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Abstract

We study symmetries, invariant solutions, and conservation laws for the dispersionless
Veselov—Novikov equation. The emphasis is placed on cases when the ODEs involved in
description of the invariant solutions are integrable by quadratures. Then we find some
non-invariant solutions, in particular, solutions that are polynomials of an arbitrary
degree N > 3 with respect to the spatial variables. Finally we compute all conservation
laws that are associated to cosymmetries of second order.
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1 Introduction

We consider the dispersionless Veselov-Novikov equation (dVN) [11] written in the
form

Utxy = (uxxuxy)x + (uxyuyy)y- (1)

This equation describes the propagation of the high frequency electromagnetic waves
in certain nonlinear media, see [12] and references therein. Nontrivial ¢-independent
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solutions of dVN are related to the problem of existence of the first integrals for
the geodesic or magnetic geodesic flows on a two-torus, [23]. Equation (1) is the
dispersionless reduction of the Nizhnik—Veselov—Novikov equation [17,24]. The Lax
representation [21]
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of dVN is the dispersionless reduction of the Lax representation of the Nizhnik—
Veselov—Novikov equation. In [2] the Lax representation (2) was used to construct
two-dimensional reductions of dVN.

In the present paper we study exact solutions and conservation laws of dVN. We
find the contact symmetry algebra and the explicit form for the transformations from
the contact symmetry pseudogroup of dVN. Then we employ the pseudogroup to
find the optimal system of one-dimensional subalgebras of the symmetry algebra. We
factorize dVN with respect to the symmetries from the optimal system and obtain
two-dimensional partial differential equations (PDEs) (8) and (50) for the invariant
solutions as well as their Lax representations. Then we find the symmetry algebras
and their optimal systems of one-dimensional subalgebras for equations (8) and (50).
The factorization with respect to the subalgebras provide the collection of ordinary
differential equations (ODESs) that describe invariant solutions to (8) and (50). We find
some cases when the obtained ODEs are integrable by quadratures, thus providing
exact solutions for dVN. Further, we study solutions that are not invariant with respect
to contact symmetries. In particular, we find a class of solutions to dVN that are
polynomialsinx and y of arbitrary degree. Finally we find the whole set of conservation
laws that are associated to cosymmetries defined on the second order jets.

2 Preliminaries

The presentation in this section closely follows [13,15,25]. Let 7: R” x R — R”",
T (xl, XN u) (xl, ..., x™), be a trivial bundle, and J°°(7r) be the bundle
of its jets of infinite order. The local coordinates on J°° (i) are (x',u, u;), where
= (i1, ..., iy) are multi-indices, and for every local section f: R" — R"” x R
of 7 the corresponding infinite jet joo(f) is a section joo(f): R" — J*°(rr) such
' a#lf 8i1+-~+i,1f
thatur (oo () = ZT = Galyi - axmyn
simplify notation in the following way, e.g., in the case of n = 3: we denote x! = r,
XX=x,x3= yeand u j k) = Uy sx..xy..y With i times ¢, j times x, and k times y.
The vector fields

. We put u = u,...0. Also, we will

.....

D 8xk+z ’“"a kell,...,n},
#1>0
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Gyeeosipyeeosin) g =01, ..., ik + 1, ..., 1y), are called fotal derivatives. They
commute everywhere on J°°(;r) and are annihilated by the ideal of contact forms
(dugp =Y 7_yupsr, dx* | #1 > 0).

The evolutionary vector field associated to an arbitrary smooth function ¢: J°° ()
— R is defined as

d
E, =) Di(p) —
#1>0 u;

with D; = D(il,‘..in) = Dill 0--+0 D;’il
A PDE F(xi, uy) = 0 of order s > 1 with #I < s defines the submanifold & =
{(x",ur) € J®() | Dg(F(x',up)) =0, #K > 0} in J*(n).
A function ¢: J*°(r) — R is called a (generator of an infinitesimal) symmetry
of equation & when E,(F) = 0 on €. The symmetry ¢ is a solution to the defining

system

te(p) =0, &)

where £¢ = {F|e with the differential operator

The symmetry algebra Sym(€) of equation € is the linear space of solutions to (3)
endowed with the structure of a Lie algebra over R by the Jacobi bracket {¢, ¥} =
Ey,(¥) — Ey (¢). The algebra of contact symmetries Symg(€) is the Lie subalgebra
of Sym(&) defined as Sym(€) N C®(J'(xr)). The point symmetries are the contact
symmetries whose generators are polynomials in u . of degree 1.

The contact symmetry pseudogroup of a PDE & C J* () is the collection of all
the local diffeomorphisms Ioo: J*(r) — J°°(7r) that preserve the submanifold €
as well as the ideal of contact forms.

Let ¢ be a symmetry of &, then the ¢p—invariant solution of € is the solution of the
compatible system F =0, ¢ = 0.

For a PDE € in three independent variables ¢, x, y a conservation law, [18, § 4.3],
[25, Ch. 5], is a horizontal two-form

2 =Pidx ANdy + Pydy Adt + P3dt Adx,
closed with respect to the horizontal differential dj,, which means that
dp$2 = (D(P1) + Dx(P2) + Dy(P3)) dt Adx Ady =0
on €. Functions P; are smooth functions on €. The conservation law is referred to

as a trivial conservation law when there exists a horizontal one-form w such that
§2 = djw. Nontrivial conservation laws are associated with cosymmetries of equation
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&, see discussion in [14, Ch. 1]. Let f’,- be arbitrary extensions of P; on J°°(ir), then
for 2 = Pydx Ady+ P, dy Adt+ Py dt Adx thereholds dj, 2 = - F dt Adx Ady
for some function ¥ on J*° (7). The restriction | ¢ depends on £2 only and is called
the generating function or characteristic of the conservation law £2. The conservation
law is trivial if and only if its generating function vanishes. Generating functions are
solutions to equation

() =0 4
with £% = €}.|¢, where the adjoint operator to £ is
oF
=Y (=D'"'Djo—.
#1>0 du;

A solution of (4) is referred to as a cosymmerty of equation &.

3 Symmetries of dVN
3.1 The symmetry algebra

Direct computations! show that the contact symmetry algebra Sym(dVN) is gener-
ated by functions

Go(A) = —Au; — A (xuyx + yuy) — g A" (3 + %),

P11(A) = —Au, — F A'x2,
$21(A) = —Auy, — L A'y?,

$12(A) = —Ax,
$22(A) = —Ay,
$3(A) = A,

Y=3u—xu,—yuy,

where A = A(t) and B = B(t) below are arbitrary smooth functions of 7. Actually,
all the contact symmetries of (1) turn out to be point symmetries. The structure of the
Lie algebra Sym((dVN) is defined by the commutator table

{po(A), po(B)} = ¢po(AB' — B A"),
{¢o(A) ¢, j(B)y = ¢i j (AB — (1 — %]) BA'), i, je{l,2},
{#0(A), p3(B)} = p3(A B'),

{¢i.1(A), ¢.1(B)} = 6ij pi2(AB — B A'),

1 Computations of symmetries, their commutators, cosymmetries, and conservation laws were supported
by the Jets software [1].
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{¢i.1(A), $j2(B)} = 8ij ¢3(A B),
{#i.1(A), 3(B)} =0,
{#i2(A), ¢j2(B)} =0,
{¢i2(A), $3(B)} =0,
{$3(A), ¢3(B)} = 0,
{¥, ¢0(A)} =0,

V. ¢i,j(A)} = —Jj¢i,j(A),

(¥, 93(A)} = =3 ¢3(A).
Direct computations show that the contact symmetry pseudogroup of equation

(1) is generated by the infinite prolongations of the (local) diffeomorphisms
Iy: (t,x,y,u) — (¢, %, ¥, 0) of the form

~
Il

By, i=¢ (Bix+B), y=¢(B)y+B),
B/ 1
~ 3 0 3 3 ) )
U=ce (M_ISBé(x +y)—W(le + B; y°) 5)
+B3x + Byy + Bs),

dB;
where ¢ # 0, B; = B;(t) are arbitrary functions, B = d_tl’ and B (1) # 0. In other
words, substitution for (5) into dVN written in the tilded variables yields (1).

3.2 The optimal system of one-dimensional subalgebras

Since the symmetry algebra of dVN is infinite-dimensional and depends on 6 arbitra-
ry functions of one variable, the problem of examining all invariant solutions is very
complicated. To overcome the difficulty, we use the following observation: transfor-
mations from the symmetry pseudogroup (5) preserve equation (1), while changing the
symmetry generators. Therefore we can classify the orbits of the action of (5) on the
Symq(dVN). In order to use symmetries for computing invariant solutions we consider
symmetries whose generators depend explicitly on at least one of the variables u, u;,
Uy, OF Uy.

Proposition 1 Each symmetry

D = ¢o(Ap) + ¢1,1(A1,1) + ¢2,1(A2,1) + ¢2,1(A2,1) + ¢22(A22) + P3(A3) + ¥

from Sym(dVN) with A% +u?+ A%,l + A%’l =% 0 is equivalent with respect to the
action of the pseudogroup (5) to one of symmetries

xt =¢o() +py =—ur+pnQGBu—xuy—yuy),
X2 =V =3u—Xuy—yuy,
X3 =¢1.1(1) + ¢2.1(A) = —uy — Auy — 5 A')?,
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xa=¢2.1(1) +¢12(A) = —uy — Ax.

Proof Let Ag(t) # 0. Put e = 1 and consider solutions By (%), ... , Bs(t) to the system
of ODEs

By = Ag'.

Bi = MASI B —Aa4/3 Al

Bé = /,LASI By — A64/3 A,

By =1 A5 (61— AY By + Ay ALt Br— Ag? (Ao Ara + AT ),
By =1 A5" (61— Ap) By + 1 Ay Ay By — Ag? (Ao Ay + A3 ),
Bl =A;' 3uBs— A1 B3 — Ay1 By — A3).

Direct computations show that for 1 = —it; + n (34 — X itz — y uy) there holds
I'f(x1) = @, where I is the first prolongation of (5). Therefore the inverse diffeo-
morphism maps @ to x;.

When Ag(f) = 0 and u # 0, put ¢ = p'/3 and define (5) by By = ¢, B] =
P AL By =p"  Ary, By = %M_z (WA12—A11 A ), Bs = %M_z (A2 —
A1 Ay ), Bs = 3 Qu? Az (A Ara+Ag Agp)—AT | AL —AS A ).
Then we have I'/*(x2) = @] 4,=0-

Suppose now that Ag(r) = 0, u =0, A1,1(t) # 0, and Ay ((f) # 0. Pute =1
and define functions B;, A(7) by equations B, = Al_j, B} = A1,2A1_%, B, = (A22+
(A11 Ay — Ag 1A} ) By) AT1AS L. By = S (A11A) | — Ay AL ) B — A3 AT,
By =0,and A(Bo(1)) = A2,1(t)/A1,1(2). Then I'7'(X3) = @|Ag=0,u=0-

Finally, when Ao(#) = 0,0 = 0,A1,1(¢) = 0,and A2,1(t) # 0,pute = 1 and define
functions B;, A(f) by equations B(/) = Az_j, B =0, B = Az,zAz_%, B3 =0, B4y =
—A3 Az_ll and A(Bo(1)) = A1,2(¢) A2,1(t). Then I'[(Xa) = @|Ag=0,u=0,4,,=0- O

4 Invariant solutions

In this section we analyze reductions of dVN with respect to the symmetries yi, ...,
X4-

4.1 Reduction w.r.t. 1;

The x;—invariant solutions of dVN satisfy equation (1) and
X1=—ur+puQBu—xux—yuy) =0,
so they are of the form

u=eMUs,w), s=xe ™, w=ye M. 6)
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Table 1 Commutator table of

the Lie algebra Symg (€ ) 2 3 14 ns 16

ni —n2 -n3 —21m4 —2ns5 —3 16

Up) 0 6 0 0

13 0 N6 0

N4 0 0

UR] 0
We introduce function

A 2
U=U—g(s3+w3) %)

for convenience of the further computations. Substitution for (6), (7) into (1) shows
that U (z, w) is a solution to equation &, defined by

Uss U UpwUs
waw — —USSS _ ss SSLU;IJ_ ww Y sww + 3/,(, (8)
sw

This equation admits a Lax representation. Indeed, symmetry x; has the 1ift (x1, x1)
with §1 = —q; + 1 (% q—Xqy — yqy) to the Lax representation (2). Solutions to

equation x; = 0 are of the form g = e% MO (s, w). Substituting this into (2) yields
the Lax representation

9
Q? :_3UssQ?+§MQQ3+3USWUWWQ?+US3W’

Usw
Cn="0,

for equation (8). We put Oy = S and obtain another Lax representation for (8):

_E (3 1% + 2 Usss) S4 -2 (waUmw + UswUsww) Sz -2 Ungssw

S, =
' 2 SO + Ugy S* + UsypUppry S + U%)

S _ _E 2 USSIUS4 + (2 UssUssw + Usw (2 USSS + 3 M) S - 2 UswUsww
Y 2 SO + Ugy S* + UgpUppy S2 + U3, '

Now we analyze invariant solutions to equation (8). We consider cases 1 # 0 and
u = 0 separately.

4.1.1 Case u # 0.

When p # 0, the symmetry algebra Sym(E,,) of equation (8) is generated by func-
tions ) =3U —sUs —wUy,m =—Us,n3 = =Uy, na = 5,15 = w, ne = 1. The
structure of this Lie algebra is defined by the commutators in Table 1.
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Table 2 The adjoint reperesentation of the Lie group G,

n mn 3 n4 IR 16
mn m e T e "3 e 2Ty e 2Tys e 3
Up] n+tn Up) n3 N4 + T ns n6
n3 n+Tn3 Up) n3 n4 N5+ 116 n6
4 nm+2tng m—1ne 3 n4 US 16
US m+2tns mn n3—1Tne n4 US 16
16 m+3tne mn 3 n4 US 16

The adjoint representation of the Lie group G, associated with the finite-
dimensional Lie algebra Sym (&) is defined by the Lie series

k
Adey (1)) = exp(ad (1)) = Y 2 (adn)* ().
k>0

where ad n; (n;) = {n;, n;}. This representation is given by Table 2. In this table the
(i, j)-th entry is the expression for Ad;,, (;). Using this table one can classify the
orbits of action of the adjoint representation of the Lie group G, on its Lie algebra
Symg(€,):

Proposition 2 Each symmetry of equation &, with u # 0 is equivalent under the

action of the adjoint representation of G, to one of the symmetries
Gi=m=3U—-sUs; —wUy,
=mt+am+pn+yn=-Uy—aUs+Bs+yw,
B=m+pna+yns=-Us+ps+yw,

where «, B,y € R.

Proof is obtained by the standard computation, see, e.g., [18, § 3.3]. O

Thus each invariant solution to equation (8) can be obtained by an action of appro-
priate superposition of transformations Ad. ;; (;) from ¢;—invariant solutions. Below
we examine such solutions.

4.1.1.1. Solutions invariant w.r.t. {1.
The ¢1—invariant solutions satisfy (8) and {1 = 0, therefore they are of the form

U=s’W(), z=ws!, )
where W is a solution to the ODE

G -—DW2 —z(Q2zW, — 18W +3 ) W,

W =
e 2 (@ =D W — B3 =D W, +322W)
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N 20z W2 —6(4W — )W,
2(@-DW =GB —DW.+322W)

(10)

We could not obtain the general solution to this ODE. Instead, we find a family of
particular solutions given by

1
V=% ((3“a1a2 —4ai +2a3) 2 +3paiay —4a3 +2a%> tart+az,
ay ap

where ajay # 0. Then (6), (7), (9) give the ¢-independent solution

_ 1 35 3.3 34 3v.3
u=xy(arx+ay)+ (aj —2a3)x” +(a, —2ay)y (11D
ajay

to dVN.

4.1.1.2. Solutions invariant w.r.t. {».
For ¢;—invariant solutions there holds ¢, = 0, or

Uy+aUs—Bs—yw=0.

When o # 0, this equation gives

U=v+ P 242w i=s—aw. (12)
20 2
Substituting for (12) into (8) yields
3apnV,
Ve = — (13)

2a@ -0V —B+aly

This equation is integrable by quadratures. When 8 = a?y, a # —1, the general
solution to (13) is

M 3 2
V==rou— c c €0,
4(Ol3_1)1+2z+1z+0

where ¢, c1, ¢ are arbitrary constants. This function produces solution

"
U= ———""—+
123 —1)

op

3 3 3 3
((Ol +2)y - Qa +1)x)+m

xy(x—ay)

1
+§e’” ((ay+202)x2+(y +2c0%)y? —4czaxy)

+ere?t (x —ay) + et (14)

of dVN.



126 Page 10 0f 26 0. 1. Morozov, J.-H. Chang

Remark 1 If u is a solution to (1), then for arbitrary functions bo(z), b1 (t), ba(¢) the
linear combination u + bo(¢) + b1 () x 4+ bao(¢) y is a solution to dVN as well. So we
can put cg = ¢1 = 0in (14) without loss of generality. In what follows we will ignore
the linear in x and y terms in solutions of dVN. O

When 8 # oy, a # —1, equation (13) has the first integral
2a@ =D Va4 @y —B InV,=—3auz+co, co€R.

hence the general solution in this case is of form

V=/(/H(—3ot,uz+co)dz> dz, (15)

where function H (t) is defined by formula
2a(oz3—1)H(r)+(cx2y—,B) InH(t)=rt. (16)

This function can be expressed in terms of the Lambert W function, [6], while the
expression is too complicated to be written here.
When o = —1, B # y, the general solution of (13) reads

3
V=Czwp<gﬁi>+cm+wm ¢ €R,
14

to dVN of the form
X — 1
u=crexp(3u (14 L))~ L343+ st B2+ 90D,
B—y 6 2
(17)
cf. Remark 1.
Finally, when o = 0 we have solution
U= %s3+%w2+ﬂsw+czz2+c1z+co
of equation (8). This produces the following solution to dVN:
u:%(2x3—y3)+e“’(,3xy+czx2+yy2). (18)

4.1.1.3. Solutions invariant w.r.t. {3
The ¢3—invariant solution of equation (8) has the form

U:§s2+ysw+c0+clw+czw3+%w3, ¢ € R,

the corresponding solution of dVN is obtained from (18) by renaming x <> y, 8 < y.
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Table 3 Commutator table of

the Lie algebra Sym () 5 6 §4 £s &6 &7
&1 —& —&3 &4 &s 0 0
& 0 £ 0 0 0
§ 0 & 0 0
&4 0 0 &
& 0 &
&6 &

Table 4 The adjoint action of the Lie group G

3 & &3 &4 és &6 &7
& & e e e ' g eéy e’és &6 &
) §1+16 ) &3 4+ 186 &s &6 &7
& §1+183 ) &3 &4 S5+ 186 &6 &7
&4 §1 —Té4 §r—1é &3 &4 §s &6 §7—1é4
&s §1—1és & &3—1é &4 &s &6 §1—1é5
&6 3 & &3 &4 és &6 §&1—18
& & & & e gy e T &5 e " & &7

Remark 2 For each solution u = f (¢, x, y) of dVN expression u = f(z, y, x) defines
a solution as well. 0

41.2 Caseu =0

Now consider equation £ obtained by putting i = 0 in (8). Notice that solutions of
this equation produce 7-independent solutions to dVN, and 7-independent solutions
are defined up to a nonzero constant multiple. The symmetry algebra Sym(Eo) of
this equation has generators &1 = —sUs; — w Uy, & = —Us, &3 = —Uy, & = s,
& =w, & = 1, and &; = U, with the commutators given in Table 3.

The adjoint action of the symmetry group G of equation £ on Sym (&) is defined
by the Table 4. Then direct computations give the optimal system of one-dimensional
subalgebras of Symg(&o):

Proposition 3 Each symmetry of equation £ is equivalent under the action of the
adjoint representation of G to one of the following symmetries:

or=&4+aér=—sUs—wUy+aU,

oy =¢&4+aé=—sUs; —wlUy +«,

=6+ +E8+abs=—sUs—wUy +U+s+aw,
o4 =& +&+E&=—sU —wUy, +U+w,
os=&+a&+p& =-U—aU,+BU, a#0
oo =E+ab3+ &+ Pt =-Us—alUy,+s+puw,
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o= +ab+&5=-Us;—alUy +w,
o =& +afy=—Us —alUy,
ogy=8&84+a& =-U,+aU,
ol0=88+abs+ps=-Uytas+pw.

4.1.2.1. Solutions invariant w.r.t. oy.
The o—invariant solutions to £y have the form

U=s*W(), z=ws .
Substituting this into (8) gives the ODE

F(z, W, W, sz)
G(Z’ Wv WZ? WZZ) '

Wiz = (@ —2) (19)

where

F(z, W, We, We) = (52 = D W2 — (@ — Dz (112 W, —3a W) W,
Ha—12GzW, —2a W)W,

and
G, W, W W) =22 =D Wee —(@— DB = DWW, +a(a—1)z>W.

We did not find the general solution to this equation for any «. For each « equation
(19) admits solutions of the form

W = (z+ z20)%, (20)
where zg is a root of equation zg (zg + 1) = 0. Thus we get solution
u=(y+z0x)" (21

of equation (1). We found some other solutions of (19) for o € {1, 2, 3, 4}.
Equation (19) witho =1

1 523-1
szz = _5 Z(Z3 ) sz'

is integrable by quadratures, its general solution

W(z)=co+ciz —l—/ (/ [ (i ) e dz) dz (22)
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produces solution to dVN of the form
_ 4 -1
u=x"Wyx ). (23)

Notice that integral in (22) can not be expressed in elementary functions, [3, § VIII],
[22, Ch. 3, § 14].

When o« = 2, equation (19) reduces to W,,, = 0, its general solution W =
co+cirz4+c z2, ¢i € R, gives solution of dVN

u:cox2+c1xy+czy2.

Remark 3 Expression u = by(t) xX4cx y 4+ bo(t) y2 with arbitrary functions by (),
by () and constant ¢ defines a trivial solution to dVN. We will ignore such solutions
below. O

For o = 3 we obtain two algebraic solutions

[

W=z (24)
and
W=(3-2c) 491 cz(@z+c)+c —2a. (25)
of (19). They give solutions
w=xly? (26)
and
U= (c% — ZC%)y3 +9¢; c%xy (2y+c1x)+ (c% — 2C%)x3 27
of dVN.

When o = 4, equation (19) admits the polynomial solution W = 17 z* — 3623 —
9072 — 36 z + 17. This corresponds to solution of dVN of the form

u=17x*=36x3y —90x2y> — 36x y° + 17 y*. (28)
4.1.2.2. Solutions invariant w.r.t. 0.
For o,—invariant solutions of &g there holds 0o = —U,, + a U = 0, therefore these
solutions have the form

U=¢e""V(s). (29)

Substituting this into £q gives the reduced equation Vg Vs + VXZS +2a3VV, =0.
Integrating this twice, we obtain the first order ODE

Vit (V+yv+8)=0 (30)
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with arbitrary constants y and §. This equation is integrable by quadratures, and the
general solution can be expressed in elliptic functions, [10, Ch. V, § 21]. To prove this
claim, consider transformation

p_r2GpHr-1

6p
r_ Y P@p-r+1
= - ,

that maps the curve R> = P3 4+ y P + § onto the curve
rPP=1-28p—6p*-3p* (31)

with B =68y ~3/2. We have 2r dr = —2 (B + 6 p + 6 p>) dp, hence

dP 1 (3p*+1
o L_l dp.
R 2p r

Then (29), (6), (7), and p = 0 give solution
u=e*’ V), (32)

where function V is defined implicitly by equations

vzﬁ<3p2—1+\/1—2ﬂp—6p2—3p4)’ (33)
6p
1 3p2+1
f— 1 — Pt dp=a3x+C. (34)
2p VI=28p—6p2—3p*

The integral in (34) includes Legendre’s integrals, therefore x can be expressed as an
elliptic function of p.

When polynomial V3 4y V +8 has multiple roots, the general solution to equation
(30) can be expressed in elementary functions. Indeed, the presence of the triple root
implies y = 6 = 0, and then solution to (30) is V = ce™**, ¢ € R. This corresponds
to solution

u=e* 35)

of dVN. For a double root we have V3 + yV+56=V4+2e)((V — )2 for some
& # 0. Then we obtain solution to dVN of the form (32), where function V is defined
in the implicit form by equations

(13 42)
V="—7, 36
P (36)
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1. 72 1 3
3 ln# + /3 arctan (%_ Q2T+ 1)) =—a’x+c 37
‘[_

with c € R.
There are some other values of parameters ¥ and § when integral | V3+yvV+

8)_% dV can be expressed by elementary functions. From the results of [4] (see also
[9]) we obtain three following cases when function V (x) in (32) admits elementary
expressions in implicit form:

(i) for y = 0, 6 # 0 there holds

3 j 3 i i
%f (ln(V — (V38T )+ In(V —e T (V3 +8)%)> —Bx+te,

(38)
(i1) when y # 0,5 = 0, we get

3+i3

2 2 1 7 2 i o 1 3
1 (ln(V3—(V +y)3)+e3 In(V3i —e3 (V +y)3))=a x +c,

(39)
(iii) conditions y> = —682 # 0 imply
MHV, ) +eT mH(V,e3)+e > mHV,eT)=6a’x+c, (40
where

38ty (r+y)—oyT+30)T +2y? T?

H(t, w) 2y

(t—wT) 41)

withT = (2 4y 7 +8)3.
4.1.2.3. Solutions invariant w.r.t. 03, 04, 05, and og.
For symmetries 03, 04, 05, and o the reduced ODEs are of the form W,,, = 0. This
gives only trivial solutions to dVN, cf. Remark 3.
4.1.2.4. Solutions invariant w.r.t. o7, 0g, 09, and o1g.
For symmetries o7, ..., o190 we found neither general nor particular solutions of the
reduced equations. Below we write the forms of the invariant solutions of dVN that
include functions W and reduced ODEs that define these functions.

For o7 we have

u=alnx+Wyxh, (42)
where W (z) satisfies

3 2
W..= -2 Sz —DW_+z(11zW, —3a) sz+(5ZWz2—20t) WZ- “3)
2z2(B-DW,+BB-DW, —az
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The og—invariant solutions are
u=x4+ay)lnx +xW(yx_1), 44)

where for W (z) there holds

53— l)WZZZ—z(Sz—3a) W,,+3z—2«

Wor = 45
e 22(B-DW, -2 +az2+1 “45)
Symmetry o9 produces the invariant solution
u=y(ny+W(yx") (46)
with the reduced ODE
W — 2B =YWL+ (16223 - D)W, =3) W, +4 523 - D W,
e 223 @B - D W +42@ - DWW, —z '
(47)
Finally, for o9 we get
u=eP Wy —ax). (48)
with the defining equation for W (z) of the form
W, — B S —DWZ —aB(llaW,—38W)W.,
TP 2@ - D)W — BB — D)W, +a?2p2W
SaW2—4BWW.
+4° ol _2PW (49)

2a @ —-1D)W, —BBa3 - D)W, +a2p2W’
4.2 Reduction of dVN w.r.t. y>

The y,—invariant solutions of dVN satisfy x» = 3 u — x ux — y uy = 0, therefore they
have the formu = x3 U (t,7), 7 = yx_l, where U is a solution to

1
uu=g@waQQLANh—of—nw+3¥mUm

+(522 —DHUE —2z(11zU, —9U)U,, +4U, (52U, —6U)). (50)
pad

This equation admits a Lax representation. To show this, consider the lift (x2, x2) of
X2 to the Lax representation (2) with x, = %q — X gy — ygy. Solutions to x» = 0
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have the form ¢ = x% Q(t, 7). Substituting this into (2) yields

_2 5y 3@ D

9
+§Q3—3(3zUZ—3U)Q,

1
0}=—(3B00.-2(U; —2U,)).
27

2
QQ§+E<<z3+1>UZ—3z2U)QZ

For § = Q, we obtain another Lax representation

S6+3UZZS4+F(Z U, Uz’Uzz’Uzzz)S +G(z,U, UszZZ)

S(zS2+2U, —Uy)
g _S(Sz+2Uzz_21Uzzz)
T 2@S?H2U, - Uy)

where

F@ U U Uz Uizl) =4 (2 (@ = DU — 32 = DU +322U) Uz
~(122-2) U2 +2z(13 U, —9U) U, — 162U + 12U U,,
Gz, U, UZ,UZZ)—Z — 62U, Uy (zU,;; —2U;) —8U;.

The symmetry algebra of equation (50) is generated by the family A(z) U, + A’ (¢) U +
% A”(t) (z3 + 1) with arbitrary function A(¢). This symmetry provides invariant solu-
tions to (50) of the form U = % (W(z)—A'(1) (z3+1)) A(t)~', where W is a solution
to ODE (19) with @ = 3. Hence solutions (20), (24), (25) of (19) generate the following
solutions of dVN:

U= A ((y+ZOX) 13 x"+y )), 20(zp+1) =0, (51)
I Y O N Y ) .

and

_ (cg — ZC%) y3 + 9c1c%x y(cy +cix) + (c% — ch) x3 = A/(t)()c3 + y3)
B A1)

(53)

with c; ¢p # 0.
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4.3 Reduction of dVN w.r.t. }3

For x3—invariant solutions we have u, + A u, + % A’ y2 = 0, thus such solutions have
the form

At)y?

u=Wi(,z) — 6AD) "

7=y — A(t)x. (54)

Substituting this into (1) and denoting V = W_,, we get the nonlinear PDE of first
order

v, + 2(A3_1)v+éi V. 2—A—/v—o 55
t AZ Z+A = VU (55)

We did not find the general solution to (55), instead we obtain three families of par-
ticular solutions for this PDE.

First, we note that substitution V = —% A’A71 (A3 — 1)~ 7 reduces (55) to the
ODE A” = (2A3 + 1) (A)> A~1 (A3 — 1)~! for function A. Integrating this when
A # const, we get solution of dVN of the form

1A 1A ,

= (y—Ax)} — = 3, 56
DA -V A e (56)
where function A(?) is defined implicitly by equation
A—1)? 3
lnﬁ+2\/§arctan (% (2A+1)> =cit+co, 57

and cg, ¢] # are constants.

When A(t) = ¢ € R\{1}, equation (55) gets the form V; 42 (E-nHV V, = 0.The
(multi-valued) solutions of this equation have the form 2 (B =DtV +GWV) =z,
where G is an arbitrary function of one variable. They produce the family of solutions

u= Wi, z), Z=y—¢x, (58)
where function W is defined implicitly by ODE
23 =Dt W, + G(We,) = z. (59)
When A(t) = 1, we have W;,; = 0, and hence

u=H(y—x)+p1®)(y —x)+ pot) (60)

with arbitrary functions H, po, p of one variable. We can put pg = p; = 0 without
loss generality in accordance with Remark 3.
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4.4 Reduction of dVN w.r.t. ¥4

Solutions of dVN that are invariant with respect to x4 satisfy equation u, = A(t) x
and therefore they have the formu = A(¢) x y + W (¢, x). When A # 0, substituting
this into (1) gives Wyy = A’ A~! so we have solutions of dVN in the form

y= L A0 B HA@ Xy + pa(t) x? 61
6 A(t)

with arbitrary function p;.
Finally, for A = 0, equation dVN is satisfied identically, so

u=Ww({,x) (62)

is a solution to dVN for arbitrary function W of two variables.

5 Non-invariant solutions

Some of the solutions obtained in Sect. 4 admit natural generalizations that are not
invariant with respect to symmetries from Sym,(dVN).

For example, solution (62) is a particular case of the family of solutions u =
f(t, x) + g(t, y) with arbitrary functions f and g. The o»— invariant solutions from
subsection 4.1.2.2 are included is the set of separable solutions of the form u =
Xy (x) Y_y(y), where X, and Y,, are independently defined by either one of systems
(33)—(34), (36)—(37), (40)—(41), or equation (38), or (39).

Nontrivial polynomial solutions (11), (14), (18), (27), (28), (51), (53), (56)—(57),
(61) lead to idea to consider solutions of the form

U= Z Tij () x' y/. (63)

I<i+j<N

Below we present such solutions for N > 3.

51 N=3
Substituting (63) into (1) yields system of ODEs

Ty, =62 T30 + To3) To1 +2T5,
T), = 6 (T30 +2Tp3) Tia + 2 T3, (64)
T{, = 6 (T30 + T3) T11 + 4 (To0T>1 + To2T12).

for unknown functions 751, 712, T11 and arbitrary functions 739, To3, T20, To2 of t.

Solutions (11), (14), (18), (27), (51), (53), (56)—(57), (61) are particular cases of
solutions given by system (63)—(64) for appropriate choices of functions 73, To3, 120,
Too>.
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Analysis of system (64) gives two families of solutions to dVN. The first one reads

1 T2/1 3 3 3T o, T1/2 3 3 3T,
=—— | = -2 - — —= -2 - —
* 138 <T21 Y g +2T21x +T12 * Y +2T21x

1 Tl/l 2 2 3 3 3 3 3 3
+-—x"+ Ty + <(T —2T5) x> + (Ty —2T‘)y>
4 T 9T T1» 21 12 12 21

+xy (T x+Tizy+T1p), (65)

where T>1, T12, T11, and Top are arbitrary functions of 7 such that 751 # 0 and 772 # O.
When T>; = T, = 0, we obtain solution

171/
u =Tso(x3—y3)+gﬁy3+T20x2+T11xy+Tozy2 (66)

with arbitrary functions 711, T30, T, To2 of t such that 771 # 0.

52N=4

Substituting (63) with N = 4 into (1) and analyzing the resulting system we get four
families of solutions of dVN:

T/
w=T, <4x3y—3y4)+6—71,1y3+T2y2, Ty #0, (67)

17
u=T (17)64 —36x3y —90)62)/2 — 36xy3 + 17y4> + 6T 3 +y3),
T #0, (68)

17
u="T (17)64 —36x3y —90)czy2 - 36xy3 + 17y4> + 6T (x* +y3),

T #0, ceR, (69)
AT2T'T" —8T%(T"): 4+ 3(T)*
u= 1728 T2 (;/)12/34_ &) (ZT T" (x* + yz) —3(1")? y2>
+(T)P (x — ) - iT—"y<3x2—3xy+2y2>
18 T’
1 T/ 2 2 /
+E?y(3x +y9), T #0, T"#0. (70)

Solution (68) with T = 1 coincides with solution (28).

53N=5

For N = 5 we obtain the family of solutions

u=Tso(x — )+ Ts0x (x> +3yH) + Tos y (0> +3x?)
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e 50 2(y=3x)+T (71)
30T50y y X 11Xy,

where T5¢ is an arbitrary nonzero function of ¢, while T3¢, Top3, and 77; satisfy the
following system of ODEs:

2
L L (3T T(T) +30T5’0
0150 \ o T Tso
+6 (T30 + To3)°,

) (T30 — 2 To3)

(Ty)* | Ty (72)
T, = —2 30 (Tos — 2 T30) + 6 (T30 + T3)?,
03 150 75 5T50(O3 30) (T30 + To3)
/ TSO
T, =\ == +6(T30 + To3) | T11.
5T5
54N>6
For each N > 6 we find the family of solutions
N
u=ZTk(x—)’)k+T30(x3+3x2y)+T03(y3+3xy2)
k=4
I Ty (73)
—_— N—-1)Tny_1y—NT,
+2N27/"Ny(( )IN-1Y N x(x+y))
1 Tyoy 5 2, .2
e T T R
AN Ty Y 4+ To x4+ y)+Tixy

where Ty, Tn—1, and Ty are arbitrary functions of ¢ such that Ty # 0, Ty—1 # 0,
while functions 7y withk € {4, ... N —2}, Tz, T3, and 771 obey the following system
of ODEs:
1
Tk/ = W((kNTk Ty —(k+1D (N —=1)Tiy1 Tn-1) T](]
+k+ )N Tt TNTY ), kel ...,N =2},

T/y=——— (NTy T/ — (N — 1) (T,)?
30 6N2T1%,( N Ty —( ) (Ty)
24Ty (N = 1) Ty_1T}, — N Ty Tj_,)
+36 N> Ty (T30 + To3)> — 6 N (T3 + 4 To3) Ty i),
1
T=——— (NTyT! — (N = 1)(T,)?
03 6 N2 T[%/( N 1IN ( ) ( N) (74)
24Ty (N = 1) Ty_1 T}, = NTy T};_,)
+36 N2 T (T30 + To3)* — 6 N (4 Tz0 + Toz3) T T,
1
T/, = T3 (NTNTy_, — (N =D Tn_1 T) Ty

+6N T3 (T30 + Toz) (Ti1 +2Tao) — 6 N2 TR T30Ty,_,
2
+6 N ((N —1)TnT30 — 3 NTy T20> TNTA/)-
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6 Cosymmetries and conservation laws

Cosymmetries of equation (1) are solutions i to equation (4), which is of the form

DDy Dy () = try (DY (¥) + Dy () + iy DI Dy() + ttyy Dy Dy (%)
+3ttay DIW) + (s + tyyy) Dx Dy (W) + 3ty DY)
+2 Uxxxy Dy(y) +2 Uxyyy Dy(w) (75)

Direct computations show that each solution ¢ € C*°(J 2(1r)) of equation (75) is a
linear combination of the following cosymmetries:

Y1 = Inuyy,

Y2 = A,

V3 =2Aux + A'x,

Yy =2Auyy+A/y,

Ys =4 A 2 (U — Uy tyy) +ury) +2A QX gy +uy) + A" x7,

Yo =4 A Q2 Gy — Uryue) +uly) +2A Qyuyy +uy) + A"y,

Y7 =12 A Guy + 6 (e thx + tpy ttyy) — 18ty Uy ttyy — 213,
—6 A" Gup +4(x (e — gy ttyy) + y (Ury — Uyy Uyy))
A2 (tex (X thx + 12) + thyy (Yityy +uy)) — A” (27 4 57)
—6A" ((xuy + yuy+ y? Uyy + X% tyy).

Here A = A(¢) are arbitrary (smooth) functions.
The conservation laws £21, ... , £27 associated to cosymmetries 1, ... , Y7 are given
by the formulas

1
21 =uyy (Inuyy, — dx Ndy + <§ u% — Uxy Uyy In uxy) dy ndt

+ (% u, — Uyy Uyy lnuxy> dt Ndx,

20 =2Auyy (dx ANdy —uyxdy Ndt —uyydx ANdt) — A'(uydy — uy dx) Adt,
235 = A Gy tlxy dx Ady — ttyy (Usy + 2, + gy ttyy) dy A dt

F Bty (rx — 2uryttyy) +uy, +ul,)di Adx)

—3 A" X (tx thxy dy + (Urx — Uxy Uyy) dX) Ad,
24 =AQuyyuyydx Ndy —3uyy (U + uf} +lyyye)dx Ndy

+@Buyy (Ury — 2Uxy Uxy) + uiy + uiy) dy A dt)

+3A"y (tyy txy dx + (ry — uxy Uyy) dy) Adt,
Qs =y, GAuE +2A xuy + A" x?) dx Ady
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+ (A (8 Uxy Uxx (uyy Uxy — Urx) — uxy (Mxx - u_:;y))

/ 2 2
+2A (x uxy(uxyuyy — Uy —UL) — quxxuxy) —A"x uxxuxy) dy Adt

+(A (4 ((urx — uyy uxy) — Uxy Uyy uxx) uxx (4uxy+uxx)
A Qupy (X Uy 4 ux) = 2Uyy Uyy (2% Uyy + Uy) — gx (uxy +ul)))
—A" x? Uy Uyy — A x? ux) dt Adx,

Q6 =1txy GAus, +2A yuy, + A" y*)dx Ady
(A @ (U =t ) = sty 1) = Fuyy Gy + 03,
FA Quiy (Yuyy +uy) = 2upy iy Qyuyy +uy) — 3y @3, +u3))
—A" Y Uy gy — A" y? uy> dy A dt

+(A(8uxyuyy(uxxuxy try) — 3 ey W3y, — 1))

2
+2A (y Uyy (Uyy Uxy — Upy — uyy) — Uy Uyyllyy) — A" y2 Uyy uyy) dt Ndx,

L akA
27 =ZW(Pkdx/\dy+dey/\dt—i—det/\dx),
k=0

where
1
Py =— (2 Uy (6 (Urx tyx +Upyttyy) + uix — 3 Uy UyylUyy + uiy) — Uy ugy),

1
P = 12 Uyy (ttx Uy +uyityy +3(yuty + uy) +2(x”xx +yu)y) =3 YUy Myy)

Py = ﬂ 61 ((x Uyy + Y llyy) Uy + Uy (x2 Uxy + y2 Uyy + 2(xux +y uy)))

—(xuxx +y “xy) uty)’

Qo = 7 A3 utzy Uyy +yy (Ouyyttyy (6uy + 3“;2”( — Uxy Uyy) — Upx (U + 6u)2m))
F G — 120y ey thyy — 203, — 207 ) ttyy + 21ty (Rl — 3y ),
1
0 = % (ufcy (X tyy —uy) —3uyy (AX Uxy +3uy) Uy — 3yu,2y —2x uix Uyy

—3 (4 Y thx Uy — Uy tyy) Upy + Bty QY ey — Uux) uF, — 1y, (yityy + uy)
—3uyy Gu; + 2yu2 —22xuxy —uy)Uyy) Uyy
FBug i, +9yu —4yu ) uyy),

1

0> = 7_2 (€] (y2 Ury Uyy + 61 (y u?y + X Uy uxy) - (x2 Uxy + 61x ”ty) Ury)

-3 (x2 uxyu)zcx +2uyy(xux +yuy, + y2 Uyy)Uyy + (61 YUy — x2 uiy) Uyy)

—y? (udy +ud) — 18x u; uyy),



126 Page 24 of 26 0. 1. Morozov, J.-H. Chang

1
Q3 = o (81 (xu + yuy —w) + 3y = ( + y) r st = 3y ),

1
2 2 3 3
Ry = (D) (B (upy Uyx — Uyy u,y) + Guy — 12Uy gy ttyy — 2 (uy, + uxy)) Uty
2 3 2 2 2
=6 (uyy Uy — Uy (Ux Uxy — Uy) Ury — 3y Uy, UY)

+2 Uxy 4 uiy —3uy) uyy)s

Ri= B Qxul + G yury — X uyytyy + 2ty thyy) Upy) — Uy (X gy + y)
—Buyy (Gyuyy +3uy)ury — 2xuyy —uy) uiy + 3 (Y Uy — urttyy))
F2uxyuyy (2yuxy —uy) —3x u)zcx Uyy — Y uiy) + uf’cy (¥ uxy — uy)
ity uiy QBuy —4xuyy)),

Ry = % (81 (yug ttey — xup) + Gx% gy — 181 yupy) e — x7 (3, +143,)

=3 sy (g + 15,) = (6% (tuy + 107) — they Qx7 gy + Y7 1y)) )

—6 Uxy (Xux +y My) Uyy),

1
R = i(lSt(u—xux —yuy)+x3)utx—(x3+y3)uxyuyy—3xui).

7 Concluding remarks

The results of the paper can be summarized as follows. Employing the methods of the
Lie symmetry group analysis we have found a number of exact solutions for the dis-
persionless Veselov—Novikov equation, including solutions in elementary or elliptic
functions (17), (33)-(34), (36)—(37), (38), (39), (40)—(41), (52), or functions repre-
sented by quadratures (15)—(16), (22)—(23), (58)—(59). We have indicated ordinary
differential equations (10), (19), (43), (45), (47), (49) that describe all other invariant
solutions. We have studied some non-invariant solutions and found a broad set of poly-
nomial solutions (65)—(74). Furthermore, we have presented all the local conservation
laws of order up to two.

While ODEs (10), (19), (43), (45), (47), (49) are not integrable by quadratures in gen-
eral, their origin as reductions of Lax-integrable PDEs (8) and (50) allows one to hope
that the method of prolongation structures in the version implemented in [16] could be
applicable to examine these ODEs. Likewise, the methods of weak symmetries [19,20],
nonclassical symmetry reductions, see [5] and references therein, conditional symme-
tries [7,8], or stable-range approach [26], can be useful to generate new non-invariant
solutions of the dispersionless Veselov—Novikov equation. We intend to address these
issues in our future work.
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