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Abstract
In this paper, we investigate the Cauchy problem of the Degasperis–Procesi equation
with weak dissipation. We establish a new local-in-space blow-up criterion of the
dissipative Degasperis–Procesi equation on line R and on circle S, respectively.

Keywords Degasperis–Procesi equation · Blow-up · Local-in-space · Weak
dissipation
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1 Introduction

In this paper, we are concerned with the following initial value problem of the
Degasperis–Procesi (DP) equation with weak dissipation [26–28]

{
ut − uxxt + 4uux + λ(u − uxx ) = 3uxuxx + uuxxx ,
u0(x) = u0(x),

(1)

where λ(1 − ∂2x )u is the dissipative term with a positive constant λ > 0.
If λ = 0, then Eq. (1) becomes the following well-known DP equation [8–10,19]

ut − uxxt + 4uux = 3uxuxx + uuxxx , (2)

which can be regarded as amodel for nonlinear shallowwater dynamics and its asymp-
totic accuracy is the same as the Camassa-Holm equation [4]. There is a rather large
literature on the research of this equation. For instance, the global existence of strong
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solutions and global weak solutions to the DP Eq. (2) were shown in [22,29,30]. The
local well-posedness for the Cauchy problem of DP Eq. (2) was elaborated in [31] for
non periodic case, and in [32] for the periodic case. With respect to blow-up criteria on
the line and the unit cicle, please refer to [16,33]. As for some other issue of integra-
bility, traveling wave solutions, solitons and peakon as well as its stability, please see
[5–7,13–15,18,21,23–25] and references therein for more literature about DP equa-
tion. It should be noted that the DP equation has its own peculiarities, although it
shares some common properties with the Camassa-Holm equation. A specific feature
is that it has not only peakon solutions of the form u(t, x) = ce−|x−ct |, c > 0, but also
shock peakon solitons of the form u(t, x) = 1

t+k sign(x)e−|x−ct |, k > 0. For details,
please see [11,12,17].

Recently, Wu and Yin [26–28] studied the blow-up and the decay of the solution to
the weakly dissipative DP Eq. (1) on the line and on the circle. They found that Eq. (1)
has the same blow-up rate as the DP Eq. (2), which shows that the blow-up rate of the
DP equation is not affected by the additional weakly dissipative term. However, they
also pointed out that the occurrence of blow-up of (1) is affected by the dissipative
parameter λ.

In this paper, we would like to further investigate the Cauchy problem of the weakly
dissipative DP Eq. (1). More specially, we rather focus on blow-up criteria as well as
the estimates about the lifespan of the solutions. It should be noted here that in the
references [26–28], the blow-up condition on the initial datum u0 typically involves
the computation of the norms ||u0||L2 and ||u0||L∞ . The aim of this paper is to present
a new blow-up result for the weakly dissipative DP Eq. (1). Motivated by the works
of [1–3], we will establish a new local-in-space blowup criterion for Eq. (1) on the
line and on the circle, i.e., a blowup condition involving only the properties of u0 in a
neighborhood of a single point x0 ∈ R or x0 ∈ S. We shall see that such criterion is
more general than earlier blowup results.

This paper is organized as follows. In the next section we recall the local well-
posedness of the Cauchy problem to Eq. (1) on the line R or on the circle S = R/Z,
and several useful results from [26–28] which are needed for our purpose. Sects. 3
and 4 is devoted to establishing a new local-in-space blow-up result for Eq. (1) on the
line R and on the circle S, respectively.

Notation. Throughout this paper, we denote the norm of the Lebesgue space L p by
|| · ||L p , 1 ≤ p ≤ ∞. We denote by ∗ the spatial convolution.

2 Preliminaries

In this section, we recall the local well-posedness result of the Cauchy problem to
Eq. (1) on the line R or on the circle S = R/Z, and some useful properties of strong
solutions to Eq. (1) from [26–28].

Let m = u − uxx be the momentum variable, then Eq. (1) can be reformulated as
the form:

{
mt + umx + 3uxm + λm = 0,
u(0, x) = u0(x).

(3)
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Note that if p(x) := 1
2e

−|x | for x ∈ R (or if p(x) := cosh(x−[x]− 1
2 )

2 sinh 1
2

for x ∈ S, where

[x] stands for the largest integer part of x ∈ R), then we have (1 − ∂2x )
−1 f = p ∗ f

for all f ∈ L2(R)(or f ∈ L2(S)) and p ∗ m = u. Thus, Eq. (3) can be rewritten as
follows:

{
ut + uux + ∂x p ∗ ( 32u

2) + λu = 0,
u0(x) = u0(x).

(4)

By applying the Kato’s theorem [20], one can obtain the following local well-
posedness result.

Theorem 1 [26–28] Given u0 ∈ Hs, s > 3
2 , there exists a maximal T ∗ > 0 and a

unique solution u to (3)(or (4)), such that

u = u(·, u0) ∈ C
([0, T ∗); Hs) ∩ C1([0, T ∗); Hs−1).

Moreover, the solution depends continuously on the initial data, i.e. the mapping
u0 �→ u(·, u0) : Hs → C ([0, T ∗); Hs) ∩ C1([0, T ∗); Hs−1) is continuous and the
maximal time of existence T ∗ is independent of s.

By the above local well-posedness result and energy estimates, one can readily
obtain the following precise blow-up scenario.

Theorem 2 [26–28] Given u0 ∈ Hs, s > 3
2 , the solution u of (3)(or (4)) blows up in

a finite time T > 0 if and only if

lim inf
t→T

{ inf
x∈R(x∈S)

[ux (t, x)]} = 0.

Next, we introduce the particle trajectory q(t, x) ∈ C1([0, T )×R,R), defined by

{
qt = u(t, q), t > 0,
q(0, x) = x .

(5)

By simple analysis, we can obtain the following result on q which is crucial in the
proof of blow-up solutions.

Lemma 1 [26–28] Let u0 ∈ Hs, s ≥ 3, and let T > 0 be the maximal existence
time of the corresponding solution u to Eq. (4). Then Eq. (5) has a unique solution
q ∈ C1([0, T ) ×R,R). Moreover, the map q(t, ·) is an increasing diffeomorphism of
R with

qx (t, x) = exp

(∫ t

0
ux (s, q(s, x))ds

)
> 0,∀(t, x) ∈ [0, T ) × R.

Furthermore, we have

m(t, q(t, x))q3x (t, x) = m0(x)e
−λt ,∀(t, x) ∈ [0, T ) × R.
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Lemma 2 [26–28] If u0 ∈ Hs, s ≥ 3
2 , then as long as the solution u(t, x) given by

Theorem 1 exists, we have

∫
R(S)

m(t, x)v(t, x)dx = e−2λt
∫
R(S)

m0(x)v0(x)dx,

where m(t, x) = u(t, x) − uxx (t, x) and v(t, x) = (4 − ∂2x )
−1u(t, x). Moreover, we

have the following norm estimate

1

4
e−2λt ||u0||2L2 ≤ ||u(t)||2L2 ≤ 4e−2λt ||u0||2L2 . (6)

3 Blow-up result of Eq. (1) on the lineR

In this section, we will establish a new blow-up result for the solutions to Eq. (1) on
the line R. Our main result can be formulated as follows.

Theorem 3 Let u0 ∈ Hs(R), s > 3
2 . Assume that there is x0 ∈ R such that

u′
0(x0) < −

√
3

2
|u0(x0)| − λ

2
− C, (7)

where

C :=
√

λ2

4
+ 3(

√
3

2
− 1)||u0||2L2 . (8)

Then the solution u of (4) blows up in finite time.Moreover, the lifespan T ∗ is estimated
above by

T ∗ ≤ 1

2C
ln

√
u′
0(x0)

2 − 3
2u

2
0(x0) − λ

2 + C√
u′
0(x0)

2 − 3
2u

2
0(x0) − λ

2 − C
,

Proof Using the identity ∂2x (p ∗ f ) = p ∗ f − f , we take the derivative with respect
to x in (4) which yields

{
utx + uuxx = −u2x − λux + 3

2u
2 − p ∗ ( 32u

2),

u(0, x) = u0(x).
(9)

According to Lemma 1, we can know that the flow map q(t, x) introduced in Eq. (5)
is indeed well defined in the interval [0, T ∗) with q ∈ C1([0, T ∗) × R,R).

Then we have

d

dt
[ux (t, q(t, x))] = [utx + uuxx ](t, q(t, x))
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= −u2x − λux + 3

2
u2 − p ∗

(
3

2
u2

)
.

Inspired by [1–3], we now introduce

A(t, x) =
[
−ux +

√
3

2
u

]
(t, q(t, x)),

and

B(t, x) =
[
−ux −

√
3

2
u

]
(t, q(t, x)).

Recalling that the kernel p satisfies the identity

p = p+ + p−, px = p− − p+,

where

p+ ∗ f (x) = e−x

2

∫ x

−∞
ey f (y)dy,

p− ∗ f (x) = ex

2

∫ +∞

x
e−y f (y)dy.

Then we have

d

dt
A(t, x) =

√
3

2
(ut + uux ) − (utx + uuxx )

= u2x + λux −
√
3

2
λu − 3

2
u2 +

(
p −

√
3

2
px

)
∗

(
3

2
u2

)

= AB − λA +
(
1 +

√
3

2

)
p+ ∗

(
3

2
u2

)
−

(√
3

2
− 1

)
p− ∗

(
3

2
u2

)

≥ AB − λA −
(√

3

2
− 1

)
p− ∗

(
3

2
u2

)
.

Similarly, we have

d

dt
B(t, x) = −

√
3

2
(ut + uux ) − (utx + uuxx )

= u2x + λux +
√
3

2
λu − 3

2
u2 +

(
p +

√
3

2
px

)
∗

(
3

2
u2

)
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= AB − λB +
(
1 +

√
3

2

)
p− ∗

(
3

2
u2

)
−

(√
3

2
− 1

)
p+ ∗

(
3

2
u2

)

≥ AB − λB −
(√

3

2
− 1

)
p+ ∗

(
3

2
u2

)
.

By using the Young inequality and the norm estimate (6) presented in Lemma 2,
we can derive that

p± ∗ (
3

2
u2) ≤ ||p±||L∞‖3

2
u2‖L1 = 3

4
‖u‖2L2 ≤ 3e−2λt‖u0‖2L2 ≤ 3‖u0‖2L2 .

Thus, we have

d A

dt
≥ AB − λA − 3

(√
3

2
− 1

)
‖u0‖2L2 , (10)

and

dB

dt
≥ AB − λB − 3

(√
3

2
− 1

)
‖u0‖2L2 . (11)

The initial condition (7):

u′
0(x0) < −

√
3

2
|u0(x0)| − λ

2
− C,

is equivalent to

A(0) >
λ

2
+ C > 0, B(0) >

λ

2
+ C > 0, (12)

where we denote A(t) = A(t, x0), B(t) = B(t, x0) and C is defined in (8). Hence we
can know that

A(0)B(0) > C2,

A(0)[B(0) − λ] − 3

(√
3

2
− 1

)
‖u0‖2L2 >

(
λ

2
+ C

) (
−λ

2
+ C

)
− 3

(√
3

2
− 1

)
‖u0‖2L2 = 0,

B(0)[A(0) − λ] − 3

(√
3

2
− 1

)
‖u0‖2L2 >

(
λ

2
+ C

) (
−λ

2
+ C

)
− 3

(√
3

2
− 1

)
‖u0‖2L2 = 0.
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This implies that

A′(0) ≥ A(0)B(0) − λA(0) − 3

(√
3

2
− 1

)
‖u0‖2L2 > 0,

B ′(0) ≥ A(0)B(0) − λB(0) − 3

(√
3

2
− 1

)
‖u0‖2L2 > 0.

(13)

We now claim that over the time of existence it always holds that

A′(t) > 0, B ′(t) > 0. (14)

If this claim is not true, then there exists t0 ∈ [0, T ∗) such that

t0 = min{t ∈ [0, T ∗)|A′(t) = 0 or B ′(t) = 0}. (15)

It is easy to see from (13) that t0 > 0. In view of (10)–(11) and the definition of t0
presented in (15), we have

0 = A′(t0) ≥ A(t0)B(t0) − λA(t0) − 3

(√
3

2
− 1

)
‖u0‖2L2 ,

or 0 = B ′(t0) ≥ A(t0)B(t0) − λB(t0) − 3

(√
3

2
− 1

)
‖u0‖2L2 .

(16)

However, we can derive that

A(t0) ≥ A(0) >
λ

2
+ C > 0, B(t0) ≥ B(0) >

λ

2
+ C > 0,

since A′(t) ≥ 0 and B ′(t) ≥ 0 for t ∈ [0, t0]. Thus, we have

A(t0)B(t0) − λA(t0) − 3

(√
3

2
− 1

)
‖u0‖2L2 >

(
λ

2
+ C

) (
−λ

2
+ C

)
− 3

(√
3

2
− 1

)
‖u0‖2L2 = 0,

A(t0)B(t0) − λB(t0) − 3

(√
3

2
− 1

)
‖u0‖2L2 >

(
λ

2
+ C

)(
−λ

2
+ C

)
− 3

(√
3

2
− 1

)
‖u0‖2L2 = 0.

which is a contradiction to (16). Therefore (14) is true for all t ∈ [0, T ∗). In other
words, it means that A(·, x0), B(·, x0) and AB(·, x0) are all positive and increasing
during the whole existence time [0, T ∗).

To conclude the proof, we consider h(t) = √
AB(t, x0). By computing the time

derivative of h, we get
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d

dt
h(t) = At B + ABt

2
√
AB

(t, x0)

≥

(
AB − 3

(√
3
2 − 1

)
‖u0‖2L2

)
(A + B) − 2λAB

2
√
AB

(t, x0)

≥ AB − 3

(√
3

2
− 1

)
‖u0‖2L2 − λ

√
AB

= h2(t) − λh(t) − 3

(√
3

2
− 1

)
‖u0‖2L2 ,

=
[
h(t) − λ

2

]2
− C2,

where we have used the geometric-arithmetic mean inequality A + B ≥ 2
√
AB =

2h(t). Solving the above differential inequality, we get

h(t) ≥ λ

2
+ C[h(0) − λ

2 + C + (h(0) − λ
2 − C)e2Ct ]

h(0) − λ
2 + C − (h(0) − λ

2 − C)e2Ct
.

It is thereby inferred that

−ux (t, q(t, x0)) = A + B

2
≥ h(t) → +∞, as t → 1

2C
ln

h(0) − λ
2 + C

h(0) − λ
2 − C

,

which implies that the solution u blows up at a finite time and the lifespan T ∗ is
estimated above by

T ∗ ≤ 1

2C
ln

√
u′
0(x0)

2 − 3
2u

2
0(x0) − λ

2 + C√
u′
0(x0)

2 − 3
2u

2
0(x0) − λ

2 − C
,

The proof of Theorem 3 is completed.
��

4 Blow-up result of Eq. (1) on the circle S

In this section, we shall present a new blow-up result for the solutions to Eq. (1) on
the circle S. Our main result can be formulated as follows.

Theorem 4 Let u0 ∈ Hs(S), s > 3
2 . Assume that there is x0 ∈ S such that

u′
0(x0) < −

√
3

2
|u0(x0)| − λ, (17)
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then the solution u of (4) blows up in finite time. Moreover, the lifespan T ∗ is estimated
above by

T ∗ ≤ 1

λ
ln

√
u′
0(x0)

2 − 3
2u

2
0(x0)√

u′
0(x0)

2 − 3
2u

2
0(x0) − λ

,

Proof We employ the same notation as in the preceding proof, but now the Green
function p(x) is given by

p(x) := cosh(x − [x] − 1
2 )

2 sinh 1
2

, (18)

where [x] stands for the largest integer part of x ∈ R.
As before, we again introduce

A(t, x) =
[
−ux +

√
3

2
u

]
(t, q(t, x)),

and

B(t, x) =
[
−ux −

√
3

2
u

]
(t, q(t, x)).

Then we have

d

dt
A(t, x) =

√
3

2
(ut + uux ) − (utx + uuxx )

= u2x + λux −
√
3

2
λu − 3

2
u2 +

(
p −

√
3

2
px

)
∗

(
3

2
u2

)

= AB − λA +
(
p −

√
3

2
px

)
∗

(
3

2
u2

)
.

and

d

dt
B(t, x) = −

√
3

2
(ut + uux ) − (utx + uuxx )

= u2x + λux +
√
3

2
λu − 3

2
u2 +

(
p +

√
3

2
px

)
∗

(
3

2
u2

)

= AB − λB +
(
p +

√
3

2
px

)
∗

(
3

2
u2

)
.
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For the kernel function p(x) given by (18), we know that

p(x) ± α px (x) ≥ 0 ⇔ |α| ≤ coth
1

2
.

Notice that
√

3
2 < coth 1

2 , so we have

d

dt
A(t, x) ≥ AB − λA ,

d

dt
B(t, x) ≥ AB − λB .

The initial condition

u′
0(x0) < −

√
3

2
|u0(x0)| − λ

is equivalent to

A(0, x0) > λ > 0, B(0, x0) > λ > 0.

By using similar proof method as before, we can infer that

A′(t, x0) > 0, B ′(t, x0) > 0 ,

that is, both A(·, x0) and B(·, x0) are increasing during the whole existence time
t ∈ [0, T ∗).

Next, we prove that T ∗ < ∞. Consider h(t) = √
AB(t, x0). Computing the time

derivative of h yields

d

dt
h(t) = At B + ABt

2
√
AB

(t, x0)

≥ AB(A + B) − 2λAB

2
√
AB

(t, x0)

≥ h2(t) − λh(t),

Note that h(0) = √
A(0, x0)B(0, x0) > λ > 0, hence the solution blows up in

finite time. By solving the above differential inequality, we find that

h(t) → +∞, as t → T ∗ ≤ 1

λ
ln

h(0)

h(0) − λ
.

We notice the fact that −ux (t, q(t, x0)) ≥ h(t), which implies that ux → −∞ as
t → T ∗. Thus, the proof of Theorem 4 is completed. ��
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Remark Compared with Theorem 2.3 presented in [27], Theorem 3.1 in [28] and
Theorem 3.2 in [26], we found that checking the blow-up conditions involves the
computation of two normquantities ||u0||L2 and ||u0||L∞ , while our blow-up condition
in Theorem 3 only involves the computation of ||u0||L2 . Particularly interesting is that
our blow-up condition in Theorem 4 does not involve any norms of u0 at all. This
shows that our blow-up results considerably extend the previous results established in
[26–28].
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