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Abstract
In this paper we give a survey of selected results and open problems on integral
inequalities of Mathematical Physics connected with the papers of V. Maz’ya, S. Fil-
lippas, A. Tertikas, R. Osserman, A. Ancona, H. Brezis, M. Marcus, Y. Pinchover,
E. B. Davies, A. Laptev, J. L. Fernández, J. M. Rodríguez, P. Caldiroli, R. Musina,
A. A. Balinsky, W. D. Evans, R. T. Lewis, R. G. Nasibullin, I. K. Shafigullin, the
author and other mathematicians. In addition, we give some new examples and present
non-linear relationships between global numerical characteristics of domains in the
Euclidean space of dimension n ≥ 2.

Keywords Hardy–Rellich and Poincaré–Friedrichs inequality · Euclidean maximum
modulus · Uniformly perfect set · Exterior sphere condition

Mathematics Subject Classification 26D10 · 33C20

1 Introduction

In the theory of Sobolev spaces there are many variational integral inequalities
connected with Steklov, Hardy, Rellich, Poincaré, Friedrichs, Sobolev and other math-
ematicians. In particular, it is very known that Hardy–Rellich type inequalities have
many applications and they are closely connected with the Uncertainty Principle of
Heisenberg and the Spectral theory for unbounded operators of Mathematical Physics
(see [1]–[7]).
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The following theorem of Hardy (compare [1]) may be considered as a basic fact
for the Hardy–Rellich type inequalities on domains � ⊂ R

n of the Euclidean space
R

n of dimension n ≥ 2.

Theorem 1 (1) Suppose that 1 ≤ p < ∞, 1 < s < ∞, and g : [0,∞) → R is an
absolutely continuous nondecreasing function such that

g(0) = 0, g′/t s/p−1 ∈ L p(0,∞).

Then ∫ ∞

0

|g′(t)|p

ts−p
dt ≥

(
s − 1

p

)p ∫ ∞

0

|g(t)|p

ts
dt . (1)

For p > 1 and g 	≡ 0 this inequality is strict, consequently, there is no extremal
function, but the constant ((s − 1)/p)p is sharp.

If p = 1, then one has the following functional identity

∫ ∞

0

g(t)

t s
dt = 1

s − 1

∫ ∞

0

g′(t)
t s−1 dt,

which is valid for all admissible functions.
(2) Suppose that 1 ≤ p < ∞, −∞ < σ < 1, and that g : (0,∞] → R is an

absolutely continuous non-increasing function such that g(+∞) = 0 and g′/τσ/p−1 ∈
L p(0,∞). Then

∫ ∞

0

|g′(τ )|p

τσ−p
dτ ≥

( |σ − 1|
p

)p ∫ ∞

0

|g(τ )|p

τσ
dτ. (2)

For p > 1 and g 	≡ 0 this inequality is strict, consequently, there is no extremal
function, but the constant (|σ − 1|/p)p is sharp.

In the book [1] this theorem is presented in three steps by the cases 1) p = s = 2, 2)
p = s > 1 and 3) 1 ≤ p < ∞, 1 < s < ∞,−∞ < σ < 1.

Notice that inequality (2) may be deduced from inequality (1) by the changes of
variable τ = 1/t and of parameter σ = 2 − s.

It is not difficult to show that the condition of monotonicity of the function g in the
Hardy theorem is not essential and one can show that the inequalities (1) and (2) are
equivalent to the following inequality:
for every p ∈ [1,∞) and every s ∈ R one has the variational inequality

∫ ∞

0

|g′(t)|p

ts−p
dt ≥

( |s − 1|
p

)p ∫ ∞

0

|g(t)|p

ts
dt ∀g ∈ C1

0((0,∞)) (3)

with the sharp constant (|s − 1|/p)p.
Suppose that n ∈ N and n ≥ 2. Taking s = s∗ − n + 1, using spherical coordinates

x = rω ∈ R
n (r = |x | > 0, ω ∈ S := {y ∈ R

n : |y| = 1}), the formula dx =
rn−1drdω and the inequality |∇u(x)| ≥ |∂u(x)/∂r |, one can prove that inequality (3)
is equivalent to the following inequality:
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for every p ∈ [1,∞) and every s∗ ∈ R one has the variational inequality

∫
Rn

|∇u(x)|p

|x |s∗−p
dx ≥

( |s∗ − n|
p

)p ∫
Rn

|u(x)|p

|x |s∗ dx ∀u ∈ C1
0(R

n \ {0}) (4)

with the sharp constant (|s∗ − n|/p)p.

Here x = (x1, x2, ..., xn) ∈ R
n , |x | =

√
x21 + x22 + ... + x2n , ∇u(x) is the

Euclidean gradient of the function u : Rn \ {0} → R, and

|∇u(x)|2 =
n∑

j=1

(
∂u(x)

∂x j

)2

, dx = dx1dx2 · · · dxn .

Now, we present a short proof of equivalence of inequalities (3) and (4). Clearly, if
u ∈ C1

0(R
n \ {0}) and ω ∈ S is fixed, then inequality (3) implies that

∫ ∞

0

∣∣∣∣∂u(rω)

∂r

∣∣∣∣
p dr

rs−p
≥

( |s − 1|
p

)p ∫ ∞

0

|u(rω)|p

rs
dr ,

which is equivalent to the inequality

∫ ∞

0

∣∣∣∣∂u(rω)

∂r

∣∣∣∣
p rn−1dr

|x |s∗−p
≥

( |s∗ − n|
p

)p ∫ ∞

0

|u(rω)|p

|x |s∗ rn−1dr ,

where |x | = r and s∗ = s + n − 1. Multiplying the latter inequality by dω and
integrating over the unit sphere S, one obtains that

∫
Rn

∣∣∣∣∂u(rω)

∂r

∣∣∣∣
p dx

|x |s∗−p
≥

( |s∗ − n|
p

)p ∫
Rn

|u(rω)|p

|x |s∗ dx,

which implies (4). On the other hand, applying (4) to radial functions, defined by
u(x) ≡ u(|x |) =: g(|x |), one immediately obtains (3) with s = s∗ − n + 1 and
t = r = |x |.

Also, it is not difficult to show that inequality (3) is equivalent to the following
inequality on the half-space H+

n = {(x1, x2, ..., xn) ∈ R
n : x1 > 0}:

for every p ∈ [1,∞) and every s ∈ R one has the variational inequality

∫
H

+
n

|∇u(x)|p

xs−p
1

dx ≥
( |s − 1|

p

)p ∫
H

+
n

|u(x)|p

xs
1

dx ∀u ∈ C1
0(H

+
n ) (5)

with the sharp constant (|s − 1|/p)p.
The Hardy inequalities (3)–(5) are widely known. In the sequel we consider sev-

eral inequalities on domains � of the Euclidean space Rn . In particular, Hardy type
inequalities for test functions u : � → R are generalizations of inequalities (4) and
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(5) and have the following form

∫
�

|∇u(x)|p

ρs−p(x,�)
dx ≥ cp(s,�)

∫
�

|u(x)|p

ρs(x,�)
dx, ∀u ∈ C1

0(�), (6)

where ρ(x,�) := dist(x, ∂�).
Clearly, inequality (6) is similar to the Hardy inequality (4) or (5), except three

changes. Namely, one changes the set of integration by the domain � ⊂ R
n , instead

of |x | or x1 one takes the distance dist(x, ∂�). Finally, it is necessary to replace the
constant (|s∗ − n|/p)p in (4) or the constant (|s − 1|/p)p in (5) by a sharp constant
cp(s,�) ∈ [0,∞). Of course, the sharp constant cp(s,�) for a given domain� ⊂ R

n

is well-defined as the maximum possible constant in the variational inequality (6), but
it is known for certain domains, only.

As basic problems one has to describe “nice” domains such that

cp(s,�) > 0

and to estimate this constant as a function of parameters p ∈ [1,∞), s ∈ R, and
global geometric characteristics of the domain � ⊂ R

n .
One can find many results on Hardy–Rellich inequalities in the books by F. Rellich

[2] (1969), M. Reed and B. Simon [3] (1979), O. A. Ladyzhenskaya [4] (1985),
V. Maz’ya [5] (1985), A. A. Balinsky, W. D. Evans and R. T. Lewis [6] (2015),
M. Ruzhansky and D. Suragan [7] (2019), the author [8] (2020).

Via domains� ⊂ R
n the constants cp(s,�) depend on the dimension n. For several

reasons we consider the case n = 2 separately.

2 Integral inequalities on plane domains

Consider domains � ⊂ C, � 	= C, of the planeC of the complex variable z = x + iy.
We need the distance function defined by

ρ(z,�) := inf
w∈C\� |z − w|, z ∈ �.

For functions u : � → R we will use the notations u = u(z) and

∇u(z) = ∂u(z)

∂x
+ i

∂u(z)

∂ y
, z = x + iy ∈ �.

Consider now the following Hardy type inequality

∫∫
�

|∇u(z)|p

ρs−p(z,�)
dx dy ≥ cp(s,�)

∫∫
�

|u(z)|p

ρs(z,�)
dx dy, ∀u ∈ C1

0(�), (7)

where p ∈ [1,∞), s ∈ R are fixed numbers, the constant cp(s,�) ∈ [0,∞) is sharp,
i. e. it is defined as the maximum possible constant at this place.
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Notice that the sharp constant cp(s,�) in inequality (7) is a dimensionless quantity,
invariant with respect to linear conformal transformations of the domain � ⊂ C, i. e.

cp(s,�) = cp(s, a� + b) (a ∈ C \ {0}, b ∈ C).

One has the following difficult question: is it possible to describe geometrically
all domains for which cp(s,�) > 0? For any p ∈ [1,∞) an explicit answer to this
question is known in three following cases (see Theorems 7, 2 and 3, below):

(1) if s > 1, then cp(s,�) > 0 for any convex domain � ⊂ C, � 	= C;
(2) if s > 2, then cp(s,�) > 0 for any domain � ⊂ C, � 	= C;
(3) cp(2,�) > 0 if and only if the boundary of the domain � ⊂ C, � 	= C, is a

uniformly perfect set.
If cp(s,�) > 0, thenwe have a natural problem to obtain lower and upper estimates

of this constant.
Since the existence of extremal functions is unknown, one has an original situation

for sharp constants. For example, to prove that the constant c2(2,�) = 1/4 for a
certain domain � ⊂ C, � 	= C, one has to prove that c2(2,�) ≥ 1/4 and that
c2(2,�) ≤ 1/4.

There is a remarkable result, proved independently by several mathematicians: the
constant c2(2,�) = 1/4 for every convex domain � ⊂ C, � 	= C (see [9]–[16]).
In particular, the constant equals 1/4 for any disc. It is natural to presuppose that the
Hardy constant c2(2,�) ≤ 1/4 for non-convex domains.

Problem 1 (E. B. Davies [9], [13]) Prove that c2(2,�) ≤ 1/4 for every domain
� ⊂ C, � 	= C.

E. B. Davies proved that c2(2,�) ≤ 1/4 for a domain � ⊂ C, that has a boundary
point z0 ∈ ∂�, “regular” in a certain sense. For example, there exists a neighborhood
U (z0), such that the intersection U (y0) ∩ (∂�) is a smooth arc. There is a weakening
of this condition of “regularity” but we have no proof of the inequality c2(2,�) ≤ 1/4
for arbitrary domains. Problem 1 is not solved even for the case of simply connected
domains � ⊂ C, conformally equivalent to the unit disc. Currently we can claim that
c2(2,�) ≤ 1 for every domain � ⊂ C, � 	= C. This assertion is a consequence of
conformally invariant inequalities and the Elstrodt-Patterson-Sullivan formula (see
[17], [8], p. 102).

Problem 1 is connected with the following

Problem 2 Describe geometrically the family of non-convex domains � ⊂ C, � 	= C,
such that c2(2,�) = 1/4.

Currently there are several examples of non-convex domains for which c2(2,�) =
1/4. We indicate two of them.

Consider the sectors �β = {reiθ ∈ C : 0 < r < 1, 0 < θ < β}. E. B. Davies
[9] proved that the constant c2(2,�β) = 1/4 if and only if β ≤ β∗ ≈ 4.856. If
β ∈ (β∗, 2π ], then c2(2,�β) < 1/4.
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The critical value β∗ of the angle is defined by E. B. Davies using numerical
computations. There is a formula to find its sharp value, namely (see [16]):

β∗ = 3π − 4 arctan
�4(1/4)

8π2 .

In [18] we proved that the constant c2(2, Ar R) = 1/4 for the concentric annuli
Ar R = {z ∈ C : r < |z| < R} if and only if R/r ≤ c∗ ≈ 36.6, the critical value
c∗ ≈ 36.6 is determined by an equation for hypergeometric functions of Gauss. If
R/r ∈ (c∗,∞), then c2(2, Ar R) < 1/4.

In addition, in the paper [16] we described a family �1/4(2) of non-convex domains
� ⊂ C, � 	= C, such that c2(2,�) = 1/4.

Problem 3 Find the sharp segment [A∗, A∗∗] of variation of constants c2(2,�) for
simply connected domains � ⊂ C, � 	= C. Is the following assertion true: for
every β ∈ (A∗, A∗∗) there exists a simply connected domain � ⊂ C, such that
c2(2,�) = β?

In [19] A. Ancona proved that

c2(2,�) ≥ 1/16

for every simply connected domain � ⊂ C, � 	= C. Consequently, one has that
A∗ ≥ 1/16. If the Davies conjecture is true then A∗∗ = 1/4. Clearly, currently we
can claim that A∗∗ ≤ 1, only. Thus, it is known that [A∗, A∗∗] ⊂ [1/16, 1].

To discuss Problems 4 —7 we will need the known definitions of domains � ⊂ C

with uniformly perfect boundaries and characteristics M(�) and M0(�).
Let � ⊂ C be a domain such that its boundary contains at least two points. Here

C = C ∪ {∞} is the extended plane (the Riemann sphere). Let �2 ⊂ C be a doubly
connected domain, conformally equivalent to the concentric annulus A(�2) = {z ∈
C : r < |z| < R}. Then the conformal modulus of �2 is defined by

M(�2) = 1

2π
ln

R

r
∈ (0,∞]

with a convention that M(�2) = ∞ in the case, when r = 0 or R = ∞.
First we give the definition of the conformal maximum modulus M(�).

Definition 1 Let � ⊂ C be a domain such that its boundary contains at least two
points. The conformal maximum modulus M(�) is defined as follows.

(1) If � is a simply connected domain, then M(�) = 0.
(2) If � is a doubly connected domain, then M(�) is the conformal modulus of

this domain.
(3) If � is a multiply connected domain, then

M(�) := sup
�2

M(�2),
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where the supremum is taken over all doubly connected domains�2 such that�2 ⊂ �

and �2 separates the boundary of the domain �.

It is clear that the conformal maximum modulus M(�) is a conformally invariant
quantity.

To present the definition of the Euclidean maximum modulus M0(�) we need the
set Ann(�) of concentric annuli

A = A(z0; r , R) := {z ∈ C : r < |z − z0| < R},

with the following properties:
(1) 0 < r < R < ∞, A(z0; r , R) ⊂ �;
(2) centers z0 ∈ ∂�;
(3) every annulus A(z0; r , R) separates the boundary of the domain �.

Definition 2 Let � ⊂ C be a domain such that its boundary contains at least two
points, and let Ann(�) be the set of annuli.

(1) If Ann(�) = ∅, then we take M0(�) = 0.
(2) If Ann(�) is a non-empty set, then we take

M0(�) := sup
A∈Ann(�)

1

2π
ln

R

r
, (A = A(z0; r , R)).

It is clear that the quantity M0(�) is “visible” in Euclidean geometry, but it is not
conformally invariant in the general case.

It is evident that
0 ≤ M0(�) ≤ M(�).

In addition, L. Carleson and T. W. Gamelin [20] indicate the following important
property of the maximum moduli M(�) and M0(�):

M0(�) < ∞ ⇐⇒ M(�) < ∞. (8)

Following Ch. Pommerenke [21] (see, also, L. Carleson and T. W. Gamelin [20],
T. Sugawa [22], [23]), in the case M0(�) < ∞we say that the boundary of the domain
� is a uniformly perfect set. Because of (8) one can replace the condition M0(�) < ∞
by the condition M(�) < ∞.

There are simple inequalities that imply the property (8).

Proposition 1 Let � ⊂ C be a domain such that its boundary contains at least two
points. If � ⊂ C, then

M0(�) ≤ M(�) ≤ M0(�) + 1

2
. (9)

If ∞ ∈ � ⊂ C, then
M0(�) ≤ M(�) ≤ 2M0(�) + 1. (10)
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The inequality M(�) ≤ M0(�) + 1/2 in (9) is proved by F. G. Avkhadiev and K.-
J. Wirths [24], inequality M(�) ≤ 2M0(�) + 1 in (9) is obtained by F. G. Avkhadiev
[25] (see also the recent paper [26] by A. Golberg, T. Sugawa, M. Vuorinen for gen-
eralizations of (9) to higher dimensions).

One has that M0(D
′) = M(D′) = ∞ for the punctured disc

D
′ := {z : 0 < |z| < 1}.

It is clear that M(�) = 0 if and only if � is a simply connected domain conformally
equivalent to the unit disc. The following example shows that there exist multiply
connected domains for which M0(�) = 0.

Example 1 Let K be the classical Cantor set on the segment [0, 1], and let �0 :=
{x + iy ∈ C : |x | < ∞, |y| < 1}. Consider a domain defined by

�(K) = �0 \ {x + iy ∈ C : x ∈ K, |y| ≤ 3/4}.

One has that M0(�(K)) = 0 since Ann(�(K)) = ∅.
In the paper [27] we proved

Theorem 2 Suppose that 1 ≤ p < ∞ and that 2 < s < ∞. Let � be an open proper
subset of C. Then for any real-valued function u ∈ C1

0(�)

∫∫
�

|∇u(z)|p

ρs−p(z,�)
dx dy ≥

(
s − 2

p

)p ∫∫
�

|u(z)|p

ρs(z,�)
dx dy. (11)

There exist domains �′ such that cp(s,�′) = ((s − 2)/p)p.

In addition, in the paper [28] we proved the following assertion:
if M0(�

′) = ∞, then the constant cp(s,�′) = ((s − 2)/p)p for all admissible
values of parameters p ∈ [1,∞) and s ∈ (2,∞).

Problem 4 Suppose that 1 ≤ p < ∞ and that 2 < s < ∞. In geometrical terms
describe all extremal domains in Theorem 2.

Conjecture: the constant cp(s,�) = ((s − 2)/p)p in inequality (11) if and only
if the boundary of the domain � is not a uniformly perfect set, i. e. the Euclidean
maximum modulus M0(�) = ∞.

Since the condition M0(�) = ∞ for the Euclidean maximum modulus implies
equality cp(s,�) = ((s − 2)/p)p, one has to prove that the condition M0(�) < ∞
implies the strict inequality cp(s,�) > ((s − 2)/p)p.

In the limit case, when s = 2, we have

Theorem 3 Let 1 ≤ p < ∞, and let � ⊂ C be a domain such that � 	= C. Then
the constant cp(2,�) > 0 if and only if the boundary of the domain � is a uniformly
perfect set.
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For p = 2 Theorem 3 is proved by J. L. Fernández [29]. For p ∈ [1,∞)\{2} Theorem
3 is proved in our paper [27]. In addition, in the paper [27] we proved the following
estimates

cp(2,�) ≥ c p
1 (2,�)

p p
(∀p > 1),

c1(2,�) ≥ 1

2 (π M0(�) + γ0)
2

(
γ0 = �4(1/4)

4π2 ≈ 4.38

)
.

By the way, a question on possible improvement of the indicated lower estimate for
the quantity c1(2,�) is still open.

Next, we consider the following Rellich type inequality:

∫∫
�

|�u(z)|2
ρs−4(z,�)

dx dy ≥ C2(s,�)

∫∫
�

|u(z)|2
ρs(z,�)

dx dy, ∀u ∈ C2
0 (�), (12)

where s ∈ R is a fixed number, the constant C2(s,�) ∈ [0,∞) is the sharp constant,
i. e. it is defined as the maximum possible constant at this place.

In [2] F. Rellich proved that C2(4,C \ {0}) = 0. There are several generalizations
of the Rellich result about inequality (12) on the domain � = C \ {0}. Finally, for this
domain P. Caldiroli, R. Musina [30] proved the following remarkable theorem.

Theorem 4 For every s ∈ R one has that

C2 (s,C \ {0}) = min
k∈N∪{0}

∣∣∣k2 − (s/2 − 1)2
∣∣∣ .

Thus, the constant C2(2m,C \ {0}) = 0 for any m ∈ Z. In addition, it is evident that
M0(C \ {0}) = ∞.

In the paper [31] we proved

Theorem 5 Let � ⊂ C be a domain such that � 	= C. Then

C2(2,�) > 0 ⇐⇒ M0(�) < ∞ ⇐⇒ C2(4,�) > 0.

In addition, in the paper [32] we proved the following assertion: if m ∈ Z then

M0(�) = ∞ �⇒ C2(2m,�) = 0

for domains � ⊂ C, � 	= C.
Comparing this assertion, Theorems 4 and 5, it is natural to consider the following

problem.

Problem 5 Prove or disprove the following assertion:
for every value of m ∈ Z \ {1, 2}

M0(�) < ∞ ⇐⇒ C2(2m,�) > 0

over the set of all domains � ⊂ C, � 	= C.
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Now, we consider a new version of inequality (7) using the hyperbolic radius instead
of the distance to the boundary.

Let � ⊂ C be a domain of hyperbolic type, i. e. its boundary contains at least three
points (see L. V. Ahlfors [33], A. Yu. Solynin and M. Vuorinen [34]). In such a domain
the hyperbolic radius is defined by

R(z,�) := 1/λ(z,�), z ∈ �,

where λ(z,�) is the coefficient of the Poincaré metric with Gaussian curvature κ =
−4. If ∞ ∈ � ⊂ C, then R(∞,�) = ρ(∞,�) = ∞. More precisely, there exist
finite limits

lim
z→∞

R(z,�)

|z|2 = lim
z→∞

R(z,�)

ρ2(z,�)
> 0.

It is well known that R(z,�) ≥ ρ(z,�) at any point z ∈ �. If ∞ ∈ � ⊂ C,
then inf z∈� ρ(z,�)/R(z,�) = 0. On the other hand, according to the Beardon-
Pommerenke theorem [35]

α(�) := inf
z∈�

ρ(z,�)/R(z,�) > 0 ⇐⇒ M0(�) < ∞

for every domain � ⊂ C of hyperbolic type.
In the papers [21]–[24] one can find other relationship between the Euclidean

characteristic M0(�) and conformal characteristics of a domain �. In particular, it
is proved that for every domain � ⊂ C of hyperbolic type

sup
z∈�

|∇ R(z,�)| < ∞ ⇐⇒ M0(�) < ∞,

and that

|M0(�
′) − M0(�

′′)| ≤ 1

2

for conformally equivalent hyperbolic type domains �′ ⊂ C and �′′ ⊂ C.
Let � ⊂ C be a domain of hyperbolic type. Consider the following conformally

invariant inequality

∫∫
�

|∇u(z)|p

R2−p(z,�)
dx dy ≥ c∗

p(2,�)

∫∫
�

|u(z)|p

R2(z,�)
dx dy, ∀u ∈ C1

0(�), (13)

where p ∈ [1,∞) is a fixed number, the constant c∗
p(2,�) ∈ [0,∞) is sharp, i. e. it

is defined as the maximum possible constant at this place.

Problem 6 (see J. L. Fernández, J. M. Rodríguez [36]). In terms of the Euclidean
geometry describe the set of all hyperbolic type domains � ⊂ C such that
c∗
2(2,�) > 0.

In [29] J. L. Fernández proved that the condition M0(�) < ∞ guarantees positivity
of the constant c∗

2(2,�). In [36] J. L. Fernández, J. M. Rodríguez proved two theorems
that give the existence of a family of hyperbolic type domains such that M0(�) = ∞,
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c∗
2(2,�) > 0, as well as the existence of a family of hyperbolic type domains such

that M0(�) = ∞, c∗
2(2,�) = 0.

For p ∈ [1,∞)\{2} the properties of the constant c∗
p(2,�) and its generalizations

are studied in the papers [37], [25] and [38]. Clearly, for p ∈ [1,∞) \ {2} one has a
natural generalization of Problem 6.

Now, we will attract reader’s attention to an optimistic problem.
If s > 2, then the constant cp(s,�) ≥ ((s − 2)/p)p > 0 for all domains � ⊂ C,

� 	= C (see Theorem 2). In the case s = 2, according to Theorem 3, the constant
cp(2,�) > 0 if and only if the boundary of the domain � is a uniformly perfect set. In
addition, in the paper [25] we proved the following assertion that presents a universal
inequality.

Theorem 6 Let � ⊂ C be a hyperbolic type domain. Then

∫∫
�

|∇u(z)|
ρ(z,�)

dxdy ≥ 2
∫∫

�

|u(z)|
R2(z,�)

dxdy ∀u ∈ C1
0(�).

Problem 7 Using the radius R(z,�) and the distance ρ(z,�) construct new integral
inequalities that are universal in the sense to be valid with a positive constant on every
hyperbolic type domain � ⊂ C.

3 Integral inequalities on domains ofRn, n ≥ 2

We will consider domain � ⊂ R
n for fixed n ≥ 2. Again, we need the distance

function defined by

ρ(x,�) := inf
y∈Rn\� |x − y|, x = (x1, x2, ..., xn) ∈ �,

and the Hardy type inequality

∫
�

|∇u(x)|p

ρs−p(x,�)
dx ≥ cp(s,�)

∫
�

|u(x)|p

ρs(x,�)
dx, ∀u ∈ C1

0(�), (14)

where dx = dx1dx2...dxn , p ∈ [1,∞) and s ∈ R are fixed numbers, the constant
cp(s,�) ∈ [0,∞) is sharp, i. e. it is defined to be the maximum possible constant in
inequality (14).

Inequality (14) is invariant with respect to linear conformal and anticonformal
transformations of the domain�. In particular, the constant cp(s,�) is a dimensionless
quantity such that

cp(s,�) = cp(s, k � + x0) (∀k ∈ R \ {0}, ∀x0 ∈ R
n). (15)

We begin by an assertion that is basic for convex domains� ⊂ R
n and test functions

u : � → R, u ∈ C1
0(�).
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Theorem 7 Suppose that

n ≥ 2, 1 ≤ p < ∞, 1 < s < ∞,

and that � ⊂ R
n is a convex domain such that � 	= R

n. Then for every real-valued
function u ∈ C1

0(�)

∫
�

|∇u(x)|p

ρs−p(x,�)
dx ≥

(
s − 1

p

)p ∫
�

|u(x)|p

ρs(x,�)
dx . (16)

The constant ((s −1)/p)p is sharp, more precisely, cp(s,�) = ((s −1)/p)p for every
convex domain � 	= R

n and for all admissible values of parameters p ∈ [1,∞) and
s ∈ (1,∞).

Theorem 7 is proved in several papers (for the case p = s > 1 see T. Matskewich,
P. E. Sobolevskii [10], M. Marcus, V. J. Mitzel, Y. Pinchover [11], A. A. Balinsky,
W. D. Evans, R. T. Lewis [6], and for the general case, when p ∈ [1,∞) and s ∈
(1,∞), see F. G. Avkhadiev [27], F. G. Avkhadiev and I. K. Shafigullin [39]).

Notice that a convex domain satisfies automatically the condition of the next theo-
rem, proved in [39].

Theorem 8 Suppose that n ≥ 2, 1 ≤ p < ∞, 1 < s < ∞, and � ⊂ R
n is a

domain satisfying the property: there exist a boundary point y0, two n-dimensional
balls B+ ⊂ � and B− ⊂ R

n \ � such that

y0 ∈ (∂ B+) ∩ (∂ B−) ∩ (∂�).

Then cp(s,�) ≤ ((s − 1)/p)p.

The restriction 1 < s < ∞ in Theorem 7 is natural: if −∞ < s ≤ 1, then
cp(s, B) = 0 for any n-dimensional ball B ⊂ R

n . Because of formula (15) it is
sufficient to consider the case of the unit ball.

Proposition 2 Suppose that n ≥ 2, 1 ≤ p < ∞, but −∞ < s ≤ 1. Then cp(s, B) = 0
for the unit ball B = {x = rω ∈ R

n : 0 ≤ r < 1}.
Proof of Proposition 2. Suppose the contrary, namely, suppose that cp(s, B) > 0 for
some fixed p ∈ [1,∞) and s ∈ (−∞, 1]. Then there exists a number δ ∈ (0, 1) such
that cp(s, B) ≥ δ. Therefore for every real-valued function u ∈ C1

0(B)

∫
B

|∇u(rω)|p

(1 − r)s−p
rn−1drdω ≥ δ

∫
B

|u(rω)|p

(1 − r)s
rn−1drdω.

Taking radial functions u(rω) ≡ g(r) one obtains

∫ 1

0

|g′(r)|p

(1 − r)s−p
rn−1dr ≥ δ

∫ 1

0

|g(r)|p

(1 − r)s
rn−1dr . (17)
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It is clear that inequality (17) must be valid for any absolutely continuous function
g : [0, 1] → R satisfying the boundary condition g(1) = 0.

Let ε be a parameter such that ε ∈ (0, 1). For functions g = gε defined by

gε(r) = ε, 0 ≤ r ≤ 1 − ε; gε(r) = 1 − r , 1 − ε < r ≤ 1,

inequality (17) gives that

∫ 1

1−ε

rn−1

(1 − r)s−p
dr ≥ δ

∫ 1

1−ε

rn−1

(1 − r)s−p
dr + δε p

∫ 1−ε

0

rn−1

(1 − r)s
dr .

Therefore, for any ε ∈ (0, 1)

Ys(ε) := 1 − δ

ε pδ

∫ 1

1−ε

rn−1

(1 − r)s−p
dr ≥ Xs(ε) :=

∫ 1−ε

0

rn−1

(1 − r)s
dr .

Letting ε → 0 we obtain a contradiction. Indeed, one has that

lim
ε→0

Y1(ε) = 1 − δ

pδ
, lim

ε→0
X1(ε) = ∞

in the case s = 1 and that

lim
ε→0

Ys(ε) = 0, lim
ε→0

X(ε) =
∫ 1

0

rn−1

(1 − r)s
dr ∈ (0,∞)

in the case s < 1. Thus, the proof of Proposition 2 is complete.

Problem 8 (a generalization of Problem 1, see I. K. Shafigullin [40]). Suppose that
n ≥ 3, p ∈ [1,∞). Prove that the constant cp(2,�) ≤ (n − 2)p/p p for all domains
� ⊂ R

n, � 	= R
n.

The dimension n plays an essential role in the case of non-convex domains. In
particular, the constant c2(2,Rn \ {0}) = (n − 2)2/4 > 1/4 for n ≥ 4. Thus, in the
case n ≥ 4 there exists “exotic” domain � with c2(2,�) > 1/4.

In the paper [40] I. K. Shafigullin examined Problem 8. In particular, he proved
certain estimates of the form

c2(2,�) ≤ c n2 (c = const > 0)

for arbitrary domains � ⊂ R
n, � 	= R

n.
If n ≥ 2, then c2(2,�) = 1/4 for all convex domains � ⊂ R

n, � 	= R
n and for

some non-convex domains. Therefore, one can formulate a generalization of Problem 2.

Problem 9 Suppose that n ≥ 3. Describe geometrically the family of non-convex
domains � ⊂ R

n, � 	= R
n, such that c2(2,�) = 1/4.

In the paper [16] we described geometrically a family �1/4(n) of non-convex
domains � ⊂ R

n, � 	= R
n with the property c2(2,�) = 1/4.
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In the next Theorem we shall present a simple subfamily of �1/4(3) from the paper
[16], using the inradius

ρ(�) := sup
x∈�

ρ(x,�)

and the following definition of a family of non-convex domains.

Definition 3 Suppose that n ≥ 2 and λ ∈ (0,∞).
A domain � ⊂ R

n , � 	= R
n , is called λ-close-to-convex, if for every point y ∈

(∂�) \ {∞} there exists a point xy such that

|y − xy | = λ and By = {x ∈ R
n : |x − xy | < λ} ⊂ R

n \ �.

In otherwords, a domain� 	= R
n isλ-close-to-convex, if everyfinite boundary point of

this domain satisfies the exterior sphere condition with prescribed radius λ ∈ (0,∞).

Remark 1 Suppose that n ≥ 2 and λ ∈ (0,∞). If �′ ⊂ R
n is a domain λ-close-to-

convex, then the domain � := �′ × R ⊂ R
n+1 is λ-close-to-convex, too.

Theorem 9 (see [16]) Let � ⊂ R
3 be a non-convex domain with finite inradius ρ(�).

If the domain � is λ-close-to-convex with a radius λ = λ(�) such that

λ(�) ≥ ρ(�),

then c2(2,�) = 1/4.

Example 2 Consider two domains �2 ⊂ R
2 and �3 ⊂ R

3 defined by

�2 = {(x, y) ∈ R
2 : 0 < x < ∞, 0 < y < 1/x},

�3 = �2 × R = {(x, y, z) ∈ R
3 : 0 < x < ∞, 0 < y < 1/x, −∞ < z < ∞}.

It is clear that the domain �2 is λ-close-to-convex with the radius λ = min R(x),
where R(x) is the radius of curvature of the hyperbola at the point (x, 1/x). We have
that

R(x) = (1 + y′2(x))3/2

|y′′(x)| = 1

2

(
x2 + 1

x2

)3/2

≥ R(1) = √
2,

where y = y(x) = 1/x , 0 < x < ∞. Therefore, �2 and �3 are λ-close-to-convex
with λ = λ(�2) = λ(�3) = √

2.
On the other hand, it is clear that

ρ(�2) := sup
(x,y)∈�2

ρ((x, y),�2) ≤ 1.

Consequently, ρ(�3) = ρ(�2) ≤ 1 (in fact, ρ(�2) = ρ(�3) = 2 − √
2 ). We see

that λ(�3) > ρ(�3). Thus, the Hardy constant c2(2,�3) = 1/4 by Theorem 9.
In [16] for the case n ≥ 2 we proved a general version of Theorem 9 connected

with the condition �n λ(�) ≥ ρ(�), where �n is a constant defined as a root of an
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equation for hypergeometric functions. In particular,�2 ≈ 2.49,�3 = 1,�4 ≈ 0.61,
and 1/(n − 2) < �n < 1 for n > 3.

Next, we will need a definition (see, for instance, [26,27]) about the Euclidean
maximum moduli M0(�) for spatial domains � ⊂ R

n , having at least two boundary
points. Let Ann(�) be the set of domains

A = A(x0; r , R) := {x ∈ R
n : r < |x − x0| < R},

with the following properties: 0 < r < R < ∞, A(x0; r , R) ⊂ �; x0 ∈ ∂�.

Definition 4 Let n ≥ 3, and let � ⊂ R
n be a domain, having at least two boundary

points.
1) If Ann(�) = ∅, then we take M0(�) = 0.
2) If Ann(�) is a non-empty set, then we take

M0(�) := sup
A∈Ann(�)

1

2π
ln

R

r
, (A = A(x0; r , R)).

The following assertion is a not difficult geometrical exercise.

Proposition 3 Suppose that � ⊂ R
n is a domain, λ-close-to-convex with a radius

λ = λ(�) ∈ (0,∞). If the inradius ρ(�) < ∞, then

e2π M0(�) ≤ 1 + ρ(�)

λ(�)
.

In the paper [27] we proved the following generalization of Theorem 2 (also, see
[28] concerning the case M0(�

′) = ∞).

Theorem 10 Suppose that n ≥ 3, 1 ≤ p < ∞, n < s < ∞, and that � is a proper
open subset of Rn. Then for every real-valued function u ∈ C1

0(�)

∫
�

|∇u(x)|p

ρs−p(x,�)
dx ≥

(
s − n

p

)p ∫
�

|u(x)|p

ρs(x,�)
dx .

There exist domains �′, for which the constant ((s − n)/p)p is sharp, moreover, if
M0(�

′) = ∞, then cp(s,�′) = ((s − n)/p)p.

Problem 10 Suppose that n ≥ 3, 1 ≤ p < ∞, n < s < ∞, � ⊂ R
n is a domain

having at least two boundary points. Is it true the following assertion: the condition
M0(�) < ∞ implies the strict inequality cp(s,�) > ((s − n)/p)p.

It is sufficient to prove the following assertion: the condition M0(�) < ∞ implies
the strict inequality c1(s,�) > s − n.

Remark 2 Suppose that n ≥ 2, 1 ≤ p < ∞, but −∞ < s ≤ n. Then there exist
domains �′ ⊂ R

n and �′′ ⊂ R
n , such that cp(s,�′) > 0 and cp(s,�′′) = 0.

Remark 3 If s > n and � ⊂ R
n is a domain such that Rn \ � is a non-empty compact

set, then M0(�) = ∞. Therefore, cp(s,�′) = ((s−n)/p)p according to Theorem 10.
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Recently, in the paper [41] F. G. Avkhadiev and R. V.Makarov proved the following
theorem.

Theorem 11 Suppose that n ≥ 2, 1 ≤ p < ∞, −∞ < s < n, and that � ⊂ R
n is a

domain such that Rn \ � is a non-empty convex compact set. Then

cp(s,�) ≥ cpsn := min
k=1,2,...,n

|s − k|p

p p
,

i. e. for every real-valued function u ∈ C1
0(�)

∫
�

|∇u(x)|p

ρs−p(x,�)
dx ≥ cpsn

∫
�

|u(x)|p

ρs(x,�)
dx .

There exist admissible domains �′ ⊂ R
n for which the constant cpsn is sharp.

It is useful to compare Theorem 11 and the case−∞ < σ < 1 of the Hardy Theorem 1
with the boundary condition g(+∞) = 0.

Taking into account formulas (4) and (5), Proposition 2 and Theorem 11 one can
formulate the following problem.

Problem 11 Suppose that n ≥ 2, 1 ≤ p < ∞,but −∞ < s ≤ 1. Prove that
cp(s,�) = 0 for any bounded domain � ⊂ R

n.
Because of the absence of extremal functions one can improve several Hardy and

Rellich type inequalities with sharp constants using some positive remainders. In this
direction there are several interesting results due to V. Maz’ya, H. Brezis, M. Marcus
and other mathematicians (see [5]–[8], [12]–[15], [42,43]).

We describe some examples on inequalities with remainders. First, consider the
classical Poincaré-Friedrichs inequality

∫
�

|∇u(x)|2 dx ≥ λ1(�)

∫
�

|u(x)|2 dx, ∀u ∈ C1
0(�), (18)

where λ1(�) is the first eigenvalue of the Dirichlet problem for the Laplace equation.
In the paper [12] H. Brezis, M. Marcus proved the following assertion.

Theorem 12 Let n ≥ 2. Suppose that � ⊂ R
n is a bounded convex domain and

λ = (1/4)/ (diam (�))2, then

∫
�

|∇u(x)|2 dx ≥ 1

4

∫
�

|u(x)|2
ρ2(x,�)

dx + λ

∫
�

|u(x)|2 dx, ∀u ∈ C1
0(�). (19)

In [12] there is a question: is it possible that one takesλ = cn/(vol(�))2/n in inequality
(19) with a positive constant cn? In [14], M. Hoffmann-Ostenhof, T. Hoffmann-
Ostenhof and A. Laptev proved that the answer to the question is positive and
cn ≥ (n/4)ω2/n

n , where ωn = 2π2/n/(n�(n/2)) is the volume of the unit ball in
R

n . But the sharp value of cn is unknown.
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Clearly, the choice of λ by H. Brezis, M. Marcus in inequality (19) is connected
with the Poincaré–Friedrichs inequality (18), the Poincaré estimate

λ1(�) ≥ π2/(diam �)2

and the isoperimetric inequality of Rayleigh-Faber-Krahn

λ1(�) ≥ ω
2/n
n j2n/2−1/(vol (�))2/n,

where jν is the first zero of the Bessel function Jν of order ν.
There are several open problems about Hardy and Rellich type inequalities with

sharp constants and some positive remainders. We indicate one of them formulated
explicitly as a conjecture in the paper [42] by F. G. Avkhadiev and K.-J. Wirths.

Problem 12 Prove that among all n-dimensional domains with given inradius
ρ(�) := supx∈� ρ(x,�) the maximum of the best Brezis-Marcus constants λ in
(19) is presented by Bn, where Bn is an n-dimensional ball of radius ρ(�).

Next, we consider a natural parametric generalization of inequality (14) on domains
� ⊂ R

n, � 	= R
n (n ≥ 2):

(∫
�

|∇u(x)|pdx

ρα(x,�)

)1/p

≥ cpq(s, α,�)

(∫
�

|u(x)|qdx

ρs(x,�)

)1/q

, ∀u ∈ C1
0(�), (20)

where p ∈ [1,∞), q ∈ [1,∞), α ∈ R and s ∈ R are fixed numbers, the constant
cpq(s, α,�) ∈ [0,∞) is sharp, i. e. the maximum possible at this place.

There are a few non-trivial results on inequality (20) in the non-standard case,
when s ∈ [1,∞), but α 	= s − p (see, for instance, [27,44]).

Problem 13 Suppose that n ≥ 2 and that parameters p ∈ [1,∞), q ∈ [1,∞), α ∈ R,
s ∈ R are fixed numbers. In terms of the Euclidean geometry describe non-trivial
families of domains � ⊂ R

n, � 	= R
n, such that cpq(s, α,�) > 0.

It is evident that Theorem 3 gives a solution to this problem in the case when
n = s = 2, p = q ∈ [1,∞), α = 2 − p.

Now, we will describe a problem, connected with Problem 13 and the classical
Poincaré–Friedrichs inequality (18).

Observe that c22(0, 0,�) = λ1(�), where λ1(�) is the first eigenvalue of the
Dirichlet problem for the Laplace equation.

Problem 14 Let n ≥ 2. In terms of the Euclidean geometry describe all domains
� ⊂ R

n, such that

ρ(�) := sup
x∈�

ρ(x,�) < ∞ �⇒ λ1(�) > 0.

On implications ρ(�) < ∞ �⇒ λ1(�) > 0 there are several interesting results
(see, for instance, R. Osserman [45]), but Problem 14 is still open even in the case
of dimension n = 2. We have to note that Problem 14 is one of many interesting and



134 Page 18 of 20 F. Avkhadiev

difficult problems connected with Dirichlet and Neumann eigenvalues for the Lapla-
cian (see, for instance, the recent paper [46] by V. Gol’dshtein, R. Hurri-Syrjänen,
V. Pchelintsev, A. Ukhlov).

Let m ≥ 2 be a fixed natural number. For smooth functions u ∈ Cm(�) consider
the polyharmonic operators defined by

�m/2u :=
{

� j u, if m = 2 j is an even number,

∇� j u, if m = 2 j + 1 is an odd number,

with a formal convention �1/2u := ∇u. Thus, the function �m/2u is well-defined for
every natural number m (see the book [47] by F. Gazzola, H. Ch. Grunau, G. Sweers
on polyharmonic boundary value problems).

Consider the following generalization of Hardy–Rellich inequalities:

∫
�

|�m/2u(x)|2
ρs−2m(x,�)

dx ≥ A(m)
2 (s,�)

∫
�

|u(x)|2
ρs(x,�)

dx, ∀u ∈ Cm
0 (�), (21)

where the constant A(m)
2 (s,�) ∈ [0,∞) is chosen to be maximum possible.

For a real-valued function u ∈ Cm
0 (�) one has the generalized Ladyghenskaya

identity (see [4], ch. 2, (6.26) for m=2 and [47], ch. 2, (2.12) for the general case):

∫
�

∣∣∣�m/2u(x)

∣∣∣2 dx =
∫

�

n∑
k1=1

n∑
k2=1

· · ·
n∑

km=1

(
∂ mu(x)

∂xk1∂xk2 · · · ∂xkm

)2

dx . (22)

If s = 2m, then the left hand part in (21) has the form
∫
�

∣∣�m/2u(x)
∣∣2 dx and one

can use formula (22). In several papers this fact is used to examine inequality (21) in
the case s = 2m (see, for instance, the papers [48]–[51]).

In the paper [48] M. P. Owen proved that A(m)
2 (2m,�) ≥ ((2m − 1)!!)2/4m for

every convex domain � 	= R
n and that this estimate is optimal since it is sharp for

the half-space x1 > 0.
For any convex domain � 	= R

n in the papers [31] and [50] we proved that the
opposite estimate A(m)

2 (2m,�) ≤ ((2m − 1)!!)2/4m is valid. Consequently, one has
the following assertion.

Theorem 13 Suppose that n ≥ 2 and m ≥ 2. Then for every convex domain � ⊂ R
n,

� 	= R
n

A(m)
2 (2m,�) = ((2m − 1)!!)2

4m
.

We exclude the case m = 1 since A(1)
2 (2,�) ≡ c2(2,�) = 1/4.

For non-convex plane domains in [51] we proved

Theorem 14 Suppose that m ≥ 2, � ⊂ C is a domain such that � 	= C. Then

A(m)
2 (2m,�) ≥ ((m − 1)!)2c2(2,�),



Selected results and open problems on Hardy–Rellich… Page 19 of 20 134

A(m)
2 (2m,�) > 0 ⇐⇒ M0(�) < ∞.

In the case s 	= 2m, we have

Problem 15 Suppose that n ≥ 2, m ≥ 2, s ∈ R, s 	= 2m. In terms of the Euclidean
geometry describe non-trivial families of domains � ⊂ R

n, such that A(m)
2 (s,�) > 0.
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