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Abstract
With the Hirota bilinear method and symbolic computation, we investigate the (3 +
1)-dimensional generalized Kadomtsev–Petviashvili equation. Based on its bilinear
form, the bilinear Bäcklund transformation is constructed, which consists of four
equations and five free parameters. The Pfaffian, Wronskian and Grammian form
solutions are derived by using the properties of determinant. As an example, the
one-, two- and three-soliton solutions are constructed in the context of the Pfaffian,
Wronskian and Grammian forms. Moreover, the triangle function solutions are given
based on the Pfaffian form solution. A few particular solutions are plotted by choosing
the appropriate parameters.
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1 Introduction

With the development of nonlinear science, nonlinear evolution equations (NLEEs)
have become the frontier and hot topics of research, which are more and more closely
connected with other disciplines [1–4]. In the history of the natural science, there
are always unexpected surprises in interdisciplinary fields [5–9]. In physics, chemi-
cal reaction, microelectronics, biology and other fields, NLEEs are used to describe
dynamic models [5–7,10]. The study of NLEEs is helpful to solve many significant
natural science and engineering technology problems [9].

It is very important to find the exact solutions to NLEEs. The Hirota method is a
useful and direct method to construct the N -soliton solutions and Bäcklund transfor-
mation (BT) [2,3,5–7,9] to NLEEs. NLEEs are firstly written in the Hirota bilinear
form, and the perturbation method is then used to solve the bilinear equation for
the exact solutions [3]. Recently, more and more types of solutions to NLEEs have
been found [11–14]. In addition to soliton solutions, there are also lump solutions and
interaction solutions, which can describemore different nonlinear phenomena [15,16].
Basedon theHirota bilinear form, the lumpsolutions [17] and interaction solutions [18]
can be directly obtained with symbolic computation.

If the N -soliton solutions are expressed as a Wronskian or Grammian determinant,
then the soliton equation can be transformed into a determinant identity, which is a
special case of Pfaffian identity, and the soliton equation can be cast into the sim-
ple Maya chart [3]. Some soliton equations have no determinant solution (here we
refer to determinant solution as Wronskian or Grammian determinant solution), but
have Pfaffian solution [1,19]. For example, Kadomtsev–Petviashvili (KP) equation
has the determinant solution of Wronskian and Grammian structure, while B-type
Kadomtsev–Petviashvili (BKP) equation has the Pfaffian solution without the deter-
minant solution [20].

In the process of constructing Wronskian and Grammian formulations, the Plücker
relation and Jacobi identity for determinants are extremely critical [2,3]. First of all,
let us consider the product of the second-order determinant before introducing the
Plücker relation
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where ai and bi (i = 0, 1, 2, 3) are arbitrary parameters. If each determinant is repre-
sented by its column vector in ci = (ai , bi )

T , then we have

|c0 c1| |c2 c3| − |c2 c3| |c1 c3| + |c0 c3| |c1 c2| = 0, (1)

which is the simplest case of the Plücker relation. It can be generalized to the general
situation

| f1 f2 · · · fN d0 d1| | f1 f2 · · · fN d2 d3| − | f1 f2 · · · fN d0 d2| | f1 f2 · · · fN d1 d3|
+ | f1 f2 · · · fN d0 d3| | f1 f2 · · · fN d1 d2| = 0, (2)
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where fi (i = 1, 2, · · · , N ) and d j ( j = 0, 1, 2, 3) are N -dimensional column vectors.
When the solutions to the soliton equations are expressed in Wronskian determinant,
the bilinear equations are finally reduced to this identity. Secondly, we introduce the
Jacobi identity for determinants
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where D

[

i j
m n

]

represents the (n − 2)-order determinant obtained by removing row

i, j and column m, n of n-order determinant D. When the solutions to the soliton
equations are expressed in Grammian determinant, the bilinear equations are finally
reduced to the Jacobi identity [3].

In this paper, we will study a (3 + 1)-dimensional generalized Kadomtsev–
Petviashvili equation, which reads

uxxxy + 3uxx uy + 3ux uxy + c1uyt + c2uxz = 0, (4)

where ci �= 0 (i = 1, 2) are arbitrary real parameters and u is an analytic function
of the variables x , y, z and t . As long as two arbitrary parameters in the equation are
assigned, the equation can be rewritten into different equations and applied in different
fields [1,19,27].

When c1 = 2 and c2 = −3, Eq. (4) reduces to the (3+1)-dimensional Jimbo-Miwa
equation [1]

uxxxy + 3uxx uy + 3ux uxy + 2uyt − 3uxz = 0, (5)

which is the second equation in the KP integrable hierarchies and often used to
describe the propagation of three-dimensional nonlinear waves in physics. It is sim-
ilar to KP equation with Wronskian solutions and Grammian solutions [3]. The
(3+1)-dimensional Jimbo-Miwa equation has been studied bymanymethods, such as
multiple exponential function method [21], Hirota bilinear method [1,18,22] and Bell
polynomial method [2]. For example, BTs, Lax system, conservation laws and multi-
soliton solutions to Jimbo-Miwaequationhavebeen studiedwithBell-polynomials [2].

When c1 = −1 and c2 = −1, Eq. (4) reduces to the (3+1)-dimensional generalized
shallow water equation [19]

uxxxy + 3uxx uy + 3ux uxy − uyt − uxz = 0. (6)

Shallow water wave is a wave whose wavelength is more than ten times larger than
that of deep water. The shallow water wave equation is often used to model the flow
of fluids in the ocean and atmosphere [23–25]. This systematic model can predict the
areas ultimately affected by pollution, coastal erosion and polar ice cap melting [26].
In Ref. [19], Grammian solutions, Wronski-type and Gramm-type solutions are given
with the Hirota bilinear of Eq. (6).
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When c1 = −1 and c2 = −3, Eq. (4) reduces to the (3+ 1)-dimensional nonlinear
KP type equation [27]

uxxxy + 3uxx uy + 3ux uxy − uyt − 3uxz = 0. (7)

The linear superposition principle is given, and a method to construct the Hirota
bilinear equation with N -wave solutions is proposed [27]. Taking the nonlinear KP
type Eq. (7) as an example, the feasibility of this method is fully illustrated.

In addition, Wronskian and Grammian solutions to another (3 + 1)-dimensional
generalized KP equation are given [28], and the Pfaffianized systems for another
KP equation is constructed [29], including Wronski-type Pfaffian and Gramm-type
Pfaffian solutions. Moreover, the bilinear BT for another KP equation has been con-
structed [30], which consists of six bilinear equations and includes nine arbitrary
parameters.

Under the Cole-Hopf transformation

u = 2(ln f )x , (8)

the bilinear form of Eq. (4) is written as

(D3
x Dy + c1Dy Dt + c2Dx Dz) f · f

= ( fxxxy + c1 fyt + c2 fxz) f − 3 fxxy fx + 3 fxy fxx

− fy fxxx − c1 fy ft − c2 fx fz = 0, (9)

where D3
x Dy , Dy Dt and Dx Dz are the Hirota bilinear operators [3] defined by

Dα
x Dβ

y Dδ
z Dγ

t ( f · g)

=
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− ∂
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× f (x, y, z, t)g(x ′, y′, z′, t ′)
∣
∣
∣
x ′=x,y′=y,z′=z,t ′=t

.

In this paper, we will construct a bilinear BT for Eq. (9) and give the Pfaffian,
Wronskian and Grammian form solutions. In Sect. 2, by using the exchange formula,
a bilinear BT will be constructed, which is composed of four equations and includes
five arbitrary parameters. Based on the BT, the specific traveling wave solutions will
be obtained. In Sect. 3, we will use Pfaffian technology to construct the N -soliton
solutions, and prove that the bilinear equation is equivalent to Pfaffian identity. In
Sect. 4, the Wronskian type N -soliton solutions will be derived, and it will be proved
that bilinear Eq. (9) is equivalent to the Plücker relation. In Sect. 5, the Grammian type
N -soliton solutions will be obtained, and it will be proved that the bilinear equation is
equivalent to the Jacobi identity. Moreover, some specific solutions in each form will
be plotted and analyzed.
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2 Bilinear BT and exponential wave solutions

2.1 Bilinear BT

If one solution to Eq. (9) is given, another new solution can be obtained through a
BT [31]. In order to obtain the bilinear BT of Eq. (9), we consider

P := [(D3
x Dy + c1Dy Dt + c2Dx Dz) f ′ · f ′] f 2

− f ′2[(D3
x Dy + c1Dy Dt + c2Dx Dz) f · f ], (10)

where it is supposed that f ′ is another solution to Eq. (9). It can be observed that when
P = 0, f satisfies Eq. (9) if and only if f ′ satisfies Eq. (9) too. In the following, we
can derive a series of bilinear equations from P = 0 with respect to the dependent
variables f and f ′, which will lead to a BT.

Based on the exchange formula, we have the following identities for Hiorta opera-
tors

(D3
x Dy f ′ · f ′) f 2 − (D3

x Dy f · f ) f ′2 = 3Dx (D2
x Dy f ′ · f ) · f f ′ − Dy(D3

x f ′ · f )

· f f ′ − 3Dy(D2
x f ′ · f ) · (Dx f ′ · f ) − 3Dx (D2

x f ′ · f ) · (Dy f ′ · f ), (11)

(Dy Dt f ′ · f ′) f 2 − (Dy Dt f · f ) f ′2 = 2Dy(Dt f ′ · f ) · f f ′, (12)

(Dx Dz f ′ · f ′) f 2 − (Dx Dz f · f ) f ′2 = 2Dx (Dz f ′ · f ) · f f ′. (13)

As a matter of fact, by applying the above three identities Eqs. (11), (12) and (13),
Eq. (10) can be rewritten as

P = 3Dx (D2
x Dy f ′ · f ) · f f ′ − Dy(D3

x f ′ · f ) · f f ′ − 3Dy(D2
x f ′ · f ) · (Dx f ′ · f )

− 3Dx (D2
x f ′ · f ) · (Dy f ′ · f ) + 2c1Dy(Dt f ′ · f ) · f f ′ + 2c2Dx (Dz f ′ · f ) · f f ′

= Dx [(3D2
x Dy + 2c2Dz + 2λ1Dy + λ2) f ′ · f ] · f f ′

− Dy[(D3
x − 2c1Dt + λ3) f ′ · f ] · f f ′

− 3Dy[(D2
x − λ1 + λ4Dx ) f ′ · f ] · (Dx f ′ · f )

− 3Dx [(D2
x − λ1 + λ5Dy) f ′ · f ] · (Dy f ′ · f ), (14)

whereλi (i = 1, 2, 3, 4, 5) are some arbitrary parameters. It is concluded that a bilinear
BT associated with Eq. (9) can be constructed as

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B1 f ′ · f = (3D2
x Dy + 2c2Dz + 2λ1Dy + λ2) f ′ · f = 0,

B2 f ′ · f = (D3
x − 2c1Dt + λ3) f ′ · f = 0,

B3 f ′ · f = (D2
x − λ1 + λ4Dx ) f ′ · f = 0,

B4 f ′ · f = (D2
x − λ1 + λ5Dy) f ′ · f .

(15)



4 Page 6 of 24 X.-J. He et al.

Obviously, through the above identities obtained from the exchange formula, a
direct bilinear BT is constructed for Eq. (9). When c1 = 2 and c2 = −3, Eq. (15) can
be reduced to a bilinear BT of the (3 + 1)-dimensional Jimbo-Miwa equation, which
is consistent with the result obtained by using Bell polynomial in Ref. [2].

2.2 Kink wave solutions

In order to obtain another new solution f ′ through the BT, f = 1 is taken as a solution
to Eq. (9), which is corresponding to the solution u = 2(ln f )x = 0 to Eq. (4). The
four bilinear equations of the BT reduce to the following partial differential equations

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3 f ′
xxy + 2c2 f ′

z + 2λ1 f ′
y + λ2 f ′ = 0,

f ′
xxx − 2c1 f ′

t + λ3 f ′ = 0,

f ′
xx − λ1 f ′ + λ4 f ′

x = 0,

f ′
xx − λ1 f ′ + λ5 f ′

y = 0.

(16)

We take into account of a class of exponential wave solutions

f ′ = 1 + εekx+ly+mz−ωt , (17)

where ε, k, l, m and ω are all constants. Taking λ1 = λ2 = λ3 = 0 in Eq. (16), we
obtain

m = −3k2l

2c2
, ω = − k3

2c1
, λ4 = −k, λ5 = −k2

l
. (18)

As a result, the exponential wave solution to the bilinear Eq. (9) is derived

f ′ = 1 + εeξ , (19)

where ξ = kx + ly − 3k2l
2c2

z + k3
2c1

t , and ε, k and l are all arbitrary constants. Further,
the corresponding solution to Eq. (4) is

u = 2(ln f ′)x = 2εkeξ

1 + εeξ
, (20)

which is a kink wave solution. By selecting the appropriate parameters, this kink wave
solution is plotted in Fig. 1.

3 Pfaffian solutions

In this section, we will use Pfaffian to express the soliton solutions to Eq. (9) and prove
that the bilinear form is equivalent to the Pfaffian identity. The N -order Pfaffian fN

associated with the N -soliton solutions can be expressed as
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Fig. 1 Plot of the kink wave
solution via Eq. (20) with
c1 = c2 = −1, z = 1, t = 3,
k = 1, l = 2 and ε = 4

fN = (1, 2, . . . , 2N ), (21)

where the entries are defined by

(i, j) = ci j +
∫ x

Dxφi · φ j dx = ci j +
∫ x

φi,xφ j − φiφ j,x dx . (22)

It should be pointed out that each ci j (1 ≤ i, j ≤ 2N ) is constant and satisfies
ci j = −c ji , and φi ’s are the functions of the scaled space coordinates x , y, z and time
coordinate t , which satisfy the linear partial differential equations

φi,y = k
∫ x

φi dx, φi,z = − 3

c2
k φi,x − c1

c2
kb

∫ x

φi dx,

φi,t = − 1

c1
φi,xxx + b φi,x , (23)

while k �= 0 and b are arbitrary parameters. In addition, the lower limit of the above
integral is x = ±∞, in order to make the value of the integrand converge to 0 when
x = +∞ or x = −∞.

Theorem 1 If φi ’s satisfy the linear differential condition Eq. (23), then the Pfaffian
fN defined by Eq. (21) solves Eq. (9), and the solution to Eq. (4) can be obtained as
u = 2(ln fN )x .

Proof Based on the condition Eq. (23), the derivative of the entries (i, j) with respect
to independent variables x , y, z and t can be easily calculated as

∂

∂x
(i, j) = φi,xφ j − φiφ j,x = (d0, d1, i, j),

∂

∂ y
(i, j) =

∫ x

φi,xyφ j + φi,xφ j,y − φi,yφ j,x − φiφ j,xy dx
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= k

[

φi

(∫ x

φ j dx

)

−
(∫ x

φi dx

)

φ j

]

= k (d−1, d0, i, j),

∂

∂z
(i, j) =

∫ x

φi,xzφ j + φi,xφ j,z − φi,zφ j,x − φiφ j,xz dx

= −3k

c2
(φi,xφ j − φiφ j,x ) − c1

c2
kb

[

φi

(∫ x

φ j dx

)

−
(∫ x

φi dx

)

φ j

]

= −3k

c2
(d0, d1, i, j) − c1

c2
kb (d−1, d0, i, j),

∂

∂t
(i, j) =

∫ x

φi,xtφ j + φi,xφ j,t − φi,tφ j,x − φiφ j,xt dx

= − 1

c1

[

φi,xxxφ j − φiφ j,xxx − 2(φi,xxφ j,x − φi,xφ j,xx )
]

+ b (φi,xφ j − φiφ j,x )

= − 1

c1
[(d0, d3, i, j) − 2(d1, d2, i, j)] + b (d0, d1, i, j),

where the new Pfaffian entries are defined by

(d−1, i) =
∫ x

φi dx, (dn, i) = ∂n

∂xn
φi , (dm, dn) = 0, (m, n = −1, 0, 1, 2, 3).

(24)

For convenience, fN is abbreviated as fN = (1, 2, . . . , 2N ) = (•). Then by using
differential rules for Pfaffian as in Ref. [3] and the derivative formula of Pfaffian entries
(i, j), it is not difficult to get the derivative of fN as

fN ,x = (d0, d1, •),

fN ,xx = (d0, d2, •),

fN ,xxx = (d1, d2, •) + (d0, d3, •),

fN ,y = k (d−1, d0, •),

fN ,xy = k (d−1, d1, •),

fN ,xxy = k [(d0, d1, •) + (d−1, d2, •)],
fN ,xxxy = k [2(d0, d2, •) + (d−1, d3, •) + (d−1, d0, d1, d2, •)],

fN ,z = −3k

c2
(d0, d1, •) − c2

c1
kb (d−1, d0, •),

fN ,xz = −3k

c2
(d0, d2, •) − c2

c1
kb (d−1, d1, •),

fN ,t = − 1

c1
[(d0, d3, •) − 2(d1, d2, •)] + b (d0, d1, •),

fN ,yt = − k

c1
[(d−1, d3, •) − (d0, d2, •) − 2(d−1, d0, d1, d2, •)]

+kb (d−1, d1, •).
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By means of the above results, we derive

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

( fxxxy + c1 fyt + c2 fxz) f = 3k(d−1, d0, d1, d2, •)(•),

− 3 fxxy fx − fy fxxx − c1 fy ft − c2 fx fz = −3k(d−1, d0, •)(d1, d2, •)

− 3k(d0, d1, •)(d−1, d2, •),

3 fxy fxx = 3k(d−1, d1, •)(d0, d2, •),

and further get

(D3
x Dy + c1Dy Dt + c2Dx Dz) fN · fN = 3k[(d−1, d0, d1, d2, •)(•)

− (d−1, d0, •)(d1, d2, •) + (d−1, d1, •)(d0, d2, •) − (d0, d1, •)(d−1, d2, •)] = 0.
(25)

As a matter of fact, the equality is exactly the Pfaffian identity. Hence, it is evident
that fN is the solution to Eq. (9), and the proof is completed. ��

Equivalently, the bilinear form of Eq. (9) can be represented by the followingMaya
chart

When b is taken as zero in Eq. (23), we derive the following differential system

φi,y = k
∫ x

φi dx, φi,z = − 3

c2
k φi,x , φi,t = − 1

c1
φi,xxx . (26)

In this case, the bilinear form of Eq. (9) is still transformed into Pfaffian identity
similarly.

Let us take into account of some special solutions to Eq. (9). We introduce the
solution to the linear partial differential system Eq. (23) as follows

φi = eξi , ξi = pi x + kp−1
i y − 3

c2
kpi z − 1

c1
p3i t + ξ0i , i = 1, 2, . . . , 2N , (27)
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where pi and ξ0i are free parameters. Three specific examples of soliton solutions to
Eq. (4) will be given.

Case 1 Taking N = 1 in Eq. (21), we can obtain the one-soliton solution. By choosing
c12 = 1, φ j = eξ j ( j = 1, 2), and taking η1 = ξ1 + ξ2 + δ1 with eδ1 = p1−p2

p1+p2
, we

rewrite f1 as

f1 = (1, 2) = 1 + p1 − p2
p1 + p2

eξ1+ξ2 = 1 + eη1 .

Therefore, the one-soliton solution can be derived as

u = 2(ln f1)x = 2(p1 + p2)eη1

1 + eη1

= (p1 + p2) + (p1 + p2) tanh
(η1

2

)

. (28)

Case 2 Taking N = 2 in Eq. (21), we can obtain the two-soliton solution. Choosing
c12 = c34 = 1, c13 = c14 = c23 = c24 = 0 and φ j = eξ j ( j = 1, 2, 3, 4), we have

f2 = (1, 2, 3, 4) = (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3)

=
(

1 + p1 − p2
p1 + p2

eξ1+ξ2

) (

1 + p3 − p4
p3 + p4

eξ3+ξ4

)

−
(

p1 − p3
p1 + p3

eξ1+ξ3

) (
p2 − p4
p2 + p4

eξ2+ξ4

)

+
(

p1 − p4
p1 + p4

eξ1+ξ4

) (
p2 − p3
p2 + p3

eξ2+ξ3

)

= 1 + eη1 + eη2 + b12eη1+η2 ,

where η1 = ξ1 + ξ2 + δ1, η2 = ξ3 + ξ4 + δ2, eδ1 = p1−p2
p1+p2

, eδ2 = p3−p4
p3+p4

, and

b12 = (p1 − p3)(p1 − p4)(p2 − p3)(p2 − p4)

(p1 + p3)(p1 + p4)(p2 + p3)(p2 + p4)
.

It is not difficult to find that the form of two-soliton solution is consistent with that
obtained by perturbation method.

Case 3 Taking N = 3 in Eq. (21), we can obtain the three-soliton solution. Choosing
c12 = c34 = c56 = 1, the rest of ci j = 0(i, j = 1, 2, . . . , 6), and φ j = eξ j ( j =
1, 2, . . . , 6), we have

f3 = (1, 2, 3, 4, 5, 6)

= (1, 2)(3, 4, 5, 6) − (1, 3)(2, 4, 5, 6) + (1, 4)(2, 3, 5, 6)

− (1, 5)(2, 3, 4, 6) + (1, 6)(2, 3, 4, 5)

= (1, 2)(3, 4)(5, 6) − (1, 2)(3, 5)(4, 6) + (1, 2)(3, 6)(4, 5)



Bäcklund transformation, Pfaffian, Wronskian and Grammian… Page 11 of 24 4

Fig. 2 Soliton solutions to Eq. (4) with c1 = c2 = −1, z = 1 and t = 1 a one-soliton solution: p1 = 2,
p2 = 1, ξ01 = ξ02 = 0, k = 1; b two-soliton solution: p1 = 5, p2 = 3, p3 = 2, p4 = 1, ξ01 = ξ02 =
ξ03 = ξ04 = 0, k = 1; c three-soliton solution: p1 = 5, p2 = 3, p3 = 2, p4 = 1, p5 = 3, p6 = 2,

ξ01 = ξ02 = ξ03 = ξ04 = ξ05 = ξ06 = 0, k = 2

− (1, 3)(2, 4)(5, 6) + (1, 3)(2, 5)(4, 6)

− (1, 3)(2, 6)(4, 5) + (1, 4)(2, 3)(5, 6)

− (1, 4)(2, 5)(3, 6) + (1, 4)(2, 6)(3, 5)

− (1, 5)(2, 3)(4, 6) + (1, 5)(2, 4)(3, 6)

− (1, 5)(2, 6)(3, 4) + (1, 6)(2, 3)(4, 5)

− (1, 6)(2, 4)(3, 5) + (1, 6)(2, 5)(3, 4)

= 1 + eη1 + eη2 + eη3 + b12eη1+η2 + b13eη1+η3

+ b23eη2+η3 + b12b13b23eη1+η2+η3 ,

where

η3 = ξ5 + ξ6 + δ3, eδ3 = p5 − p6
p5 + p6

, b13 = (p1 − p5)(p1 − p6)(p2 − p5)(p2 − p6)

(p1 + p5)(p1 + p6)(p2 + p5)(p2 + p6)
,

b23 = (p3 − p5)(p3 − p6)(p4 − p5)(p4 − p6)

(p3 + p5)(p3 + p6)(p4 + p5)(p4 + p6)
.

As an example, by selecting the appropriate parameters, the one-, two- and three-
soliton solutions are plotted in Fig. 2.

The above solutions are also kink soliton solutions to Eq. (4). In Fig. 2a, the one-
soliton can also be observed as a kink soliton. When p1 + p2 is greater than zero, u
is non-singular, and it is easy to see that the maximum value of u is 2(p1 + p2) and
the minimum value is 0 via Eq. (28). In Fig. 2b and c, we also show two-soliton and
three-soliton solutions. Not only all solitons have kink shapes, but also the interaction
between solitons belongs to elastic collision, that is, the soliton shape and velocity are
kept unchange before and after the collision.

It is worth noting that Pfaffian can not only express the soliton solutions, but also
different types of solutions according to different assumptions of φi (29), such as the
rational solution, hyperbola function solution and triangle function solution. Accord-
ingly, we consider another solution in the Pfaffian that satisfies the linear partial
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Fig. 3 The triangle function solution to Eq. (9) (a) and the periodic solutions to Eq. (4) (b) with c1 = c2 =
−1, k = 1, p1 = 2, p1 = 1, t = 1 and z = 1

differential system as follows

φi = cos θi , θi = pi x − kp−1
i y − 3

c2
kpi z + 1

c1
p3i t + θ0i , i = 1, 2, . . . , 2N ,

(29)

where pi and θ0i are free parameters. The specific example of periodic solutions to
Eq. (4) in the Pfaffian will be given. Taking N = 1 in Eq. (21) and choosing c12 = 2,
φ1 = cos θ1, φ2 = cos θ2, we have

f1 = (1, 2) = 1 +
∫ x

φ1,xφ2 − φ1φ2,x dx

= 1 + p1 − p2
2(p1 + p2)

cos

[

−(p1 + p2)x + p1 + p2
p1 p2

ky + 3

c2
k(p1 + p2)z

− 1

c1
(p31 + p32)t + θ01

]

+ p1 + p2
2(p1 − p2)

cos

[

−(p1 + p2)x − p1 − p2
p1 p2

ky + 3

c2
k(p1 − p2)z

− 1

c1
(p31 − p32)t + θ02

]

,

which leads to periodic solutions to Eq. (4) via u = 2(ln f1)x .
As an example, by selecting the appropriate parameters, the periodic solutions to

Eq. (4) is plotted in Fig. 3. In Fig. 3, we can observe clearly that the solution f to
Eq. (9) and the solution u to Eq. (4) are periodic waves, and their minimum positive
period are both 2π .
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4 Wronskian solutions

We firstly construct the Wronskian determinant solution to Eq. (9), and then prove
that the bilinear form of Eq. (9) can be transformed into the Plücker relation (2). It is
assumed that the N -soliton solutions are expressed in the form of N -order Wronskian
determinant as

W (φ1, φ2, . . . , φN ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ
(0)
1 φ

(1)
1 · · · φ

(N−1)
1

φ
(0)
2 φ

(1)
2 · · · φ

(N−1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N · · · φ

(N−1)
N

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= |̂N − 1|, (30)

where φ
(m)
i (i = 1, 2, . . . , N , m = 0, 1, . . . , N − 1) are defined by

φ
(m)
i = ∂mφi

∂xm
. (31)

The function φi satisfies the linear partial differential equations

φi,y = γφi,xx , φi,z = − 3

c2
γ φi,xxxx , φi,t = 2

c1
φi,xxx , (32)

where γ �= 0 is an arbitrary parameter.
According to the properties of the determinant, the derivative of fN to x is equal

to the sum of N determinants that remain unchanged for the other columns. However,
some determinants are zero because they have two identical columns. In the computa-
tion of the derivatives of fN , only the number of derivatives in the column is changed,
and the row is not affected. This is the advantage of using Wronskian determinant to
express fN .

Theorem 2 If φi ’s satisfy the linear differential conditions in Eq. (32), then the Wron-
skian determinant fN = |̂N − 1| defined by Eq. (30) is the solution to Eq. (9) and the
solution to Eq. (4) can be obtained as u = 2(ln fN )x .

Proof Based on the conditions in Eq. (32) and the properties of the determinant, the
derivatives of fN with respect to the independent variables x , y, z, and t can be easily
calculated as

fN ,x = |̂N − 2, N |,
fN ,xx = |̂N − 2, N + 1| + |̂N − 3, N − 1, N |,

fN ,xxx = |̂N − 2, N + 2| + 2|̂N − 3, N − 1, N + 1| + |̂N − 4, N − 2, N − 1, N |,
fN ,y = γ (|̂N − 2, N + 1| − |̂N − 3, N − 1, N |),

fN ,xy = γ (|̂N − 2, N + 2| − |̂N − 4, N − 2, N − 1, N |),
fN ,xxy = γ (|̂N − 2, N + 3| + |̂N − 3, N − 1, N + 2|
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−|̂N − 4, N − 2, N − 1, N + 1| − |̂N − 5, N − 3, N − 2, N − 1, N |),
fN ,xxxy = γ (|̂N − 2, N + 4| + 2|̂N − 3, N − 1, N + 3| + |̂N − 3, N , N + 2|

−|̂N − 4, N − 2, N , N + 1| − 2|̂N − 5, N − 3, N − 2, N − 1, N + 1|
−|̂N − 6, N − 4, N − 3, N − 2, N − 1, N |),

fN ,z = − 3

c2
γ (|̂N − 2, N + 3| − |̂N − 3, N − 1, N + 2|

+|̂N − 4, N − 2, N − 1, N + 1|
−|̂N − 5, N − 3, N − 2, N − 1, N |),

fN ,xz = − 3

c2
γ (|̂N − 2, N + 4| − |̂N − 3, N , N + 2| + |̂N − 4, N − 2, N , N + 1|

−|̂N − 6, N − 4, N − 3, N − 2, N − 1, N |),
fN ,t = 2

c1
(|̂N − 2, N + 2| − |̂N − 3, N − 1, N + 1| + |̂N − 4, N − 2, N − 1, N |),

fN ,yt = − 2

c1
γ (|̂N − 2, N + 4| + |̂N − 3, N , N + 2| − |̂N − 3, N − 1, N + 3|

−|̂N − 4, N − 2, N , N + 1| + |̂N − 5, N − 3, N − 2, N − 1, N + 1|
−|̂N − 6, N − 4, N − 3, N − 2, N − 1, N |). (33)

By means of the above results and substitute them into Eq. (9), we derive

( fxxxy + c1 fyt + c2 fxz) f

= 6γ (|̂N − 3, N , N + 2| − |̂N − 4, N − 2, N , N + 1|)|̂N − 1|,
− 3 fxxy fx + 3 fxy fxx − fy fxxx − c1 fy ft − c2 fx fz

= 6γ (−|̂N − 2, N ||̂N − 3, N − 1, N + 2|
+ |̂N − 2, N ||̂N − 4, N − 2, N − 1, N + 1|
+ |̂N − 2, N + 2||̂N − 3, N − 1, N |
− |̂N − 2, N + 2||̂N − 4, N − 2, N − 1, N |),

and further get

(D3
x Dy + c1Dy Dt + c2Dx Dz) fN · fN = 6γ (W1 + W2) = 0, (34)

where

W1 = |̂N − 3, N , N + 2||̂N − 1| − |̂N − 2, N ||̂N − 3, N − 1, N + 2|
+ |̂N − 2, N + 2||̂N − 3, N − 1, N |,

W2 = −|̂N − 4, N − 2, N , N + 1||̂N − 1|
+ |̂N − 2, N ||̂N − 4, N − 2, N − 1, N + 1|
− |̂N − 2, N + 2||̂N − 4, N − 2, N − 1, N |.
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In fact, these two equalities are exactly the Plücker relation (2) of determinant and a
special case of Pfaffian identity. Hence, it is evident that fN is the solution to Eq. (9).

��

W1 and W2 can be represented by the following Maya charts

The linear partial differential system in Eq. (32) enjoys the solution in the form

φi = eξi + eζi , ξi = li x + γ l2i y − 3

c2
γ l4i z + 2

c1
l3i t + ξ0i , ζi = ki x + γ k2i y

− 3

c2
γ k4i z + 2

c1
k3i t + ζ 0

i , (35)

where li , ki , ξ
0
i and ζ 0

i (i = 1, 2, . . . , N ) are free parameters. Some specific examples
of solution to Eq. (4) will be given.

Case 1 Taking N = 1 in Eq. (30), we can obtain the one-soliton solution. Let φ1 =
eξ1 + eζ1 , we have

f1 = W (φ1) = φ1 = eξ1 + eζ1 ,

which leads to the one-soliton solution to Eq. (4) as

u = 2(ln f1)x = 2
l1eξ1 + k1eζ1

eξ1 + eζ1
= (l1 + k1) + (l1 − k1) tanh

ξ1 − ζ1

2
. (36)

Case 2 Taking N = 2 in Eq. (30), we can obtain the two-soliton solution. Taking
φ1 = eξ1 + eζ1 and φ2 = eξ2 + eζ2 , we have

f2 = W (φ1, φ2) =
∣
∣
∣
∣

φ1 φ1,x

φ2 φ2,x

∣
∣
∣
∣

= (eξ1 + eζ1 )(l2eξ2 + k2eζ2 ) − (l1eξ1 + k1eζ1 )(eξ2 + eζ2 )

= (k2 − k1)e
ζ1+ζ2

(

1 + k2 − l1
k2 − k1

eξ1−ζ1 + l2 − k1
k2 − k1

eξ2−ζ2 + l2 − l1
k2 − k1

eξ1+ξ2−ζ1−ζ2

)

,

which results in the two-soliton solution to Eq. (4) via u = 2(ln f2)x .
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Case 3 Taking N = 3 in Eq. (30), we can obtain the three-soliton solution. Let
φ1 = eξ1 + eζ1 , φ2 = eξ2 + eζ2 and φ3 = eξ3 + eζ3 , then

f3 = W (φ1, φ2, φ3) =
∣
∣
∣
∣
∣
∣

φ1 φ1,x φ1,xx

φ2 φ2,x φ2,xx

φ3 φ3,x φ3,xx

∣
∣
∣
∣
∣
∣

= (k1 − k2)(k3 − k2)(k1 − k3)e
ζ1+ζ2+ζ3

[

1 + (k2 − l1)(k3 − l1)

(k1 − k2)(k1 − k3)
eξ1−ζ1

+ (k1 − l2)(k3 − l2)

(k1 − k2)(k3 − k2)
eξ2−ζ2 + (l3 − k2)(k1 − l3)

(k3 − k2)(k1 − k3)
eξ3−ζ3

+ (l1 − l2)(k3 − l2)(l1 − k3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ1+ξ2−ζ1−ζ2

+ (l1 − k2)(l3 − k2)(l1 − l3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ1+ξ3−ζ1−ζ3

+ (k1 − l2)(l3 − l2)(k1 − l3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ2+ξ3−ζ2−ζ3

+ (l1 − l2)(l3 − l2)(l1 − l3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ1+ξ2+ξ3−ζ1−ζ2−ζ3

]

,

which gives rise to the three-soliton solution to Eq. (4) via u = 2(ln f3)x .
Through taking N = 4 inEq. (30), the solution f4 toEq. (9) can be derived similarly,

and further the four-soliton solution to Eq. (4) can be computed. As an example, by
selecting the appropriate parameters, the one-, two-, three- and four-soliton solutions
are plotted in Fig. 4.

In Fig. 4a, the one-soliton can be observed to be also a kink soliton. It is easy to
compute in Eq. (36) that the maximum value of u is (l1 + k1) + |l1 − k1| and the
minimum value is (l1 + k1) − |l1 − k1|. In Fig. 4, we also show two-, three- and
four-soliton solutions, which can be seen in Fig. 4b–d, respectively. The two-soliton
solution is two parallel kink solitons and the three-soliton and four-soliton solutions are
the oblique kink solitons. The interaction between solitons belongs to elastic collision,
that is, the soliton shape and velocity are kept unchange before and after the collision.

5 Grammian solutions

In the previous section, it has been proved that if the solution f is expressed as a
Wronskian determinant, then the bilinear Eq. (9) becomes the Plücker relation. In
this section, we will consider another type of representation of f , and prove that, in
this case, the bilinear Eq. (9) can be transformed into another determinant identity,
namely, Jacobi identity. It is assumed that the N -soliton solution is defined in the form
of N -order Grammian determinant

fN = det(ai j )1≤i, j≤N , ai j = ci j +
∫ x

φiψ j dx, (37)
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Fig. 4 Soliton solutions to Eq. (4) with c1 = c2 = −1, z = 1, t = 1 and γ = 1 a one-soliton solution:
l1 = 2, k1 = 1, ξ01 = ζ 01 = 0; b two-soliton solution: l1 = 2, l2 = 3, k1 = 1, k2 = 2, ξ01 = ξ02 =
ζ 01 = ζ 02 = 0; c three-soliton solution: l1 = 1, l2 = −1.2, l3 = 0.2, k1 = 1.6, k2 = −1.8, k3 = 0.6,

ξ01 = ξ02 = ξ03 = ζ 01 = ζ 02 = ζ 03 = 0; d four-soliton solution: l1 = 1, l2 = 0.4, l3 = 1.8, l4 = −1,

k1 = 1.5, k2 = −0.2, k3 = 2, k4 = −1.5, ξ01 = ξ02 = ξ03 = ξ04 = ζ 01 = ζ 02 = ζ 03 = ζ 04 = 0

where ci j is constant, and φi and ψ j are the functions of the scaled space coordinate
x , y, z and the time coordinate t satisfying the linear partial differential equations

φi,y = γφi,xx , φi,z = − 3

c2
γ φi,xxxx , φi,t = 2

c1
φi,xxx ,

ψi,y = −γψi,xx , ψi,z = 3

c2
γ φi,xxxx , ψi,t = 2

c1
φi,xxx . (38)

Theorem 3 If φi and ψ j satisfy the linear differential conditions in Eq. (38), then the
Grammian determinant fN = det(ai j )1≤i, j≤N defined by Eq. (37) is the solution to
Eq. (9), and u = 2(ln fN )x leads to the solution to Eq. (4).
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Proof In order to prove that fN satisfies Eq. (9), the derivatives of fN need to be
calculated. First of all, we express fN as Pfaffian

fN = (1, 2, . . . , N , N∗, . . . , 2∗, 1∗) = (•), (39)

where (i, j∗) = ai j and (i, j) = (i∗, j∗) = 0. To express the derivatives of the entries
(i, j∗) with Pfaffian, the new Pfaffian entries are introduced

(dn, i∗) = ∂n

∂xn
φi , (d∗

n , j) = ∂n

∂xn
ψ j ,

(dm, d∗
n ) = (d∗

m, j∗) = (dn, i) = 0, (m, n = 0, 1, 2, 3, 4). (40)

Based on the conditions in Eq. (38), it is not difficult to get

∂

∂x
ai j = φiψ j = (d0, d∗

0 , i, j∗),

∂

∂ y
ai j =

∫ x

φi,yψ j + φiψ j,y dx

= γ (φi,xψ j − φiψ j,x ) = γ [(d0, d∗
1 , i, j∗) − (d1, d∗

0 , i, j∗)],
∂

∂z
ai j =

∫ x

φi,zψ j + φiψ j,z dx

= − 3

c2
γ (φi,xxxψ j − φiψ j,xxx − φi,xxψ j,x + φi,xψ j,xx )

= − 3

c2
γ [(d0, d∗

3 , i, j∗) − (d3, d∗
0 , i, j∗) − (d1, d∗

2 , i, j∗) + (d2, d∗
1 , i, j∗)],

∂

∂t
ai j =

∫ x

φi,tψ j + φiψ j,t dx

= 2

c1
(φi,xxψ j − φi,xψ j,x + φiψ j,xx ) = 2

c1
[(d0, d∗

2 , i, j∗)

− (d1, d∗
1 , i, j∗) + (d2, d∗

0 , i, j∗)].

Through using the properties of the Pfaffian, the derivatives of the fN with respect to
independent variables x , y, z and t can be easily calculated as

fN ,x = (d0, d∗
0 , •),

fN ,xx = (d1, d∗
0 , •) + (d0, d∗

1 , •),

fN ,xxx = (d2, d∗
0 , •) + 2(d1, d∗

1 , •) + (d0, d∗
2 , •),

fN ,y = γ [(d0, d∗
1 , •) − (d1, d∗

0 , •)],
fN ,xy = γ [(d0, d∗

2 , •) − (d2, d∗
0 , •)],

fN ,xxy = γ [(d1, d∗
2 , •) + (d0, d∗

3 , •) − (d3, d∗
0 , •) − (d2, d∗

1 , •)],
fN ,xxxy = γ [2(d1, d∗

3 , •) + (d0, d∗
4 , •) − (d4, d∗

0 , •) − 2(d3, d∗
1 , •)

+ (d0, d∗
0 , d1, d∗

2 , •) − (d0, d∗
0 , d2, d∗

1 , •)],
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fN ,z = − 3

c2
γ [(d0, d∗

3 , •) − (d3, d∗
0 , •) − (d1, d∗

2 , •) + (d2, d∗
1 , •)],

fN ,xz = − 3

c2
γ [(d0, d∗

4 , •) − (d4, d∗
0 , •) − (d0, d∗

0 , d1, d∗
2 , •) − (d0, d∗

0 , d2, d∗
1 , •)],

fN ,t = 2

c1
[(d0, d∗

2 , •) − (d1, d∗
1 , •) + (d2, d∗

0 , •)],

fN ,yt = 2

c1
γ [(d0, d∗

4 , •) + (d3, d∗
1 , •) − (d1, d∗

3 , •) − (d4, d∗
0 , •)

+ (d0, d∗
0 , d1, d∗

2 , •) − (d0, d∗
0 , d2, d∗

1 , •)]. (41)

By means of the above results, we derive

( fxxxy + c1 fyt + c2 fxz) f = 6γ [(d0, d∗
0 , d1, d∗

2 , •) − (d0, d∗
0 , d2, d∗

1 , •)](•),

− 3 fxxy fx + 3 fxy fxx − fy fxxx − c1 fy ft − c2 fx fz

= 6γ [−(d1, d∗
2 , •)(d0, d∗

0 , •) + (d2, d∗
1 , •)(d0, d∗

0 , •) + (d0, d∗
2 , •)(d1, d∗

0 , •)

− (d2, d∗
0 , •)(d0, d∗

1 , •)],

and further obtain

(D3
x Dy + c1Dy Dt + c2Dx Dz) fN · fN = 6γ (G1 + G2) = 0, (42)

with

G1 = (d0, d∗
0 , d1, d∗

2 , •)(•) − (d1, d∗
2 , •)(d0, d∗

0 , •) + (d0, d∗
2 , •)(d1, d∗

0 , •)

= (d0, d∗
0 , d1, d∗

2 , •)(•) − (d0, d∗
0 , •)(d1, d∗

2 , •) − (d0, d∗
2 , •)(d∗

0 , d1, •),

G2 = −(d0, d∗
0 , d2, d∗

1 , •)(•) + (d2, d∗
1 , •)(d0, d∗

0 , •) − (d2, d∗
0 , •)(d0, d∗

1 , •)

= −(d0, d∗
0 , d2, d∗

1 , •)(•) + (d2, d∗
1 , •)(d0, d∗

0 , •) + (d0, d∗
1 , •)(d∗

0 , d2, •).

As a matter of fact, these two equalities are exactly the Jacobi identity (3) of determi-
nant and a special case of Pfaffian identity. Hence, it is evident that fN is the solution
to Eq. (9). ��

G1 and G2 can be represented by the following Maya charts

The linear partial differential system in Eq. (38) have the solutions in the form

φi = eξi , ψi = eζi ,
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ξi = li x + γ l2i y − 3

c2
γ l4i z + 2

c1
l3i t + ξ0i ,

ζi = ki x − γ k2i y + 3

c2
γ k4i z + 2

c1
k3i t + ζ 0

i , (43)

where li , ki , ξ
0
i and ζ 0

i (i = 1, 2, . . . , N ) are free parameters. Some specific examples
of soliton solutions to Eq. (4) will be given.

Case 1 Taking N = 1 in Eq. (39), we can obtain the one-soliton solution. Choosing
c11 = 1, φ1 = eξ1 and ψ1 = eζ1 , we have

f1 = (1, 1∗) = 1 + 1

l1 + k1
eξ1+ζ1 , (44)

which leads to the one-soliton solution to Eq. (4) as

u = 2(ln f1)x

= 2eξ1+ζ1

1 + 1
l1+k1

eξ1+ζ1
= (l1 + k1) + (l1 + k1) tanh

[1

2

(

ξ1 + ζ1 + ln
1

l1 + k1

)]

.

(45)

Case 2 Taking N = 2 in Eq. (39), we can obtain the two-soliton solution. Choosing
c11 = c22 = 1, c12 = c21 = 0, φ j = eξ j , ψ j = eζ j ( j = 1, 2), we have

f2 = (1, 2, 2∗, 1∗) =
∣
∣
∣
∣
∣

1 + 1
l1+k1

eξ1+ζ1 1
l1+k2

eξ1+ζ2

1
l2+k1

eξ2+ζ1 1 + 1
l2+k2

eξ2+ζ2

∣
∣
∣
∣
∣

= 1 + 1

l1 + k1
eξ1+ζ1 + 1

l2 + k2
eξ2+ζ2

+ (l1 − l2)(k1 − k2)

(l1 + k1)(l2 + k2)(l1 + k2)(l1 + k2)
eξ1+ζ1+ξ2+ζ2 ,

(46)

which results in the two-soliton solution to Eq. (4) via u = 2(ln f2)x .
Case 3 Taking N = 3 in Eq. (39), we can obtain the three-soliton solution. Choosing
c11 = c22 = c33 = 1, the rest of ci j = 0(i, j = 1, 2, 3), and φ j = eξ j , ψ j = eζ j ( j =
1, 2, 3), we have

f3 = (1, 2, 3, 3∗, 2∗, 1∗)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + 1
l1+k1

eξ1+ζ1 1
l1+k2

eξ1+ζ2 1
l1+k3

eξ1+ζ3

1
l2+k1

eξ2+ζ1 1 + 1
l2+k2

eξ2+ζ2 1
l2+k3

eξ2+ζ3

1
l3+k1

eξ3+ζ1 + 1
l3+k2

eξ3+ζ2 1 + 1
l3+k3

eξ3+ζ3

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 + eη1 + eη2 + eη3 + b12eη1+η2 + b13eη1+η3

+ b23eη2+η3 + b12b13b23eη1+η2+η3 ,
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Fig. 5 Soliton solutions to Eq. (4) with c1 = c2 = −1, z = 1, t = 1 and γ = 1 a one-soliton solution:
l1 = 2, l2 = 3, k1 = 1, k2 = 2, ξ01 = ζ 01 = 0; b two-soliton solution: l1 = 2, l2 = 3, k1 = 1, k2 = 2,

ξ01 = ξ02 = ζ 01 = ζ 02 = 0; c three-soliton solution: l1 = 1, l2 = −0.4, l3 = 1.8, l4 = 1.4, k1 = 1.5,

k2 = −0.6, k3 = 2, k4 = 1.2, ξ01 = ξ02 = ξ03 = ζ 01 = ζ 02 = ζ 03 = 0; d four-soliton solution: l1 = 2,

l2 = 3, l3 = 4, k1 = 1, k2 = 2, k3 = 3, ξ01 = ξ02 = ξ03 = ξ04 = ζ 01 = ζ 02 = ζ 03 = ζ 04 = 0

where

η1 = ξ1 + ζ1 + δ1, η2 = ξ2 + ζ2 + δ2, η3 = ξ3 + ζ3 + δ3, eδi = 1

li + ki
,

and

b12 = (l1 − l2)(k1 − k2)

(l1 + k2)(l2 + k1)
, b13 = (l1 − l3)(k1 − k3)

(l1 + k3)(l3 + k1)
, b23 = (l2 − l3)(k2 − k3)

(l2 + k3)(l3 + k2)
,

which gives rise to the three-soliton solution to Eq. (4) via u = 2(ln f3)x .
Through taking N = 4 inEq. (39), the solution f4 toEq. (9) can be derived similarly,

and further the four-soliton solution to Eq. (4) can be computed. As an example, by
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selecting the appropriate parameters, the one-, two-, three- and four-soliton solutions
are plotted in Fig. 5.

The above solutions in the Grammian form are also the kink solitons. In Fig. 5a,
the one-soliton can be observed to be a kink soliton. When l1 + k1 greater than zero,
u in Eq. (45) is non-singular, and its maximum value is 2(l1 + k1), and the minimum
value is 0. In Fig. 5, we also show two-, three- and four-soliton solutions, where the
two- and three-soliton are both the parallel kink solitons, and the four-soliton is the
oblique kink soliton. The interaction between solitons belongs to elastic collision, that
is, the soliton shape and velocity are kept unchanged before and after the collision.

6 Conclusions

In this paper, we have investigated the (3 + 1)-dimensional generalized Kadomtsev–
Petviashvili equation [see Eq. (4)], which contains two variable-coefficients c1 and
c2. We can obtain the (3 + 1)-dimensional generalized shallow water wave equation
and the (3 + 1)-dimensional Jimbo-Miwa equation through choosing the appropriate
coefficients in Eq. (4). Based on the Hirota bilinear form, the bilinear BT has been
constructed, which consists of four bilinear equations and five free parameters. In
addition, a specific exponential wave solution has been given through the bilinear BT.

The N -soliton solutions to Eq. (4) have been obtained in the Pfaffian form, and
reduced into Pfaffian identity. As a special case, the one-, two- and three-soliton solu-
tions have been shown and analyzed in Fig. 2. It is worth noting that Pfaffian can
not only give soliton solutions, but also solve different types of solutions according
to different assumptions of φi (29), such as the rational solution, hyperbola function
solution and triangle function solution. We have shown the solution in the form of
triangle function solution in Pfaffian and plotted it in Fig. 3. From the properties of
Pfaffian and determinant, we have derived the N -soliton solutions in Wronskian and
Grammian forms, where bilinear Eq. (9) can be reduced into Jacobi and Plücker iden-
tities, respectively. One-, two-, three- and four-soliton solutions have been obtained
and analyzed in Figs. 4 and 5.
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