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Abstract
In this paper, a generalized nonlinear Camassa–Holm equation with time- and space-
dependent coefficients is considered. We show that the control of the higher order
dispersive term is possible by using an adequate weight function to define the energy.
The existence and uniqueness of solutions are obtained via a standard Picard iterative
method, so that there is no loss of regularity of the solution with respect to the initial
condition in some appropriate Sobolev space.

Mathematics Subject Classification 35C07 · 47G30 · 35L05 · 35A01

1 Introduction

1.1 Presentation of the problem

In this paper, we study the Cauchy problem for the general nonlinear higher order
Camassa–Holm-type equation:

⎧
⎪⎪⎨

⎪⎪⎩

(1 − m∂2x )ut + a1(t, x, u)ux + a2(t, x, u, ux )uxx
+a3(t, x, u)uxxx + a4(t, x)uxxxx + a5(t, x)uxxxxx = f

for (t, x) ∈ (0, T ] × R

u|t=0 = u0,

(1.1)

where u = u(t, x), from [0, T ] × R into R, is the unknown function of the problem,
m > 0 and ai , 1 ≤ i ≤ 5, are real-valued smooth given functions where their exact
regularitieswill be precised later. This equation covers several important unidirectional
models for the water waves problems at different regimes which take into account the
variations of the bottom. We have in view in particular the example of the Camassa–
Holm equation (see [1,2]), which is more nonlinear then the KdV equation (see for
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instance [3–8]). However, the most prominent example that we have in mind is the
Kawahara-type approximation (see [9,10]), in which case the coefficient a5 does not
vanish. The presence of the fifth order derivative term is very important, so that the
equation describes both nonlinear and dispersive effects as does the Camassa–Holm
equation in the case of special tension surface values for the development of models
for water waves problem was initiated in order to gain insight into wave breaking (see
[11,12]).

Looking for solutions of (1.1) plays an important and significant role in the study of
unidirectional limits for water wave problems with variable depth and topographies.
To our knowledge the problem (1.1) has not been analyzed previously. In the present
paper,we prove the localwell-posedness of the initial value problem (1.1) by a standard
Picard iterative scheme and the use of adequate energy estimates under a condition of
nondegeneracy of the higher dispersive coefficient a5.

1.2 Notations andmain result

In the following,C0 denotes any nonnegative constant different than zero whose exact
expression is of no importance. The notation a � b means that a ≤ C0 b.

We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters
λ1, λ2,…and whose dependence on the λ j is always assumed to be nondecreasing.

For any s ∈ R, we denote [s] the integer part of s.
Let p be any constant with 1 ≤ p < ∞ and denote L p = L p(R) the space of all

Lebesgue-measurable functions f with the standard norm

| f |L p =
(∫

R

| f (x)|pdx
)1/p

< ∞.

The real inner product of any two functions f1 and f2 in the Hilbert space L2(R) is
denoted by

( f1, f2) =
∫

R

f1(x) f2(x)dx .

The space L∞ = L∞(R) consists of all essentially bounded andLebesgue-measurable
functions f with the norm

| f |L∞ = sup | f (x)| < ∞.

We denote by W 1,∞(R) = { f , s.t. f , ∂x f ∈ L∞(R)} endowed with its canonical
norm.

For any real constant s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all
tempered distributions f with the norm | f |Hs = |�s f |L2 < ∞, where � is the
pseudo-differential operator � = (1− ∂2x )

1/2. For any two functions u = u(t, x) and
v(t, x) defined on [0, T ) × R with T > 0, we denote the inner product, the L p-norm
and especially the L2-norm, as well as the Sobolev norm, with respect to the spatial
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variable x , by (u, v) = (u(t, ·), v(t, ·)), |u|L p = |u(t, ·)|L p , |u|L2 = |u(t, ·)|L2 and
|u|Hs = |u(t, ·)|Hs , respectively.

Let E be a given normed space we denote L∞([0, T ); E) the space of functions
such that u(t, ·) is controlled in E , uniformly for t ∈ [0, T ):

‖u‖L∞([0,T );E) = ess sup
t∈[0,T )

|u(t, ·)|E < ∞.

Let E be a given normed space we denote C([0, T ); E) the space of functions such
that u(t, ·) is controlled in E , uniformly for t ∈ [0, T ):

‖u‖L∞([0,T );E) = sup
t∈[0,T )

|u(t, ·)|E < ∞.

Let X be a given space, we denoteC([0, T ); X) the space of functions such that u(t, ·)
is in X .

Finally, Ck(Ri ), i ≥ 1 denote the space of k-times continuously differentiable
functions over R

i .
For any closed operator T definedon aBanach space X of functions, the commutator

[T , f ] is defined by [T , f ]g = T ( f g) − f T (g) with f , g and f g belonging to the
domain of T . The same notation is used for f as an operator mapping the domain of
T into itself.

Actually, we admit without proof this lemma that presents some properties for the
commutator operator.

If f ∈ F and g ∈ G, F and G being two Banach spaces, the notation | f |F � |g|G
means that | f |F ≤ C |g|G for some constant C which does not depend on f nor g.

Here, S(R) denotes the Schwartz space of rapidly decaying functions, and for any
distribution f ∈ S ′(R), we write f̂ Fourier transform on S ′(R).

We use the classical notation f (D) to denote the Fourier multiplier, namely,
f̂ (D)u(·) = f (·)̂u(·).
We use the condensed notation

As = Bs + 〈Cs〉s>s0 (1.2)

to say that As = Bs if s ≤ s0 and As = Bs + Cs if s > s0.

1.3 Product and commutator estimates in Sobolev spaces

Let us recall here some product as well as commutator estimates in Sobolev spaces,
used throughout the present paper (see [11]).

Lemma 1.1 (product estimates) Let s ≥ 0, one has ∀ f , g ∈ Hs(R)
⋂

L∞(R), one
has

| f g |Hs � | f |L∞ | g |Hs + | f |Hs | g |L∞ .
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If s ≥ s0 > 1/2, one deduces thanks to continuous embedding of Sobolev spaces,

∣
∣ f g

∣
∣
Hs �

∣
∣ f

∣
∣
Hs

∣
∣ g

∣
∣
Hs .

Moregenerally, for s ≥ 0 and s0 > 1/2, one has∀ f ∈ Hs(R)
⋂

Hs0(R), g ∈ Hs(R),

∣
∣ f g

∣
∣
Hs �

∣
∣ f

∣
∣
Hs0

∣
∣ g

∣
∣
Hs + 〈∣

∣ f
∣
∣
Hs

∣
∣ g

∣
∣
Hs0

〉

s>s0
.

Let F ∈ C∞(R) be a smooth function such that F(0) = 0. If g ∈ Hs(R)
⋂

L∞(R)

with s ≥ 0, one has F(g) ∈ Hs(R) and

∣
∣ F(g)

∣
∣
Hs ≤ C(

∣
∣g

∣
∣
L∞ , F)

∣
∣ g

∣
∣
Hs .

Weknow recall commutator estimate, mainly due to theKato–Ponce [13], and recently
improved by Lannes [11] (see Theorems 3 and 6):

Lemma 1.2 (commutator estimates)
For any s ≥ 0, and ∂x f , g ∈ L∞(R)

⋂
Hs−1(R), one has

∣
∣ [�s, f ]g ∣

∣
L2 �

∣
∣ ∂x f

∣
∣
Hs−1

∣
∣ g

∣
∣
L∞ + ∣

∣ ∂x f
∣
∣
L∞

∣
∣ g

∣
∣
Hs−1 .

Thanks to continuous embedding of Sobolev spaces, one has for s ≥ s0 + 1, s0 > 1
2 ,

∣
∣ [�s, f ]g ∣

∣
L2 �

∣
∣ ∂x f

∣
∣
Hs−1

∣
∣ g

∣
∣
Hs−1 .

More generally, for any s ≥ 0 and s0 > 1/2, ∂x f , g ∈ Hs0(R)
⋂

Hs−1(R), one has

∣
∣ [�s, f ]g ∣

∣
L2 �

∣
∣ ∂x f

∣
∣
Hs0

∣
∣ g

∣
∣
Hs−1 + 〈∣

∣ ∂x f
∣
∣
Hs−1

∣
∣ g

∣
∣
Hs0

〉

s>s0+1
.

We conclude this section with the following remark Also, let us remark these contin-
uous embedding.

Remark 1.1 Let s > 3
2 , then:

• Hs(R) ↪→ W 1,∞(R)

• Hs−1(R) ↪→ L∞(R)

• Hs(R) ↪→ Hs−1(R).

Moreover, we define the following operators for s > 0: �s
m = (1 − m∂2x )

s
2 and its

inverse �−s
m such that the Fourier Transform is given as following:

̂�−s
m (u) = (1 + mξ2)−

s
2 û.

Finally, we will study the local well-posedness of the initial value problem (1.1) in
Hs(R) endowed with canonical norm.
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1.4 Main results

Let us now state our main result:

Theorem 1.1 Let s > 5
2 and f ∈ C([0, T ]; Hs(R)). We suppose that:

• a1, a2, a3 are smooth mappings such that a1, a3 in C([0, T ],C [s]+1(R2)) and a2
in C([0, T ],C [s]+1(R3)).

• a4 ∈ C([0, T ]; Hs+1(R)), ∂t a4 ∈ L∞(0, T , L∞(R)),
• a5 ∈ C([0, T ], L∞(R)), ∂xa5 ∈ C([0, T ]; Hs+2(R)), with ∂t a5 ∈ L∞

(0, T ; L∞(R)),
• F(t, x) := ∫ x

0
a4
a5
dy ∈ C([0, T ]; L∞(R)) and ∂t F ∈ L∞(0, T ; L∞(R)),

Assume moreover that there is a positive constant c1 > 0 such that c1 ≤
|a5(t, x)| ∀ (t, x) ∈ [0, T ] × R. Then for all u0 ∈ Hs(R), there exist a time T � > 0
and a unique solution u to (1.1)

in C([0, T �]; Hs(R)).

Remark 1.2 There is no restriction on the signs of the coefficients a2 and a4; this means
that our result handles also the case of the anti-diffusive terms, in which case these
terms are controlled by dispersion.

2 Proof of themain results

Before we start the proof, we give the following useful lemma:

Lemma 2.1 Let m > 0, s > 0 then the linear operator
�2

m: H
s+2(R) → Hs(R) is well defined, continuous, one-to-one and onto. If we

suppose that u = �−2
m f for f ∈ Hs(R) then:

|u|Hs+2 ≤ 1

m
| f |Hs if 0 < m ≤ 1 (2.1)

|u|Hs+2 ≤ | f |Hs if m ≥ 1. (2.2)

Moreover,

�s�−2
m = �s−2�0

m = �0
m�s−2,

where �0
m: Hs(R) → Hs(R) is linear continuous one-to-one and onto operator

defined by

�̂0
mu(ξ) = (1 + ξ2)(1 + mξ2)−1û(ξ),

with

|�0
m |Hs→Hs ≤max (

1

m
, 1), (2.3)

|(�0
m)−1|Hs→Hs ≤max (m, 1). (2.4)
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Proof We have ‖�−2
m f ‖Hs+2 = ‖(1 + ξ2)

s
2+1(1 + mξ2)−1 f̂ ‖L2 . If m ≥ 1, then

1 + mξ2 ≥ 1 + ξ2 and 1+ξ2

1+mξ2
≤ 1, therefore

‖(1 + ξ2)
s
2+1(1 + mξ2)−1 f̂ ‖L2 = ‖(1 + ξ2)

s
2 (1 + ξ2)(1 + mξ2)−1 f̂ ‖L2

≤ ‖(1 + ξ2)
s
2 f̂ ‖L2 .

If 0 < m < 1, we have 1+ξ2

1+mξ2
= 1 + (1 − m)

ξ2

1+mξ2
≤ 1 + (1−m)

m = 1
m , then

‖�−2
m f ‖Hs+2 ≤ 1

m
‖ f ‖Hs .

Now we have

‖�0
m f ‖Hs = ‖�2�−2

m f ‖Hs = ‖�−2
m f ‖Hs+2 ≤ max(1,

1

m
)‖ f ‖Hs .

and

‖(�0
m)−1 f ‖Hs = ‖(1 + mξ2)(1 + ξ2)−1(1 + ξ2)

s
2 f̂ ‖L2 .

If m ≥ 1, then (1 + mξ2)(1 + ξ2)−1 = 1 + (m − 1) ξ2

1+ξ2
≤ m, therefore

‖(�0
m)−1 f ‖Hs ≤ m‖ f ‖Hs .

If 0 < m < 1, (1 + mξ2)(1 + ξ2)−1 ≤ 1, then

‖(�0
m)−1 f ‖Hs ≤ ‖ f ‖Hs .

Finally ‖(�0
m)−1 f ‖Hs ≤ max(1,m)‖ f ‖Hs .

We will start the proof of Theorem 1.1 by studying a linearized problem associated
to (1.1). �

2.1 Linear analysis

For any smooth enough v, we define the “linearized” operator:

L(v, ∂) = �2
m∂t + a1(t, x, v)∂x + a2(t, x, v, vx )∂

2
x

+ a3(t, x, v)∂3x + a4(t, x)∂
4
x + a5(t, x)∂

5
x .

and the following initial value problem:

{L(v, ∂)u = f ,
u|t=0 = u0.

(2.5)
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Equation (2.5) is a linear equation which can be solved by a standardmethod (see [14])
in any time interval in which its coefficients are defined and regular enough. We first
establish some precise energy-type estimates of the solution. We define the “energy”
norm,

Es(u)2 = |w�su|2L2 ,

wherew is a weight function that will be chosen later. For the moment, we just require
that there exists two positive numbers w1, w2 such that for all (t, x) in (0, T ] × R,

w1 ≤ w(t, x) ≤ w2,

so that Es(u) is uniformly equivalent to the standard Hs-norm. Differentiating
1
2e

−λt Es(u)2 with respect to time, one gets using (2.5)

1

2
eλt∂t (e

−λt Es(u)2) = −λ

2
Es(u)2 − (

�0
m�s−2(a1ux ), w

2�su
)

−(
�0

m�s−2(a2uxx ), w
2�su

) − (
�0

m�s−2(a3uxxx ), w
2�su

)

−(
�0

m�s−2(a4uxxxx ), w
2�su

)

−(
�0

m�s−2(a5uxxxxx ), w
2�su

)

+(
�0

m�s−2 f , w2�su
) + (

wwt�
su,�su

)
.

We now turn to estimating the different terms of the r.h.s of the previous identity by
using the needed estimates provided from Sect. 1.3

• Estimate of
(
�s−2(a1ux ),�0

mw2�su
)
. By the Cauchy-Schwarz inequality and

the Sect. 1.3 on the composite functions we have

|(�s−2(a1ux ),�
0
mw2�su

)| ≤ 1

m
|a1(t, x, v) − a1(t, x, 0)|Hs−2×

|a1(t, x, 0)ux |Hs−1 |w2�su|L2

≤ C(m−1, a1, ‖v‖Hs , |w|L∞)Es(u)2. (2.6)

• Estimate of
(
�s−2(a2uxx ),�0

mw2�su
)
. Similarly as the above estimation, we have

|(�s−2(a2uxx ),�
0
mw2�su

)| ≤ C(m−1, a2, ‖v‖Hs , |w|L∞)Es(u)2.

•Estimate of
(
�s−2(a3uxxx ),�0

mw2�su
)
. Since we have more than s derivative on

u, we remark that one can write:

a3uxxx = ∂2x (a3∂xu) − ∂2x a3∂xu − 2a3∂
2
x u,

then

�s−2(a3uxxx ) = �s−2(∂2x (a3∂xu)) − �s−2(∂2x a3∂xu) − 2�s−2(∂xa3∂
2
x u).
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Now use the identity �2 = 1 − ∂2x to get that

�s−2(∂2x (a3∂xu)) = �s−2((1 − �2)(a3∂xu)
)

= �s−2(a3∂xu) − �s(a3∂xu)

= �s−2(a3∂xu) − [�s, a3]∂xu − a3�
s∂xu,

then we obtain:

(
�s−2(a3uxxx ),�

0
mw2�su

)

= (
�s−2(a3∂xu),�0

mw2�su
) − ([�s, a3]∂xu,�0

mw2�su
)

− (
a3�

s∂xu,�0
mw2�su

) − (
�s−2(∂2x a3∂xu),�0

mw2�su
)

− 2
(
�s−2(∂xa3∂

2
x u),�0

mw2�su
)
.

By integration by parts, the third term of the last equality becomes:

(
a3�

s∂xu,�0
mw2�su

) = −1

2

(
∂x (�

0
mw2a3), (�

su)2
)
,

Now by Cauchy Schwarz we have:

|(�s−2(a3uxxx ),�
0
mw2�su

)| ≤ 1

m

(‖a3∂xu‖Hs−2Es(u)

+‖∂xa3‖Hs−1‖∂xu‖Hs−1Es(u)

+‖w2a3‖W 1,∞Es(u)2

+‖∂2x a3∂xu‖Hs−2Es(u) + ‖a3∂2x u‖Hs−2Es(u)
)

≤ C(m−1, a3, ‖v‖Hs , ‖w‖W 1,∞)Es(u)2.

• Estimate of
([�s−2, a4]∂4x u,�0

mw2�su
) + (

a4�s−2∂4x u,�0
mw2�su

) :

a4�
s−2∂4x u = a4�

s−2(1 − �2)∂2x u = a4(�
s−2 − �s)∂2x u

= a4�
s−2∂2x u − a4�

s∂2x u,

then:

(
a4�

s−2∂4x u,�0
mw2�su

) = (
a4�

s−2∂2x u,�0
mw2�su

) − (
a4�

s∂2x u,�0
mw2�su

)

By Cauchy Schwarz, the first term of the last equality is controlled by:

|(a4�s−2∂2x u,�0
mw2�su

)| ≤ 1

m
|a4�s−2∂2x u|L2Es(u) ≤ C(m−1, |a4|L∞)Es(u)2.
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(
a4�s∂2x u,�0

mw2�su
) = −(

a4�0
mw2, (∂x�

su)2
) + Q1, where

|Q1| ≤ C(m, s, |w|W 1,∞ , |∂xa4|L∞)Es(u)2.

Now, using the first order Poisson brackets : (see [15] for more details)

{�s−2, a4}1 = −(s − 2)∂x (a4)�
s−2∂x ,

we get:

([�s−2, a4]∂4x u,�0
mw2�su) = (s − 2)(∂x (a4)�

s∂xu,�0
mw2�su) + Q2,

Where

|Q2| ≤ C(m, s, |w|W 2,∞ , |a4|Hs+1)Es(u)2.

Now, by integration by parts we have:

(s − 2)(∂x (a4)�
s∂xu,�0

mw2�su) = − (s − 2)

2
(∂x (∂x (a4)�

0
mw2)�su,�su),

then

|([�s−2, a4]∂4x u,�0
mw2�su)| ≤ C(m, s, |w|W 2,∞ , |a4|Hs+1)Es(u)2.

• Estimate of
([�s−2, a5]∂5x u,�0

mw2�su
) + (

a5�s−2∂5x u,�0
mw2�su

) :

a5�
s−2∂5x u = a5�

s−2(1 − �2)∂3x u = a5�
s−2∂3x u − a5�

s∂3x u =
a5�

s−2∂xu − a5�
s∂xu − a5�

s∂3x u.

Therefore,

(
a5�

s−2∂5x u,�0
mw2�su

) = (
a5�

s−2∂xu,�0
mw2�su

) − (
a5�

s∂xu,�0
mw2�su

)−
(
a5�

s∂3x u,�0
mw2�su

)
.

The first two terms can be easily controlled by Es(u)2 as above. Now,

(
a5∂

3
x�

su,�0
mw2�su

) = −1

2

(
∂3x (a5�

0
mw2)�su,�su

)

−3

2

(
∂2x (w

2�0
ma5)�

s∂xu,�su
)

−3

2

(
∂x (�

0
mw2a5)�

su,�s∂2x u
)
.
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By integration by parts, we obtain

−3

2

(
∂x (�

0
mw2a5)�

su,�s∂2x u
) = 3

2

(
∂2x (�

0
mw2a5)�

su,�s∂xu
)

+3

2

(
∂x (a5�

0
mw2), (�s∂xu)2

)
.

Now:

[�s−2, a5]∂5x u = {�s−2, a5}2∂5x u + Q3∂
5
x u,

where {·, ·}2 stands for the second order Poisson brackets,

{�s−2, a5}2 = −(s − 2)∂x (a5)�
s−4∂x + 1

2
[(s − 2)∂2x (a5)�

s−4

−(s − 4)(s − 2)∂2x (a5)�
s−6∂2x ]

and Q3 is an operator of order s − 5 that can be controlled by the general commutator
estimates (see [15]). We thus get

|(Q3∂
5
x u,�0

mw2�su
)| ≤ C(m, |∂xa5|Hs+1)Es(u)2.

We now use the fact that H1(R) is continuously embedded in L∞(R) to get

|([s∂2x (a5)�s−4 − (s − 4)(s − 2)∂2x (a5)�
s−6∂2x ]∂5x u,�0

mw2�su
)|

≤ C(m, s, |∂xa5|Hs+1, |w|W 1,∞)Es(u)2.

This leads to the expression

([�s−2, a5]∂5x u,�0
mw2�su

) = −(s − 2)
(
∂x (a5)�

s∂2x u,�0
mw2�su

) + Q4,

where |Q4| ≤ C(m, s, |w|W 1,∞ , |a5|Hs+1)Es(u)2. Remarking now, by integration by
parts

− (s − 2)
(
∂x (a5)�

s∂2x u,�0
mw2�su

) = (s − 2)
(
∂x (∂x (a5)�

0
mw2)�s∂xu,�su

)

+(s − 2)
(
∂x (a3)�

0
mw2, (�s∂xu)2

)
.

(2.7)

We now choose w such that

−(s − 2)
(
∂x (a5)�

0
mw2, (�s∂xu)2

) + 3

2

(
∂x (a5�

0
mw2), (�s∂xu)2

)

+(
a4�

0
mw2, (∂x�

su)2
) = 0; (2.8)
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therefore, if we take w = (�0
m)−1

(
|a5|

(
2s−7
6

)

exp(−1

3

∫ x

0

a4
a5

dy)
)
we easily obtain

(2.8). Finally, one has

([�s−2, a5]∂5x u,�0
mw2�su

) + (
a5∂

5
x�

s−2u,�0
mw2�su

)

= Q4 + (s − 2)
(
∂x (∂x (a5)�

0
mw2)�s∂xu,�su

) − 1

2

(
∂3x (a5�

0
mw2)�su,�su

)

−3

2

(
∂2x (a5�

0
mw2)�s∂xu,�su

) + 3

2

(
∂2x (a5�

0
mw2)�s∂xu,�su

);

therefore,

|([�s−2, a5]∂5x u,�0
mw2�su

) + (
a5∂

5
x�

s−2u,�0
mw2�su

)|
≤ C(s,m, |∂xa5|Hs+1)Es(u)2.

•Estimate of
(
wt�

s−2u,�0
mw�su

)
: Using theCauchy-Schwarz inequalitywe obtain

|(wt�
su, w�su

)| ≤ C(m, |wt |L∞ , |w|L∞)Es(u)2.

Gathering the information provided by the above estimates, since one has

|(�s−2 f ,�0
mw2�su

)| ≤ 1

m
Es( f )Es(u).

If we assemble the previous estimates and using Gronwall’s lemma we obtain the
following estimate:

eλt∂t (e
−λt Es(u)2) ≤ (

C(Es(v)) − λ
)
Es(u)2 + 2Es( f )Es(u).

Taking λ = λT large enough (how large depends on supt∈[0,T ] C(Es(v(t)) for the first
term of the right hand side of the above inequality to be negative for all t ∈ [0, T ], we
deduce that

Es(u(t)) ≤ eλT t Es(u0) + 2
∫ t

0
eλT (t−t ′)Es( f (t ′))dt ′.

2.2 Proof of the theorem

Thanks to this energy estimate, we classically conclude (see e.g. [16]) the existence
of a time

T ∗ = T ∗(Es(u0)) > 0,
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and a unique solution u ∈ C([0, T ∗]; Hs(R)) ∩C1([0, T ∗]; Hs−3(R)) to (1.1) as the
limit of the iterative scheme

u0 = u0, and ∀n ∈ N,

{L(un, ∂)un+1 = f ,
un+1

|t=0
= u0.
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