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Abstract
This note deals with the linear Boltzmann equation in the non-compact setting with a
confining potential which is close to quadratic. We prove that in this situation, starting
from a smooth initial datum, the Fisher Information (and hence, the relative entropy)
with respect to the stationary state converges exponentially fast to zero.
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1 Introduction

We are interested in the long-time convergence to equilibrium of the solution f of the
so-called linear Boltzmann (or BGK) equation

∂t ft (x, y) = −v · ∇x ft (x, y) + ∇U (x) · ∇y ft (x, y) + λQ ft (x, y) (1)

where (x, y) ∈ R
2d , d ∈ N∗, λ > 0 is constant, U ∈ C2 (

R
d ,R

)
and Q is either Q1

or Q2 with
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Q1 f (x, y) = γd,σ (y)
∫

Rd
f (x, v)dv − f (x, y)

Q2 f (x, y) =
d∑

k=1

(
γ1,σ (yk)

∫

R

f (x, y1, . . . , yk−1, w, yk+1, . . . , yd)dw − f (x, y)

)

with, for some σ > 0,

γp,σ (y) = e− 1
2σ2

|y|2
(
2πσ 2

)p/2

a Gaussian measure on R
p. We assume that f0 is a probability density so that, mass

and positivity being conserved through time, ft is a probability density for all t ≥ 0.
Denoting H(x, y) = U (x) + |y|2/2, we suppose that exp(−H/σ 2) is integrable and
we denote by μ the probability law with density proportional to it (we also write μ

this density). Then μ is a fixed point of (1). Our goal is to give a quantitative estimate
for the convergence of a solution of (1) toward μ. In fact we will rather work with the
relative density ht = ft/μ, which solves

∂t ht = Lht (2)

with

Lh(x, y) = −v · ∇xh(x, y) + ∇U (x) · ∇yh(x, y) + η (Ph − h) ,

where (P, η) is either (P1, η1) or (P2, η2) with η1 = λ, η2 = λd and

P1h(x, y) =
∫

Rd
h(x, v)γd,σ (v)dv

P2h(x, y) = 1

d

d∑

k=1

∫

R

h(x, y1, . . . , yk−1, w, yk+1, . . . , yd)γ1,σ (w)dw .

Remark that P1 and P2 are Markov operators.
Equation (1) is a classical model in statistical physics, modelling the motion of

a particle influenced by an external potential U and by random collisions with other
particles with Gaussian velocities.We refer the interested reader to [12] and references
within for details. Moreover, it intervenes in Markov Chain Monte Carlo methods.
More precisely, denote L∗ the dual of L in L2(μ). Integrating by parts, we see that

L∗ϕ(x, y) = v · ∇xϕ(x, y) − ∇U (x) · ∇yϕ(x, y) + η (Pϕ − ϕ) . (3)

This is the generator of aMarkov process (X ,Y )whose law solves (1).When Q = Q1,
the dynamics of the process is the following: the particle follows the Hamiltonian flow
ẋ = y, ẏ = −∇xU (x) and, at random times with exponential law of intensity λ,
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the velocity y is refreshed to a new Gaussian value. The motion is similar when
Q = Q2, except that each coordinate of the velocity has its own exponential clock,
and is refreshed to a new Gaussian value independently from the other components.
This process is sometimes called the randomized Hamiltonian Monte Carlo process
[6]. Since its law converges to μ, ergodic averages of the process can be used as esti-
mators for the expectations of some observables with respect to μ. A non-asymptotic,
quantitative long-time convergence estimate for (2) then classically provides bounds
on the bias and variance of such estimators.

The question of the long-time convergence of (1) [or equivalenty (2)] has been
studied in much general forms in a number of works (see e.g. [12] and references
within). The exponential convergence in the L2 sense, i.e. the existence of constants
C, θ > 0 such that

‖ht − 1‖2L2(μ)
≤ Ce−θ t‖h0 − 1‖2L2(μ)

,

has been established under different assumptions by several authors [1,8,12,13]. This
long-time convergence is said to be hypocoercive [8,18], in the sense that C is neces-
sarily greater than 1 or, in other words, ht converges exponentially fast to 0 but not at
a constant rate (note that both the L2 norm and the relative entropy studied below are
non-increasing with time).

When one studies a system of N particles with chain or mean-field interactions
(so that d = Nd ′, where d ′ is the dimension of the ambient space), the L2-norm is
not well-adapted, since it scales badly in N . In these contexts, a more natural way to
quantify the distance to equilibrium is the relative entropy

∫
h ln hdμ, as in [10,15,16].

Nevertheless, entropic hypocoercivity results (see e.g. [17–19]) are usually restricted
to diffusion processes (i.e. differential operators). Indeed, since non-local operators
such as η (P − I ) do not satisfy the chain rule, it is less easy to handle derivatives of
non-quadratic quantities of h and∇h. This is a general and important problem, related
to the question of giving good definitions of non-local Fisher Information.

Nevertheless, for the linearBoltzmann equation, this has been achieved byEvans [9]
in a recent paper in the case of the periodic torus (namely x ∈ T

d , T = R/Z) with no
potential (U = 0). The purpose of the present note is to show that the computations of
Evans, together with the recent results on generalized Ornstein-Uhlenbeck processes
( [2,3,17]), allows in fact to deal with the case where x ∈ R

d and U is close to being
quadratic.

Assumption 1 There exist K , κ > 0 such that κ ≤ ∇2U (x) ≤ K for all x ∈ R
d .

In fact, we won’t deal with the entropy itself, but with the classical Fisher Information

I (h) =
∫ |∇h|2

h
dμ.

Under Assumption 1, the Hamiltonian H is strictly convex, so that, by classical argu-
ments (see e.g. [4]), μ satisfies a log-Sobolev inequality

∫
h ln hdμ ≤ cI(h),
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where the constant c only depends on κ and σ . For elliptic or hypoelliptic diffusions,
such as the kinetic Langevin (or Fokker-Planck) equation, a short-time regularization
occurs, so that the Fisher Information is finite for all positive times given that the initial
entropy is finite (see for instance [17, Theorem 9]). However, this is not the case for
equation (2), and thus we will only consider smooth initial datum with I(h0) < ∞.
More precisely, for the sake of simplicity, we will assume that, for some ε ≥ 0,

h0 ∈ Aε :=
{
g ∈ C∞ (

R
2d

)
,

∫
gdμ = 1, g ≥ ε, ∂αg bounded ∀α multi-index

}
.

Note that, for any ε ≥ 0, the setAε is fixed by Equation (2), as proved in [7, Appendix]
(here we don’t need uniform in time estimates for the bounds of the derivatives). The
result can then be extended by a density argument to all positive h0 with I(h0) < +∞.

Theorem 1 Under Assumption 1 let (ht )t≥0 be a solution of (2) with h0 ∈ A0 such
that I(h0) < +∞. Let

θ = 2

3

(
2λK

4K + λ2
− (K − κ)2√

K

)
, C = 3max

(
4K 2

4K + λ2
,
4K + λ2

4K 2

)
.

Suppose that θ ≥ 0. Then, for all t ≥ 0,

I (ht ) ≤ Ce−θ tI (h0) .

Remarks

– The result is the same for Q = Q1 or Q2, and C and θ do not depend on σ .
– The log-Sobolev inequality satisfied by μ and Theorem 1 imply that, for some
C ′ > 0,

∫
ht ln htdμ ≤ C ′e−θ tI(h0).

By the Pinsker’s inequality, considering theMarkov process (X ,Y )with generator
L∗ given by (3) and initial law f0, we get that for all measurable set A ⊂ R

2d ,

|P ((Xt ,Yt ) ∈ A) − μ(A)| ≤ 1

2
‖ ft − μ‖1 ≤

√
1

2

∫
ht ln htdμ .

This gives a bound on the bias of the Monte Carlo estimator of μ(A) based on
the process (X , Y ), with constants C ′ and θ that depends (explicitly) only on
κ, K , γ, σ .

– The assumption that the potential is convex is usual in the studies of the long-time
behaviour ofMarkovprocesses. The fact that itsHessian is also bounded above, and
more precisely that theHessian is not too far from a constantmatrix, is amuchmore
rigid assumption, which already appeared in similar works [2,5]. Besides, there are
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examples of kinetic processes with a convex potential with an unbounded Hessian,
which does not converge exponentially fast to their equilibrium [11]. Essentially,
we are able to deal with the Gaussian case because of some nice algebra, and
have some room for a small perturbation. More precisely, in the Gaussian case,
the Jacobian of the drift is a constant matrix, so that the question of the contraction
of a suitably modified Fisher Information boils down to a linear algebra problem
(see Proposition 5 below). Then a Lipschitz perturbation from this linear case can
be absorbed by the positive contraction of the linear case (see the end of the proof
of Theorem 1).

– The rate of convergence is of order λwhen λ goes to zero and of order λ−1 when λ

goes to infinity, which is similar to the kinetic Langevin case ( [14]), and expected.
Indeed, when λ is small, the typical time for the velocity to be refreshed (and thus,
to mix) is λ−1. On the other hand, when λ is large, in a time of order 1, there are
many jumps, and by the law of large number, the effective velocity is close to zero,
and the position moves (and thus, mixes) slowly. If time is accelerated by a factor
λ, the position then converges to an overdamped Langevin process.

– In this particular close-to-quadratic case, Theorem 1 answers the question raised
in [9, Section 1.5].

– Consider the case where Q = Q2 andU (x) = a|x |2 + 1
d

∑d
i, j=1 W (xi − x j )with

an even potentialW with boundedHessian and a > 0. This corresponds to amean-
field interaction between N = d particles. Provided ‖W ′′‖∞ is sufficiently small
with respect to a and λ, Theorem 1 yields a speed of convergence to equilibrium
wich is independent from the number of particles. Then, the arguments from [10,
16]may be adapted (the parallel couplingwithWiener processes being replaced by
a parallel coupling with Poisson processes) to obtain uniform in time propagation
of chaos, and long-time convergence for the non-linear PDE obtained at the limit
(note that the latter is not the Boltzmann equation, for which the interaction lies at
the level of the collisions rather than of the Hamiltonian).

2 Proof

We write ht = etLh0 the solution of (2) with initial condition h0. In the rest of the
paper, we will always consider h ∈ Aε with ε > 0. Indeed, suppose that Theorem 1
has been proved for h ∈ Aε with any arbitrary ε > 0, and consider h0 ∈ A0. Set
h(ε)
0 = (1−ε)h0+ε. Then h(ε)

t := etLh(ε)
0 = (1−ε)ht +ε so that, applying Theorem 1

to h(ε)
t and letting ε go to 0, the monotone convergence theorem yields the result for

ht . The restriction to the cases ε > 0 will ensure that all the forthcoming derivations
under the integral sign are correct. In particular, I(h) < +∞ for all h ∈ Aε for ε > 0.

We start with a general computation. Denoting by AT the transpose of a matrix (and
seeing vectors as column matrices, so that the scalar product between two vectors u
and v can be denoted by uT v), for a symmetric matrix M , we write

IM (h) =
∫

(∇h)T M∇h

h
dμ.
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Our aim is to construct M such that ∂t
(IM

(
etLh

)) ≤ −θIM
(
etLh

)
with θ > 0. In

the following, in a 2d × 2d matrix, a d × d block equal to α Id for some α ∈ R will
sometimes be denoted only by α, and N ≥ M stands for the usual order for symmetric
matrices N , M .

For an operator A, we write (∂t )|A the derivative at t = 0 along the semi-group et A.

Lemma 2 Let P be a Markov operator which fixes Aε, h ∈ Aε and M = RT R be a
positive symmetric matrix. Then

(∂t )|P−I IM (h) ≤ −IM (h) + IM (Ph) .

Proof The computation is similar to [9, Lemma 3]. Indeed,

(∂t )|P−I IM (h) =
∫

2 (∇h)T RT R∇ (Ph − h)

h
− |R∇h|2(Ph − h)

h2
dμ

=
∫

−|R∇h|2
h

(
1 + Ph

h

)
+ 2

(∇h)T RT R∇Ph

h
dμ

= −IM (h) + λ

∫
−

∣
∣∣∣
R∇h

h
− R∇Ph

Ph

∣
∣∣∣

2

Qh + |R∇Ph|2
Ph

dμ

≤ −IM (h) + IM (Ph)

where we used the positivity of the density h. �
For k ∈ �1, d�, let Ek be the 2d × 2d diagonal matrix with all its coefficients being

zero except the (d + k, d + k)th being equal to 1, and

E =
d∑

k=1

Ek =
(
0 0
0 Id

)
, E ′ = I2d − E =

(
Id 0
0 0

)
.

In the particular case of (2), Lemma 2 yields the following.

Lemma 3 Let λ > 0, h ∈ Aε and M = RT R be a positive symmetric matrix. Then,

(∂t )|η(P−I ) IM (h) ≤ −λ (IEM+ME−EME (h)) (4)

for (P, η) = (P1, η1). Moreover, this is also true for (P, η) = (P2, η2) if the right
down d × d corner of M is an homothety.

Proof We recall the following argument from [9, Lemma 1]. From ∇y P1 = 0 and
∇x P1 = P1∇x , IM (P1h) = ∫

φ (P1(∇h, h)) dμ, where φ(u, v) = (uT E ′ME ′u)/v.
Applying Jensen’s Inequality to the convex function φ and the Markov operator P1,
we get φ (P1(h,∇h)) ≤ P1φ(h,∇h). Integrated with respect to μ (which is fixed by
P1), this reads

IM (P1h) ≤ IE ′ME ′ (h) .
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Applying Lemma 2 yields (4) (since η1 = λ).
Similarly, denoting

P2,k f (x, y) =
∫

f (x, y1, . . . , yk−1, w, yk+1, . . . , yd)
e− 1

2σ2
w2

σ
√
2π

dw,

for k ∈ �1, d�, we get with the previous argument

IM
(
P2,kh

) ≤ I(I2d−Ek )M(I2d−Ek ) (h) ,

so that

(∂t )|η2(P2−I ) IM (h) =
d∑

k=1

(∂t )|λ(P2,k−I ) IM (h)

≤ −λ
(
I∑d

k=1(EkM+MEk−EkMEk )
(h)

)
.

Now, suppose that the right down d × d corner of M is an homothety, i.e. that

M =
(
M1 M2

MT
2 α Id

)

for some matrices Mi and some α > 0. In that case,

EME = α

(
0 0
0 1

)
= α

d∑

k=1

Ek Ek =
d∑

k=1

EkMEk,

which means that we have obtained the same bound (4) on (∂t )|ηi (Pi−I ) IM (h) for
both i = 1, 2. �

On the other hand, the derivative of IM along the transport semi-group et A where
A = y ·∇x −∇xU (x) ·∇y is a classical computation (see e.g. [17, Example 8]), which
we recall for the sake of completeness:

Lemma 4 For h ∈ Aε,

(∂t )|A IM (h) =
∫

(∇h)T (MJ + J T M)∇h

h
dμ (5)

with J =
(
0 −∇2U
1 0

)
.
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Proof Since A satisfies the chain rule,

(∂t )|A IM (h) =
∫ (

2(∇h)T M∇Ah

h
− Ah

h2
(∇h)T M∇h

)
dμ

=
∫ (

A

(
2(∇h)T M∇h

h

)
+ 2(∇h)T M(∇Ah − A∇h)

h

)
dμ

where A∇h should be understood coordinate by coordinate. Conclusion follows from∫
Agdμ = 0 for all g and ∇Ah − A∇h = J∇h. �
Combining the two previous results, we get:

Proposition 5 Under Assumption 1, let ht = etLh0 where h0 ∈ Aε. Suppose that
there exist a, b, θ ∈ R with b2 < a and such that, for ξ ∈ {κ, K },

N (ξ) :=
(

2b a − ξ + λb
a − ξ + λb −2bξ + λa

)
≥ θ

(
1 b
b a

)
:= θM . (6)

Then, for all t ≥ 0,

IM (ht ) ≤ e−θ tIM (h0) .

Proof Let a, b, θ ∈ R and M be as in the proposition. Since L = −A + η(P − I ),
Lemmas 3 and 4 read

∂tIM (ht ) = (∂t )|η(P−I ) IM (ht ) − (∂t )|A IM (h) ≤ −IN ′ (h)

with, for all x ∈ R
d ,

N ′(x) = M

(
0 −∇2U (x)
1 λ

)
+

(
0 1

−∇2U (x) λ

)
M − λ

(
0 0
0 a

)

=
(

2b a − ∇2U (x) + λb
a − ∇2U (x) + λb −2b∇2U (x) + λa

)
.

The proof will be concluded (by the Gronwall’s Lemma) if we prove that N ′(x) ≥ θM
for all x ∈ R

d . Fix x ∈ R
d , and let O(x) be an orthonormal d × d matrix such that

OT (x)∇2U (x)O(x) is diagonal. Let

O′ =
(O(x) 0

0 O(x)

)
.

Notice that N ′(x) ≥ θM if and only if OT N ′(x)O ≥ θM , where we used that
OT MO = M . Now,OT N ′(x)O ≥ θM if and only if N (ξk) ≥ θM for all eigenvalues
ξk of ∇2U (x), k ∈ �1, d�. Writing such an eigenvalue as ξk = pkκ + (1 − pk)K for
some pk ∈ [0, 1], we get

N (ξk) = pk N (κ) + (1 − pk)N (K ) ≥ θM
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by assumption, which concludes. �

With Proposition 5 in hand, the proof of our main result has boiled down to ele-
mentary computations.

Proof of Theorem 1 Let us find a and b such that N (ξ) as given by (6) is definite
positive for a given ξ (to be chosen later on). For simplicity, we want to enforce the
following conditions:

4b2 ≤ a , a + λb = ξ , λa ≥ 4bξ ,

which ensures that N (ξ) is diagonal with positive terms and that the corresponding M
is definite positive. It is clear that such conditions are satisfied for b small enough with
a = ξ − λb. More precisely, the first condition is implied by the third if b ≤ ξ/λ, and
the third is implied by the second ifb ≤ λξ/(4ξ+λ2) (notice thatλξ/(4ξ+λ2) ≤ ξ/λ).
As a consequence, we chose

b = λξ

4ξ + λ2
, a = ξ − λb = 4ξ2

4ξ + λ2
.

The condition 4b2 ≤ a is such that the corresponding matrix M satisfies

1

2

(
1 0
0 a

)
≤ M ≤ 3

2

(
1 0
0 a

)
.

The choice of a and b also ensures that

N (ξ) =
(
2b 0
0 −2bξ + λa

)
≥

(
2b 0
0 λa

2

)
.

For ξ ′ ∈ {κ, K }, for all γ > 0,

N (ξ ′) = N (ξ) +
(

0 ξ − ξ ′
ξ − ξ ′ 2b(ξ − ξ ′)

)
≥

(
2b − γ (ξ − ξ ′)2 0

0 λa
2 + 2b(ξ − ξ ′) − 1

γ (ξ − ξ ′)2
)

.

In other words,

N (ξ ′) ≥ θ1

(
1 0
0 a

)

with

θ1 = min

(
2b

(
1 − γ

2b
(ξ − ξ ′)2

)
,
λ

2

(
1 − 2

λaγ
(ξ − ξ ′)2 + ξ − ξ ′

ξ

))
.
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Using that 2b ≤ λ/2, we chose γ 2 = 4b/(λa) = 1/ξ to get that

θ1 ≥ θ2 := 2b

(
1 − 1

2b
√

ξ
(ξ − ξ ′)2 + ξ − ξ ′

ξ

)
.

Finally, we simply chose ξ = K , so that ξ − ξ ′ ≥ 0 for ξ ′ ∈ {κ, K }. Assuming that
(K − κ)2 ≤ 2b

√
ξ , we get that θ2 ≥ 0 for both ξ ′ ∈ {κ, K }, and thus

N (ξ ′) ≥ θ2

(
1 0
0 a

)
≥ 2θ2

3
M = θM ,

and we conclude by

I(ht ) ≤ 2

min(1, a)
IM (ht ) ≤ 2

min(1, a)
e−θ tIM (h0) ≤ 3max(1, a)

min(1, a)
e−θ tI(h0) .
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