By definition of ρ2(̃u, x, 1) this means that

ρ2(̃u, x, 1) ≥ 1

2N
, x ≥ 1.

Thus (3) holds.
Conversely, let

ρ2(̃u, x, 1) ≥ 2δ > 0, x ≥ 1.

By definition of ρ2(̃u, x, 1) we have

2δ∫

δ

(̃u′+(x + t) − ũ′+(x))dt ≤ 1, x ≥ 1,

and therefore,

ũ′+(x + δ) − ũ′+(x) ≤ 1

δ
, x ≥ 1.

Let N = [ 1
δ

] + 1. Taking into account that ũ′+ is an increasing function, we get

ũ′+(x + 1) − ũ′+(x) ≤
N−1∑

k=0

(̃u′+(x + kδ + δ) − ũ′+(x + δ)) ≤ N

δ
≤ N 2, x > 0,

that is, (2) holds. ��
Lemma 2 Condition (3) is equivalent to the boundness of the function ρ2(u, t, 1) on
R+:

sup
t>0

ρ2(u, t, 1) < ∞.

Proof Let ρ2(u, t, 1) ≤ N , t ∈ R+, for some constant N > 0. Without loss of
generality we can suppose that N is integer. By definition of ρ2(u, t, 1) this means
that

t+N∫

t−N

|u′+(y) − u′+(t)|dy ≥ 1, t ∈ R+.

Hence, since u′+(y) is a monotonic function, we have

u′+(n + N ) − u′+(n − N ) ≥ 1

2N
, n ∈ N,
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or

u′+(n + 2N ) − u′+(n) ≥ 1

2N
, n ∈ N.

It was proved in [11] (see Lemma 2) that the the Young conjugate ũ is also piecewise
linear with breakpoints xn = u′+(n − 1) = u(n) − u(n − 1), and the derivative ũ′+ is
the function with unite jumps at the points xn . Thus, the last estimate can be written
as

xn+2N − xn ≥ 1

2N
, n ∈ N.

This means that the quantity of jumps of ũ′+ on an interval which length is less than
1
2N does not exceed 2N . Since there are unit jumps, we find that for ε < 1

2N

ũ′+(x + ε) − ũ′+(x) ≤ 2N , x ≥ 1.

Put ε = 1
5N . Then

t+ε∫

t−ε

|̃u′+(x) − ũ′+(t)|dx ≤ 2N · 2ε = 4

5
< 1, t ≥ 1.

Hence,

ρ2(̃u, t, 1) ≥ 1

5N
, t ≥ 1.

Conversely, let for some ε > 0

ρ2(̃u, t, 1) ≥ 2ε, t ≥ 1.

Then
x+2ε∫

x+ε

|̃u′+(y) − ũ′+(x)|dy ≤
x+2ε∫

x−2ε

|̃u′+(y) − ũ′+(x)|dy ≤ 1.

Hence, for any x ≥ 1

ũ′+(x + ε) − ũ′+(x) ≤ 1

ε
.

Put N = [ 1
ε

]
. Then

ũ′+(x + ε) − ũ′+(x) ≤ N + 1,

or
u′+(n + N + 1) − u′+(n) ≥ ε, n ∈ N ∪ {0}.

Thus,
n+2(N+1)∫

n+N+1

|u′+(x) − u′+(n)|dx ≥ ε(N + 1) > 1.
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Hence,
ρ2(u, n, 1) ≤ 2N + 2.

It was proved in [7] (see Lemmas 3 and 4) that the function ρ2(u, x, 1) satisfies
Lipschitz condition

|ρ2(u, x, 1) − ρ2(u, y, 1)| ≤ |x − y|, x, y ∈ R.

Therefore,
ρ2(u, t, 1) ≤ 2N + 3, t ∈ R+.

��
Now we can reformulate Theorem A in the following form.

Theorem 1 If the system of monomials {zn, n ∈ N ∪ {0}} is complete in a radial func-
tional Hilbert space H satisfying the division property, and the function u satisfies the
condition

sup
x>0

ρ2(u, t, 1) < ∞,

then the space H possesses Riesz bases of normalized reproducing kernels.

4 A sufficient condition for the existence of Riesz bases in radial
weighted Fock spaces in terms of conjugate function

Let us turn to Fock spaces with radial weight ϕ. Let ψ(x) = ϕ(ex ) and

e2u1(t) =
∞∫

−∞
e2(t+1)x−2ψ(x)dx, t ∈ R+.

Then u1(t) is a convex function onR+, coinciding with the function u(t) at the points
t ∈ N ∪ {0}, in particular,

u1(t) ≤ u(t), t ∈ R+.

Let us extend u1 to the entire axis, setting u1(t) ≡ 0, t ∈ R−.

Lemma 3 We have the relation

ρ2(u, t, 1) ≤ max
|t−τ |≤ 1

2

ρ2(u1, τ, 1) + 2, t ∈ R+,

ρ2(u1, t, 1) ≤ max
|t−τ |≤ 1

2

ρ2(u, τ, 1) + 2, t ∈ R+.

Proof Let
max

|t−τ |≤ 1
2

ρ2(u1, τ, 1) = M .



11 Page 8 of 16 K. P. Isaev, R. S. Yulmukhametov

Let us suppose that for a natural number n, satisfying |n − t | ≤ 1
2 , the following

inequality holds
ρ2(u, n, 1) > [M] + 1.

Then, setting k = [M] + 1, we have

n+k∫

n−k

|u′+(t) − u′+(n)|dt < 1,

that is
u(n + k) + u(n − k) − 2u(n) < 1.

Since the functions u and u1 coincide at integer points, then

u1(n + k) + u1(n − k) − 2u1(n) < 1.

Hence,
n+k∫

n−k

|(u1)′+(t) − (u1)
′+(n)|dt < 1,

and
ρ2(u1, n, 1) ≥ k = [M] + 1 > M .

The resulting contradiction means that

ρ2(u, n, 1) ≤ [M] + 1 ≤ M + 1, n ∈ N.

Since the function ρ2(u, t, 1) satisfies the Lipschitz condition, we have

ρ2(u, t, 1) ≤ ρ2(u, [t], 1) + |t − [t]| ≤ M + 2, t ∈ R+.

The second relation is proved in a similar way. ��
Lemma 4 If the function ψ̃ is regular and q is the constant in the regularity condition,
then for sufficiently large numbers t ∈ R the following inequalities hold

√
1

qψ̃ ′′(t)
≤ ρ2(ψ̃, t, 1) ≤

√
q

ψ̃ ′′(t)
.

Proof Let ρ0 = γ (t)√
ψ̃ ′′(t)

, then due to regularity ψ̃

1

q
≤ ψ̃ ′′(t)

ψ̃ ′′(x)
≤ q for |t − x | ≤ ρ0.
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Hence, by the mean value theorem for any x such that |x − t | ≤ ρ0 we have

|ψ̃ ′(t) − ψ̃ ′(x)| = ψ̃ ′′(x∗)|t − x | ≥ 1

q
ψ̃ ′′(t)|t − x |.

Therefore, if γ (t) ≥ q, then

t+ρ0∫

t−ρ0

|ψ̃ ′(x) − ψ̃ ′(t)|dx ≥ 1

q
ψ̃ ′′(t)ρ2

0 = 1

q
γ 2(t) > 1.

Hence, ρ2(ψ̃, t, 1) := ρ ≤ ρ0. By definition of the function ρ2(ψ̃, t, 1) we have

t+ρ∫

t−ρ

|ψ̃ ′(x) − ψ̃ ′(t)|dx = 1,

and (

max|t−x |≤ρ
ψ̃ ′′(x)

)−1

≤ ρ2 ≤
(

min|t−x |≤ρ
ψ̃ ′′(x)

)−1

.

From this and the regularity of the function ψ̃ , we obtain the assertion of the lemma
for t such that γ (t) ≥ q. ��
Lemma 5 If the function ψ̃ is regular, then for some constant m > 1 we have

1

m
ρ2(ψ̃, t + 1, 1) ≤ ρ2(u1, t, 1) ≤ mρ2(ψ̃, t + 1, 1), t ∈ R+.

The left estimate holds without the regularity condition.

Proof 1. Let us prove the left inequality. By Theorem 2(a) in [7] we have

e2u1(y) =
∞∫

−∞
e2(y+1)x−2ψ(x)dx 	 e2ψ̃(y+1)

ρ1(ψ̃, y + 1, 1)
, y ∈ R+.

That is,

e−2a ≤ e2(ψ̃(y+1)−u1(y))

ρ1(ψ̃, y + 1, 1)
≤ e2a, y ∈ R+,

for some a > 0, and

∣
∣
∣
∣ψ̃(y + 1) − u1(y) − 1

2
ln ρ1(ψ̃, y + 1, 1)

∣
∣
∣
∣ ≤ a, y ∈ R+.
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Take an arbitrary point t ∈ R+ and denote ρ1(ψ̃, t + 1, 1) = ρ1. Let α ∈ (
0; 1

2

)
.

There is a linear function l(x) such that

max
x∈[t+1−αρ1;t+1+αρ1]

|ψ̃(x) − l(x)| ≤ 1.

For the linear function l1(x) = l(x) − 1
2 ln ρ1 we have

max
x∈[t−αρ1;t+αρ1]

|u1(x) − l1(x + 1)|

≤ max
x∈[t−αρ1;t+αρ1]

∣
∣
∣
∣u1(x) − ψ̃(x + 1) + 1

2
ln ρ1(ψ̃, x + 1, 1)

∣
∣
∣
∣

+ max
x∈[t−αρ1;t+αρ1]

∣
∣ψ̃(x + 1) − l(x + 1)

∣
∣ + 1

2
max

x∈[t−αρ1;t+αρ1]

∣
∣
∣
∣ln

ρ1(ψ̃, t + 1, 1)

ρ1(ψ̃, x + 1, 1)

∣
∣
∣
∣

≤ a + 1 + 1

2
max

x∈[t−αρ1;t+αρ1]

∣
∣
∣
∣ln

ρ1(ψ̃, x + 1, 1)

ρ1(ψ̃, t + 1, 1)

∣
∣
∣
∣ . (4)

The function ρ1(u, x, p) satisfies the Lipschitz condition too (see Lemma 4 in [7]),
therefore, if |x − t | ≤ αρ1, then

|ρ1(ψ̃, x + 1, 1) − ρ1(ψ̃, t + 1, 1)| ≤ αρ1(ψ̃, t + 1, 1)

or ∣
∣
∣
∣
ρ1(ψ̃, x + 1, 1)

ρ1(ψ̃, t + 1, 1)
− 1

∣
∣
∣
∣ ≤ α <

1

2
.

Hence,

1

2
max

x∈[t−αρ1;t+αρ1]

∣
∣
∣
∣ln

ρ1(ψ̃, x + 1, 1)

ρ1(ψ̃, t + 1, 1)

∣
∣
∣
∣ ≤ 1

2
max
|s|< 1

2

|ln(1 + s)| ≤ 1

2
ln 2 <

1

2
.

Continuing estimate (4), we obtain

max
x∈[t−αρ1;t+αρ1]

|u1(x) − l1(x + 1)| < a + 3

2
,

and by that,

ρ1

(

u1, t, a + 3

2

)

≥ αρ1(ψ̃, t + 1, 1), t ∈ R+,

or taking into account the arbitrariness of α ∈ (
0; 1

2

)
, we get

ρ1

(

u1, t, a + 3

2

)

≥ 1

2
ρ1(ψ̃, t + 1, 1), t ∈ R+.
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By (1) we get

ρ2(u1, t, 2a + 3) ≥ 1

2
ρ2(ψ̃, t + 1, 2), t ∈ R+.

Hence, by Lemma 2 in [7] we obtain the lower estimate with the constant m =
2(2a + 3).

2. Let ψ̃ be a regular function. It is convenient to write the regularity condition in
the form

1

q
≤ ψ̃ ′′(x + 1)

ψ̃ ′′(y + 1)
≤ q, |x − y| ≤ γ1(x)

√
1

ψ̃ ′′(x + 1)
,

where γ1(x) = γ (x + 1). By Theorem 2(a) in [7] we have

e2u1(y) =
∞∫

−∞
e2(y+1)x−2ψ(x)dx 	 e2ψ̃(y+1)

ρ2(ψ̃, y + 1, 1)
, y ∈ R+,

that is, for some b > 0 we have

e−2b ≤ e2(ψ̃(y+1)−u1(y))

ρ2(ψ̃, y + 1, 1)
≤ e2b, y ∈ R+, (5)

or ∣
∣
∣
∣ψ̃(y + 1) − u1(y) − 1

2
ln ρ2(ψ̃, y + 1, 1)

∣
∣
∣
∣ ≤ b, y ∈ R+.

By Lemma 4 we have

1

q

√

ψ̃ ′′(y + 1)

ψ̃ ′′(t + 1)
≤ ρ2(ψ̃, t + 1, 1)

ρ2(ψ̃, y + 1, 1)
≤ q

√

ψ̃ ′′(y + 1)

ψ̃ ′′(t + 1)
,

and by the regularity of ψ̃ we get

q− 3
2 ≤ ρ2(ψ̃, t + 1, 1)

ρ2(ψ̃, y + 1, 1)
≤ q

3
2 , |t − y| ≤ γ1(t)

√
1

ψ̃ ′′(t + 1)
.

Take a point t ∈ R+ so that γ1(t) > 3
√
q(b+ln q+1) and denoteρ2(ψ̃, t+1, 1) = ρ2.

Let c = ln q. Then by the last estimate and by (5) we obtain

e−2(b+c) ≤ e2(ψ̃(y+1)− 1
2 ln ρ2−u1(y)) ≤ e2(b+c), |t − y| ≤ γ1(t)

√
1

ψ̃ ′′(t + 1)
,

or
∣
∣
∣
∣ψ̃(y + 1) − 1

2
ln ρ2 − u1(y)

∣
∣
∣
∣ ≤ b + c, |t − y| ≤ γ1(t)

√
1

ψ̃ ′′(t + 1)
. (6)
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Suppose that
ρ1(u1, t, 1) ≥ 3q(b + c + 1)ρ2(ψ̃, t + 1, 1).

Then there is a linear function l(x) such that

|u1(x) − l(x)| ≤ 1, |x − t | ≤ 3q(b + c + 1)ρ2(ψ̃, t + 1, 1).

By Lemma 4 we have

|u1(x) − l(x)| ≤ 1, |x − t | ≤ 3
√
q(b + c + 1)

√
1

ψ̃ ′′(t + 1)
.

Therefore, by (6), taking into account the choice of t , for the linear function l1(x) =
l(x) + 1

2 ln ρ2, we obtain

|ψ̃(x + 1) − l1(x)| =
∣
∣
∣
∣ψ̃(x + 1) − 1

2
ln ρ2 − l(x)

∣
∣
∣
∣

≤
∣
∣
∣
∣ψ̃(x + 1) − 1

2
ln ρ2 − u1(x)

∣
∣
∣
∣ + |u1(x) − l(x)| ≤ b + c + 1

for |x − t | ≤ 3
√
q(b + c + 1)

√
1

ψ̃ ′′(t+1)
. Hence,

ρ1(ψ̃, t + 1, b + c + 1) ≥ 3
√
q(b + c + 1)

√
1

ψ̃ ′′(t + 1)
,

and by (1),

3
√
q(b + c + 1)

√
1

ψ̃ ′′(t + 1)
≤ ρ2(ψ̃, t + 1, 2(b + c + 1)).

Then by Lemma 4 we get

3(b + c + 1)ρ2(ψ̃, t + 1, 1) ≤ ρ2(ψ̃, t + 1, 2(b + c + 1)).

Hence, by Lemma 2 in [7] we obtain

3(b+c+1)ρ2(ψ̃, t+1, 1) ≤ ρ2(ψ̃, t+1, 2(b+c+1)) ≤ 2(b+c+1)ρ2(ψ̃, t+1, 1)

or
3

2
ρ2(ψ̃, t + 1, 1) ≤ ρ2(ψ̃, t + 1, 1).

Since ρ2(ψ̃, t + 1, 1) > 0, we obtain a contradiction. Thus,

ρ1(u1, t, 1) < 3q(b + c + 1)ρ2(ψ̃, t + 1, 1).
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Taking into account (1) again, for t such that γ1(t) ≥ 3
√
q(b + c + 1) we have

ρ2(u1, t, 1) ≤ ρ2(u1, t, 2) = ρ1(u1, t, 1) < 3
√
q(b + c + 1)ρ2(ψ̃, t + 1, 1).

Since the functions ρ2(u1, t, 1) and ρ2(ψ̃, t, 1) are continuous, this implies the esti-
mate

ρ2(u1, t, 1) ≤ Aρ2(ψ̃, t + 1, 1), t ∈ R+,

for some constant A > 0. ��
Lemmas 3–5 imply the following theorem.

Theorem 2 If ψ̃ is a regular function, and ψ̃ ′′(t) satisfies the condition

inf
t>0

ψ̃ ′′(t) > 0,

then the Fock space with the weight ψ(ln |z|) possesses Riesz bases of normalized
reproducing kernels.

5 A sufficient condition for the existence of Riesz bases in radial
weighted Fock spaces in terms of weight

In this section we will prove the final theorem.

Theorem 3 If ψ is a regular function, and

sup
t>0

ψ ′′(t) < ∞,

then the Fock space with the weight ψ(ln |z|) possesses Riesz bases of normalized
reproducing kernels.

Let us first prove a lemma.

Lemma 6 Let v ∈ C2(R) be a convex indefinitely increasing function which is not
linear on R+. If v is a regular function, then the conjugate function ṽ is also regular
on some interval (a;+∞).

Proof By hypothesis of the lemma, v′ is strictly increasing, and we have

v′(̃v′(t)) ≡ t, v′′(̃v′(t))̃v′′(t) ≡ 1, t ∈ R. (7)

Let x± = x ± 1
2

γ (x)√
v′′(x) and t = v′(x), t± = v′(x±). Let us note that

lim
x→+∞ t+(x) = +∞. (8)
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By regularity of v, for some x∗ ∈ [x−; x+] we have

t+ − t− = v′′(x∗)(x+ − x−) ≥ γ (x)

q

√
v′′(x).

Let τ = 1
2 (t+ + t−) . Then y = ṽ′(τ ) ∈ [x−; x+], and since t− ≥ 0, τ ≥ 1

2 t+, then
by (8) we get

lim
x→+∞ τ(x) = +∞. (9)

If

|τ − s| ≤ γ (x)

2q
3
2
√

ṽ′′(τ )
,

then by (7) we get

|τ − s| ≤ γ (x)

2q
3
2

√
v′′(y) ≤ γ (x)

2q

√
v′′(x),

that is s ∈ [t−; t+] and ṽ′(s) ∈ [x−; x+]. Hence, by (7) we obtain

ṽ′′(τ )

ṽ′′(s)
= v′′(̃v′(s))

v′′(̃v′(τ ))
∈

[
1

q
; q

]

.

Thus, ṽ satisfies the regularity condition at the points τ(x)with the function γ (x(τ ))

2q
3
2

. By

(9), the set of such τ contains some interval (a;+∞). On this interval, the regularity
condition will also hold with the increasing function

γ0(τ ) = 1

2q
3
2

inf
t≥τ

γ (x(t)).

��
ByLemma6andby (7)weobtain that if the hypothesis ofTheorem3 is satisfied then

the function ψ̃ is regular and inf t>0 ψ̃ ′′(t) > 0. Then by Theorem 2, the Fock space
with the weight ψ(ln |z|) possesses Riesz bases of normalized reproducing kernels.

Corollary 1 f ψ ∈ C2 and 0 < ψ ′′(t) 	 1, t ∈ R, then the Fock space with the weight
ψ(ln |λ|) possesses Riesz bases of normalized reproducing kernels.

Proof In this case, the conditions of Theorem 3 are satisfied in an obvious way. ��
Corollary 2 If ψ ∈ C3, ψ ′(x) is unlimited and

0 < ψ ′′(t) −→ 0, t −→ ∞,

|ψ ′′′(t)| = O(ψ ′′(t)), t −→ ∞,

then the Fock space with the weight ψ(ln |λ|) possesses Riesz bases of normalized
reproducing kernels.
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Proof By (7) we obtain that

ψ̃ ′′(x) −→ ∞, x −→ ∞,

and for some M > 0 we have

|(ln ψ̃ ′′(ψ ′(t)))′| =
∣
∣
∣
∣
ψ ′′′(t)
ψ ′′(t)

∣
∣
∣
∣ ≤ M, t ∈ R. (10)

Hence, by mean value theorem we have

∣
∣
∣
∣ln

(
ψ̃ ′′(x)
ψ̃ ′′(y)

)∣
∣
∣
∣ ≤ M |x − y|, x, y ∈ R+.

Let
γ (x) = inf

y≥x
ln ψ̃ ′′(y), x > 0.

Then γ (x) ↑ +∞ as x → +∞, and γ (x) ≤ ln ψ̃ ′′(x). Put

C = sup
x>0

γ (x)
√

ψ̃ ′′(x)
,

then C < ∞. If

|x − y| ≤ γ (x)
√

ψ̃ ′′(x)
, x, y ∈ R+,

then |x − y| ≤ C . Hence, by (10) we have

∣
∣
∣
∣ln

(
ψ̃ ′′(x)
ψ̃ ′′(y)

)∣
∣
∣
∣ ≤ M |x − y| ≤ MC .

Thus, ψ̃(x) is regular with q = eMC . By Lemma 6 ψ(x) is regular too. By Theo-
rem 3 the Fock space with the weight ψ(ln |λ|) possesses Riesz bases of normalized
reproducing kernels. ��

Note that the Corollaries 1 and 2 are close to [6, Theorem 1.2]. It proved the exis-
tence of unconditional bases provided that the nonincreasing function ψ ′′(t) satisfies
the condition

|ψ ′′′(t)| = O
(
ψ ′′(t)

5
3

)
, t −→ ∞.

Monotonicity implies the existence of a limit

lim
t−→∞ ψ ′′(t) := ψ0.
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If ψ0 > 0, then the condition of the Corollary 1 is satisfied and the other conditions
of Theorem 1.2 are not needed. If ψ0 = 0, then we get the situation of the Corollary
2 without monotonicity and with a weaker condition for ψ ′′′.
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the article.
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