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Abstract
We introduce a family of boundary confinements for Coulomb gas ensembles, and
study them in the two-dimensional determinantal case of random normal matrices.
The family interpolates between the free boundary and hard edge cases, which have
been well studied in various random matrix theories. The confinement can also be
relaxed beyond the free boundary to produce ensembles with fuzzier boundaries, i.e.,
where the particles are more and more likely to be found outside of the boundary. The
resulting ensembles are investigated with respect to scaling limits and distribution of
the maximum modulus. In particular, we prove existence of a new point field—a limit
of scaling limits to the ultraweak point when the droplet ceases to be well defined.

Keywords Random normal matrices · Scaling limits · Planar orthogonal
polynomials · Universality · Soft edge · Hard edge

Mathematics Subject Classification 82D10 · 60G55 · 46E22 · 42C05 · 30D15

1 Introduction andmain results

In the theory of Coulomb gas ensembles, it is natural to consider different kinds of
boundary confinements. The most well-known examples are the “free boundary”,
where particles are admitted to range freely outside of the droplet, and the “hard
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edge”, where they are completely confined to it. On the other hand, notions of weakly
confining potentials have attracted attention recently, where the boundary is softer than
a free boundary, i.e., particles are more likely to be found outside of the boundary. In
this note, we introduce a one-parameter family of edge confinements, ranging all the
way between an idealized “ultraweak” edge and a hard edge.

Our construction can be applied to general Coulomb gas ensembles in any dimen-
sion and for any inverse temperature β. However, we shall here be content to develop
the theory only in the determinantal, two-dimensional case, i.e., we will consider
ensembles of eigenvalues of random normal matrices.

The study of universality in free boundary ensembles has been the focus of several
recent works [4,5,18]. Notably, in the paper [18], it is shown that with free boundary
confinement, the point fieldwith intensity function R(z) = ϕ(z+z̄) appears universally
(i.e., for a “sufficiently large” class of ensembles) when rescaling about a regular
boundary point, where ϕ, the “free boundary function”, is given by

ϕ(z) = b1(z) := 1√
2π

∫ 0

−∞
e−(z−t)2/2 dt = 1

2
erfc

z√
2
. (1.1)

For the hard edge Ginibre ensemble, a direct computation with the orthogonal
polynomials in [4, Section 2.3] shows that, under a natural scaling about a boundary
point, the point process of eigenvalues converges to the determinantal point field
determined by the 1-point function R(z) = b∞(z+ z̄) ·1L(z)where 1L is the indicator
function of the left half plane L = {Re z < 0} and where b∞, the “hard edge plasma
function”, is defined by

b∞(z) = 1√
2π

∫ 0

−∞
e−(z−t)2/2

ϕ(t)
dt . (1.2)

As far as we know, this function appeared first in the physical paper [25] from 1982,
cf. [12, Section 15.3.1]; see Fig. 1.

We shall introduce a scale of point-processes depending on a confinement-
parameter c such that the values c = 1 and c = ∞ correspond to the free boundary
and the hard edge, respectively.

Fig. 1 Density profiles R(x) at the free boundary, the hard edge, and the ultraweak edge, respectively
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Wenote at this point that the functionsb1 andb∞ bothhave the convolution structure

bc(z) = 1√
2π

∫ 0

−∞
e−(z−t)2/2

Φc(t)
dt, (1.3)

where Φ1 = 1 and Φ∞ = ϕ. We shall show that if c > 0, then the choice

Φc(t) := ϕ(t) + 1√
c

(
1 − ϕ

(
t√
c

))
exp

{
(1 − c)t2

2c

}
(1.4)

leads to a scale of new determinantal point fields with 1-point intensities

R(z) = R(c)(z) = bc(z + z̄) exp
{
2(1 − c)(Re z)2+

}
, (1.5)

where we write x+ = max{x, 0} and (to avoid bulky notation) x2+ instead of (x+)2.
We shall find that these point fields emerge naturally as scaling limits about regular

boundary points of the droplet, if we set up appropriate boundary confinements. In the
limit as c → 0+ we will establish existence of a new point field in the critical case
where the droplet ceases to be well defined. This point field might be said to model
an idealized ultraweak edge; its density profile is depicted in Fig. 1 and also in Fig. 3.

Remark Hard edge ensembles are well known in the Hermitian theory, where they are
usually associated with the Bessel kernel [12,13,26]. Another possibility, a “soft/hard
edge”, appears when a soft edge is replaced by a hard edge cut. This situation was
studied by Claeys andKuijlaars in the paper [11]. In this case a Painlevé II kernel arises
instead of a Bessel kernel. The hard edges in the present note (in the case c = ∞) are
actually of the soft/hard type, but to keep our terminology simple, we prefer to use the
adjective “hard”. (We follow the papers [4,5] in this connection.)

1.1 Basic setup

Fix a function (“external potential”) Q : C → R∪{+∞} and writeΣ = {Q < +∞}.
We assume that IntΣ be dense in Σ and that Q be lower semicontinuous on C and
real-analytic on IntΣ and “large” near ∞:

lim inf
ζ→∞

Q(ζ )

log |ζ |2 > 1. (1.6)

We next form the equilibrium measure σ in external potential Q, namely the mea-
sure μ that minimizes the weighted energy

IQ[μ] =
∫∫

C2
log

1

|ζ − η| dμ(ζ )dμ(η) +
∫
C

Q dμ (1.7)
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amongst all compactly supported Borel probability measuresμ onC. It is well known
[23] that σ is unique, is absolutely continuous, and takes the form

dσ(ζ ) = ΔQ(ζ ) · 1S(ζ ) d A(ζ ), (1.8)

where S is a compact set which we call the droplet in potential Q. Here and henceforth
we use the convention that Δ = ∂∂̄ denotes 1/4 times the usual Laplacian, while
d A = dxdy/π is Lebesgue measure normalized so that the unit disk has measure 1.

We will in the following assume that S ⊂ IntΣ and that S be connected. Under our
assumptions, S is finitely connected and the boundary ∂S is a union of a finite number
of real-analytic arcs, possibly with finitely many singular points which can be certain
types of cusps and/or double points. See e.g., [5,20].

We shall consider the outer boundary Γ = ∂ Pc S, where the polynomially convex
hull Pc S is the union of S and the bounded components of C\S. Thus Γ is a Jor-
dan curve having possibly finitely many singular points. We shall assume that Γ be
everywhere regular, i.e., that there are no singular points on Γ .

Remark We can do with weaker assumptions: for instance concerning regularity it
suffices to assume that Q be real-analytic in a neighborhood of Γ and, say,C2-smooth
on IntΣ .

We next recall a basic potential-theoretic construct: the obstacle function Q̌(ζ ) in
external potential Q. This function can be defined in several ways, e.g., as the maximal
subharmonic functionwhich is less than Q onC and grows at most like log |ζ |2+O(1)
at infinity, or as γ − 2Uσ (ζ ) where Uσ (ζ ) = ∫

C
log 1

|ζ−η| dσ(η) is the logarithmic
potential of σ , and γ is a (“modified Robin’s”) constant.

The properties of Q̌ to be used below are (i) Q̌ = Q on S and Q̌ ≤ Q everywhere,
(ii) Q̌ is C1,1-smooth on C and harmonic on the complement Sc of S, (iii) Q̌(ζ ) =
log |ζ |2 + O(1) as ζ → ∞. (See [16,23] for proofs.)

In general, it might happen that Q̌ = Q on some points of the complement Sc,
called “shallow points” in [16]. With a mild restriction, we will assume that no such
points exist, i.e., we assume that the droplet S equals to the coincidence set {Q = Q̌}
and that Q̌ < Q everywhere on Sc.

After these proviso, we introduce our main object of study. We fix a number (the
“confinement-constant”) c with 0 < c < ∞ and consider the modified (C1,1-smooth)
potential Q(c) defined by

Q(c)(ζ ) = cQ(ζ ) + (1 − c)Q̌(ζ ).

Observe that when c = 1we have Q(c) = Q and if c = ∞we recover the hard edge
potential Q(∞) = Q + ∞ · 1S which has been denoted QS in papers such as [4,5,16].
As c → 0 we recover the obstacle function Q(0) = Q̌, which is not an admissible
potential since it fails to satisfy the growth condition (1.6).

Given a positive value of the confinement constant c it is natural to study corre-
sponding planar Coulomb gas ensembles determined by a partition function of the
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form

Zβ
n,c :=

∫
Cn

e−βHn,c dVn, Hn,c(ζ1, . . . , ζn) =
n∑
j �=k

log
1

|ζ j − ζk | + n
n∑
j=1

Q(c)(ζ j ),

where we write dVn for the usual Lebesgue measure in C
n divided by πn . Here β is

an arbitrary positive constant (the “inverse temperature”).
We next introduce a Boltzmann–Gibbs type probability measure on C

n by

dPβ
n,c = 1

Zβ
n,c

· e−βHn,c dVn (1.9)

and consider configurations {ζ j }n1 of points in C, picked randomly with respect to this
measure.

By arguing as in the free boundary case (see [16]) it is easy to verify that the system
{ζ j }n1 roughly tends to follow the equilibrium distribution, in the sense that, for each
bounded and continuous function f on C, one has the convergence

1

n
E

β
n,c[ f (ζ1) + · · · + f (ζn)] → σ( f ), (n → ∞).

As for any point process, the system {ζ j }n1 is determined by the collection of its

k-point intensity functions Rn,k = R(c)
n,k . A characterization of these functions seems

to be quite a hard enterprise. In this note, we shall henceforth restrict to the important
determinantal case β = 1, leaving other β to a future investigation.

In the case β = 1, we have the basic determinant formula

Rn,k(η1, . . . , ηk) = det(Kn(ηi , η j ))
k
i, j=1,

where the correlation kernelKn can be taken as the reproducing kernel for the subspace

Wn of L2 = L2(C, d A) consisting of all “weighted polynomials” w = pe−nQS/2

where p is an analytic polynomial of degree at most n−1. (This canonical correlation
kernel is used without exception below.)

We will write Rn = Rn,1 for the 1-point function, which is the key player in our
discussion below.

1.2 Scaling limit

Let us now fix a (regular) point on the outer boundary Γ , without loss of generality we
place it at the origin, and so that the outwards normal to Γ at 0 points in the positive
real direction.

We define a rescaled process {z j }n1 by magnifying distances about 0 by a factor√
nΔQ(0),

z j = √
nΔQ(0) ζ j , ( j = 1, . . . , n).
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Fig. 2 Rescaling about a
boundary point

In general, we will denote by ζ, z two complex variables related by z =√
nΔQ(0) ζ . We regard the droplet S as a subset of the ζ -plane. Restricting to a

fixed bounded subset of the z-plane, the image of the droplet then more and more
resembles left half plane L, as n → ∞; see Fig. 2.

Following [4,5] we denote by plain symbols Rn, Kn , etc., the 1-point function,
canonical correlation kernel, etc., with respect to the process {z j }n1. Here the canonical
kernel Kn is, by definition

Kn(z, w) = 1

nΔQ(0)
Kn(ζ, η), z = √

nΔQ(0) ζ, w = √
nΔQ(0) η.

Recall that a function of the form c(ζ, η) = g(ζ )ḡ(η), where g is a continuous
unimodular function, is called a cocycle. A function h(z, w) isHermitian if h̄(w, z) =
h(z, w), andHermitian-analytic if furthermore h is analytic in z and in w̄. Finally, the
Ginibre kernel is

G(z, w) = e−|z|2/2−|w|2/2+zw̄.

This is the correlation kernel of the infinite Ginibre ensemble, which emerges by
rescaling about a regular bulk point, see e.g., [4].

Theorem 1.1 (Structure of limiting kernels, Ward’s equation).

(i) There exists a sequence of cocycles cn such that each subsequence of the sequence
(cnKn) has a subsequence converging boundedly in C2 and locally uniformly in
(C\iR)2 to a Hermitian limit K .

(ii) Each limiting kernel K in (i) is of the form

K (z, w) = G(z, w)Ψ (z, w) exp
{
(1 − c)((Re z)2+ + (Rew)2+)

}
,

where Ψ is some Hermitian-entire function.
(iii) Each limiting 1-point function R(z) = K (z, z) is everywhere strictly positive

and satisfies the modified Ward equation

∂̄C = R − 1 − Δ log R + (1 − c)1Re z>0, (1.10)

where C(z) is the Cauchy-transform of the Berezin kernel corresponding to R
(see Sect. 4).
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By Theorem 1.1 and standard arguments (e.g., Macchi–Soshnikov’s theorem, see
[5, Lemma 1]) we obtain immediately the existence and uniqueness of a non-trivial
limiting point field {z j }∞1 corresponding to each limiting 1-point function R in The-
orem 1.1.

We have the following theorem.

Theorem 1.2 If Q is radially symmetric, or more generally, if conditions (P1) and
(P2) in Sect. 6 are satisfied, then the rescaled process {z j }n1 converges as n → ∞ to
a unique determinantal point field {z j }∞1 determined by the 1-point function R(c) in
(1.5).

Note in particular that Theorem 1.2 proves existence of a determinantal point field
with 1-point function R(c).

Observe also that the 1-point intensities R(c)(z) converge locally uniformly as
c → 0+ to the function

R(0)(z) = b0(z + z̄) exp{2(Re z)2+}, (1.11)

b0(z) =
∫ 0

−∞
e−(z−t)2/2

√
2πϕ(t) − t−1e−t2/2

dt . (1.12)

In view of this convergence, standard arguments imply that the point fields {z j }∞1
with 1-point functions R(c) converge (in the sense of point fields) to a new determi-
nantal point field with 1-point function R(0). It is also easy to establish convergence
on the level of Ward equations. We summarize this in the form of a theorem.

Theorem 1.3 There exists a unique determinantal point field inCwith 1-point function
R(0). The 1-point function R(0) gives rise to a solution to the generalizedWard equation
(1.10) with parameter value c = 0.

It is interesting to note that R(0) has a heavy tail in the sense that

R(0)(x) : = b0(2x) e
2x2 = 1

4x2
+ O(x−3), x → +∞.

By contrast, if c > 0 then R(c)(x) � Ce−2cx2 as x → +∞, see Fig. 3.

Remark Likewise, by letting c → +∞, we can recover the results concerning the
hard edge point field with 1-point function R(∞) from the note [2]. We refer to [5,12]
for further details about hard edge point fields and their applications.

1.3 Distribution of themaximummodulus

Let us now assume that the external potential Q is radially symmetric, and let {ζ j }n1
be a random sample from the corresponding Gibbs’ distribution. We shall denote by
the symbol “|ζ |n” the maximum modulus of the sample, i.e., the random variable

|ζ |n = max
1≤ j≤n

|ζ j |.
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Fig. 3 Density profiles R(c). The graphs for c = 1 (blue dotted line), 10 (orange dashed line), and∞ (green
line) are on the left, and those for c = 1(blue dotted line), 0.1 (orange dashed line), 0 (green line) are on
the right (color figure online)

We also write

ρ = max{|ζ |; ζ ∈ S}

and introduce the constants

γn = log(n/2π) − 2 log log n + 2 logCc,

where Cc = ρ
√

ΔQ(ρ)/Φc(0) = 2ρ
√
cΔQ(ρ)/(

√
c + 1). Finally, we define a

random variable ωn by rescaling |ζ |n about ρ in the following way:

ωn = √
4ncγnΔQ(ρ)

(
|ζ |n − ρ −

√
γn

4ncΔQ(ρ)

)
.

Given these proviso, we have the following theorem, which generalizes earlier
results due to Rider [22] and Chafaï and Péché [10] in the case c = 1.

Theorem 1.4 The random variable ωn converges in distribution to the standard Gum-
bel distribution: for x ∈ R

lim
n→∞Pn(ωn ≤ x) = e−e−x

.

Remark The Gumbel distribution is used to describe the distribution of extreme val-
ues. For example, the fluctuation of themaximum of i.i.d. gaussian random variables is
expressed by a Gumbel distribution. In the present context, it was shown by Rider [22]
that the scaled maximal modulus of the free boundary Ginibre ensemble converges to
the Gumbel distribution. This result was later generalized to arbitrary radially sym-
metric potentials by Chafaï and Péché [10].

For the hard edge ensemble, the situation is very different. In microscopic scale, the
eigenvalues are distributed densely near the boundary inside the droplet. With a proper
scaling, the limit law for the maximal modulus follows an exponential distribution.
See [24]. The exponential-type distribution and the Gumbel distribution can be found
in the classification of extremal distribution functions. See [6, Section 14].
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On the other hand, it is shown by Butez and García-Zelada in [7] that for an n-
dependent potential of the form qn := (1 + 1

n )Q̌ (where Q is a suitable radially
symmetric potential for which the corresponding droplet is the unit disk) the maximal
modulus |ζ |n converges in distribution (without scaling) to a random variable “|ζ |∞”
with distribution function

P(|ζ |∞ < x) =
∞∏
k=1

(
1 − x−2k

)
, x > 1.

The potential qn is very weakly confining, and is of another type from the ones studied
in the present paper.

1.4 Plan of this paper; further results

The outline of this paper is as follows. In Sect. 2, we give an elementary proof of
Theorem 1.2 for the generalized Ginibre ensemble (the potential Q(ζ ) = |ζ |2) with
an arbitrary value of the confinement coefficient c.

In Sect. 3, we prove Theorem 1.1 about the structure of limiting kernels.
In Sect. 4we analyze themodifiedWard equation (1.10) under somenatural assump-

tions, most importantly we assume apriori translation invariance of a scaling limit,
i.e., R(x+ iy) = R(x). Under this assumption, it turns out that Ward’s equation deter-
mines the solution R = R(c) up to constant. (See Theorem 4.2.) This argument applies
for any reasonable potential, and gives a possible “abstract” approach to universality.

In Sects. 5.2 and 6 we present a more “concrete” approach, by adapting the method
of quasipolynomials of Hedenmalm and Wennman [18]. This method is then applied
to prove universality of scaling limits (Theorem 1.2) in Sect. 7 and universality of
maximum modulus (Theorem 1.4) in Sect. 8.

In the concluding remarks section (Sect. 9) we summarize our results and mention
some natural problems going forward.

1.5 Index of notation

We will write L2(e−φ) = L2(e−φ,C) for the usual L2-space normed by ‖ f ‖2φ :=∫
C

| f |2e−φ d A; when φ = 0 we drop the “φ” and write L2 and ‖ f ‖ respectively. The
characteristic function of a set E is denoted 1E , and we always reserve the symbol
“δn” for the number δn = n−1/2 log n. For convenience of the reader, we now list a
number of other frequently occurring symbols.

Ĉ = C ∪ {∞};D = {|ζ | < 1};De(ρ) = {|ζ | > ρ} ∪ {∞};De = De(1);
L = {Re z < 0};

“Area”: d A(ζ ) = 1
π
d2ζ ; “Arclength”: ds(ζ ) = 1

2π |dζ |; “Laplacian”: Δ = ∂∂̄;

Sτ : droplet in external potential Q/τ ; Uτ = Ĉ\ Pc Sτ ; Γτ = ∂Uτ ;
nτ : exterior unit normal on Γτ ;
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Q̌τ : obstacle function in external potential Q/τ ;
Vτ : harmonic continuation of Q̌τ |Uτ across Γτ ;
φτ : normalized conformal map φτ : Uτ → De with φτ (∞) = ∞ and φ′

τ (∞) > 0.

2 Confined Ginibre ensembles

In this section, we consider the Ginibre case, i.e., the random normal matrix model
associated with the external potential

Q(c) = cQ + (1 − c)Q̌, (c > 0)

where Q(ζ ) = |ζ |2. In this example, the droplet S is the unit diskD = {ζ ∈ C : |ζ | ≤
1} and the solution to the obstacle problem is given by

Q̌(ζ ) =
{

|ζ |2 if |ζ | ≤ 1,

1 + log |ζ |2 otherwise.

Let {ζ j }n1 denote the eigenvalues of random normal matrices with Q(c). Define a
rescaled system {z j }n1 at the boundary point p = 1 by z j = √

n(ζ j − 1).
We shall give a short proof for the convergence of the rescaled ensemble to the

point field in Theorem 1.2. We here use the normal approximation to the Poisson
distribution. This approach can be found in [4] for the Ginibre ensemble with a free
boundary as well as with a hard edge.

Proof of Theorem 1.2 for the Ginibre case Recall that a correlation kernel for the pro-
cess {ζ j }n1 is obtained by

Kn(ζ, η) =
n−1∑
j=0

(ζ η̄) j

‖ζ j‖2
nQ(c)

e−n(Q(c)(ζ )+Q(c)(η))/2

since Q(c) is radially symmetric. Here, by direct computation we have

‖ζ j‖2nQ(c) = n− j−1γ ( j + 1, n)

+ e−n(1−c)(nc)− j−1+n(1−c)Γ ( j + 1 − n(1 − c), nc),

where γ ( j +1, n) = ∫ n
0 s j e−sds is the lower incomplete Gamma function and Γ ( j +

1, n) = ∫ ∞
n s j e−sds is the upper incomplete Gamma function. It follows that

Kn(ζ, η) = n
n−1∑
j=0

(nζ η̄) j e−nQ(c)(ζ )/2−nQ(c)(η)/2

P( j, n, c)
,
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where

P( j, n, c) = j !P(Un > j)

+ e−n(1−c)c− j−1(nc)n(1−c) Γ ( j + 1 − n(1 − c))P(Unc ≤ j + 1 − n(1 − c))

and Us ∼ Po(s), i.e., Us is a Poisson distributed random variable with intensity s. By
normal approximation of the Poisson distribution we obtain

P(Un > j) = ϕ
(
ξ j,n

)(
1 + o(1)

)
,

P(Unc ≤ j + 1 − n(1 − c)) = 1 − ϕ

(
ξ j,n√
c

) (
1 + o(1)

)
,

where ϕ(ξ) = 1√
2π

∫ ∞
ξ

e−t2/2 dt, ξ j,n = ( j−n)√
n

, and o(1) → 0 as n → ∞ uniformly
in j .

Now rescale by

ζ = 1 + z/
√
n, η = 1 + w/

√
n, z, w ∈ C

and write

Kn(z, w) = 1

n
Kn(ζ, η) =

n−1∑
j=0

(nζ η̄

λ

) j λ j

P( j, n, c)
e−λ,

where λ = n
(
Q(c)(ζ ) + Q(c)(η)

)
/2. Note that λ has the asymptotic identity:

λ = n + √
n Re(z + w) + |z|2 + |w|2

2
− (1 − c)

(
(Re z)2+ + (Rew)2+

)
+ o(1).

We have shown that

Kn(z, w) = (1 + o(1))
n−1∑
j=0

(
nζ η̄

λ

) j
λ j e−λ/ j !

ϕ(ξ j,n) + Γ ( j, n, c)(1 − ϕ(ξ j,n/
√
c))

,

where Γ (s, n, c) := e−n(1−c)c−s−1(nc)n(1−c)Γ (s + 1 − n(1 − c))/Γ (s + 1).
Finally, if Xn ∼ Po(λ), we can write the last sum in the form

n−1∑
j=0

(nζ η̄

λ

) j P(Xn = j)

ϕ(ξ j,n) + Γ ( j, n, c)(1 − ϕ(ξ j,n/
√
c))

= E

(nζ η̄

λ

)Xn 1{Xn<n}
ϕ
(
Xn−n√

n

)
+ Γ (Xn, n, c)

(
1 − ϕ

(
Xn−n√

nc

)) .
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Defining Yn by Xn = λ + √
λYn and αn = (n − λ)/

√
n, we now get a relation of the

form

Kn(z, w) = (1 + o(1))AnBn,

where

An =
(nζ η̄

λ

)λ

and

Bn = E
(
nζ η̄
λ

)
√

λYn 1{Yn<αn}

ϕ
(√

λ
n Yn − αn

)
+ Γ (λ + √

λYn, n, c)
(
1 − ϕ

(√
λ
nc Yn − αn√

c

)) .

Lemma 2.1 Let x = Re z, u = Rew, and b = b(z, w) = Im(z + w̄). We have

An = eib
√
neb

2/2G(z, w)
(
1 + o(1)

)
e(1−c)(x2++u2+), (2.1)

Bn = e−b2/2(1 + o(1)
)
bc(z + w̄), (2.2)

where G(z, w) = ezw̄−|z|2/2−|w|2/2 and bc is the function defined in (1.3),

bc(z) = 1√
2π

∫ 0

−∞
e−(ξ−z)2/2

Φc(ξ)
dξ, Φc(ξ) = ϕ(ξ) + 1√

c
e
1−c
2c ξ2

(
1 − ϕ

( ξ√
c

))
.

Proof We first analyze that case ζ = η = 1 + x/
√
n is real. We find

λ =
{
n + 2x

√
n + x2 if x ≤ 0,

n + 2x
√
n + (2c − 1)x2 + o(1) otherwise,

and

An =
{
1 if x ≤ 0,

e2(1−c)x2(1 + o(1)) otherwise.

Using αn = −2x + o(1), λ/n = 1 + o(1), and Stirling’s formula, we obtain the
asymptotic identity for Γ (λ + √

λs, n, c) :

Γ (λ + √
λs, n, c) = 1√

c
e
1−c
2c (s+2x)2 + o(1).
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By means of the central limit theorem and the above asymptotic identities, we now
approximate the factor Bn as follows,

Bn = 1√
2π

∫ −2x

−∞
e−s2/2 ds

ϕ(s + 2x) + 1√
c
e
1−c
2c (s+2x)2(1 − ϕ((s + 2x)/

√
c))

+ o(1).

Now we consider An and Bn for

ζ = 1 + z/
√
n, η = 1 + w/

√
n, z, w ∈ C

and recall that

λ = n + √
n Re(z + w) + |z|2 + |w|2

2
− (1 − c)

(
x2+ + u2+

)
+ o(1).

We use the same argument as in the previous case and deduce (2.1) and (2.2). 
�
By the above lemma, we approximate the kernel Kn(z, w) by

Kn(z, w) = G(z, w)e(1−c)(x2++u2+)bc(z + w̄)
(
1 + o(1)

)

up to cocycles and the proof is complete. 
�

3 Structure of limiting correlation kernels

In this section we prove Theorem 1.1. Our proof closely follows the derivation of
similar results in [4]; we shall here indicate the necessary modifications.

We start by proving some generally useful estimates for functions of the form

w(ζ ) = p(ζ )e−nQ(c)(ζ )/2,

where p is a holomorphic function (in practice, a polynomial or a “quasi-
polynomial”—see below).

It is convenient to introduce the numbers

M = Mn,c := ‖ΔQ(c)‖L∞(Sn), (Sn := {ζ ; dist(ζ, S) ≤ 1/
√
n}).

The numbers Mn,c clearly do not increase as n increases; in the sequel we may fix M
to be Mn0,c with a sufficiently large n0.

Lemma 3.1 Suppose that ζ ∈ S and n is large enough and suppose that p is holomor-
phic in the disc D(ζ ; 1/√n). Then there is a constant C = Cc depending only on M
such that

|w(ζ )|2 ≤ Cn
∫
D(ζ ;1/√n)

|w|2 d A.
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Proof This follows from a standard argument by using that the function z �→ |w(ζ +
z/

√
n)|2eM|z|2 is logarithmically subharmonic in D(0; 1). (See for instance [4, Section

3].) 
�

Lemma 3.2 Let K be a compact subset of the interior of Pc S and let w = qe−nQ(c)/2

where q is holomorphic on C\K and satisfying q(ζ ) = O(ζ j ) as ζ → ∞. Write
τ = j/n and suppose that τ is in the range τ ≤ 1. Then there is a constant Cc > 0
such that

|w(ζ )| ≤ Cc
√
n‖w‖e−n(Q(c)−Q̌τ )(ζ )/2, (dist(ζ, K ) ≥ 1/

√
n).

Proof By Lemma 3.1 there is a constantC such that |w(ζ )| ≤ √
Cn‖w‖when ζ ∈ Sτ .

Consider the subharmonic function

un(ζ ) = 1

n
log

( |q(ζ )|2
Cn‖w‖2

)
.

Note that un(ζ ) ≤ τ log |ζ |2 + O(1) as ζ → ∞ and un ≤ Q on Sτ , and
un is subharmonic on C. Hence un ≤ Q̌τ on C, which proves the lemma
(with Cc := √

C). 
�
Remark Following [18], we call q above a quasipolynomial of degree j ; w is a
weighted quasipolynomial.

Lemma 3.3 The 1-point function Rn in external potential Q(c) satisfies

Rn(ζ ) ≤ Ccne
−nc(Q−Q̌)(ζ ), (ζ ∈ C).

Proof Let kn be the reproducing kernel of the space of holomorphic polynomials of
degree at most n − 1 with the norm of L2(e−nQ(c)

). Now fix ζ ∈ S and put q(η) =
kn(η, ζ )/

√
kn(ζ, ζ ) and w = qe−nQ(c)/2. Then ‖w‖ = 1, and so by Lemma 3.2 (with

τ = 1) we have

Rn(ζ ) = |w(ζ )|2 ≤ Ccne
−n(Q(c)−Q̌)(ζ ) = Ccne

−nc(Q−Q̌)(ζ ),

finishing the proof. 
�
Fix a neighborhood Ω of S where Q is real-analytic and strictly subharmonic.

Let A be a Hermitian-analytic function defined in a neighborhood in C
2 of the set

{(ζ, ζ ) : ζ ∈ Ω} such that A(ζ, ζ ) = Q(ζ ). As in [4], we fix an outer boundary point
0 ∈ Γ = ∂ Pc S such that the outwards normal to Γ at 0 points in the positive real
direction.

We define a kernel by

k#n(ζ, η) = n(∂1∂̄2A)(ζ, η) enA(ζ,η).
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We also introduce rescaled kernels k#n and K #
n by

k#n(z, w) = 1

nΔQ(0)
k#n(ζ, η); K #

n (z, w) = k#n(z, w)e−n(Q(c)(ζ )+Q(c)(η))/2

where ζ = z/
√
nΔQ(0) and η = w/

√
nΔQ(0).

Lemma 3.4 For z in a given compact subset of C, we have as n → ∞

(Q − Q̌)(ζ ) = 2n−1(Re z)2+(1 + O(n−1/2)). (3.1)

Moreover, if Rn(z) = 1
nΔQ(0)Rn(ζ ) denotes the rescaled 1-point function, then

Rn(z) ≤ Cce
−2c(Re z)2+ . (3.2)

Proof Let V denote the harmonic continuation of Q̌|Sc across the outer boundary
curve Γ = ∂ Pc S to a neighborhood N of 0. Let ∂n and ∂t denote the exterior normal
and tangential derivatives on Γ ∩ N , respectively. Since Q = V and ∇Q = ∇V on
N ∩ Γ , we have

∂n(Q − V ) = ∂t(Q − V ) = ∂2t (Q − V ) = 0.

This implies ∂2n (Q − V ) = 4Δ(Q − V ) = 4ΔQ on Γ , proving (3.1). To prove (3.2)
it now suffices to appeal to Lemma 3.3. 
�
Proof of Theorem 1.1 Define a function Ψn by

Ψn(z, w) = Kn(z, w)/K #
n (z, w).

Then Ψn is Hermitian-analytic and the rescaled kernel Kn can be expressed as

Kn(z, w) = k#n(z, w)Ψn(z, w)e−n(Q(c)(ζ )+Q(c)(η))/2.

Using the argument in [4, Lemma 3.4], we see that there exist cocycles cn such that

cn(z, w) k#n(z, w) e−n(Q(ζ )+Q(η))/2 = G(z, w)(1 + o(1)) (3.3)

where o(1) → 0 locally uniformly on C2 as n → ∞. Indeed, (3.3) is obtained by the
Taylor expansion (assuming n = 1 for simplicity)

n(A(ζ, η) − Q(ζ )/2 − Q(η)/2)

= n(A(ζ, η) − A(η, η))/2 − n(A(ζ, ζ ) − A(η, ζ ))/2

= i Im
[√

n ∂1A(0, 0)√
ΔQ(0)

(z − w) + ∂21 A(0, 0)

2ΔQ(0)
(z2 − w2)

]
+ zw̄ − |z|2/2 − |w|2/2.
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Since Q(c)(ζ ) = Q̌(ζ ) + c(Q − Q̌)(ζ ), we obtain the convergence

cn(z, w) K #
n (z, w) = G(z, w)e(1−c)((Re z)2++(Rew)2+)(1 + o(1)) (3.4)

by (3.1) and (3.3). Here, o(1) → 0 in L1
loc(C

2) and locally uniformly on (C\iR)2 as
n → ∞.

On the other hand, observe that

|Ψn(z, w)|2 =
∣∣∣∣ Kn(z, w)

K #
n (z, w)

∣∣∣∣
2

≤ Rn(z)Rn(w)

|cn(z, w)K #
n (z, w)|2 .

Combining with (3.2), we obtain that the family {Ψn} is locally bounded on C
2. By

the normal family argument in [4], for each subsequence of {Ψn} there exists a further
subsequence which converges locally uniformly on C2 and every limit Ψ = limk Ψnk
is Hermitian-entire. This proves part (i) and (ii) of Theorem 1.1.

For the remaining part, we observe that the modified Ward equation (1.10) follows
by applying the rescaling procedure in [4] to the potential Q(c) in a straightforward
way. Moreover, to prove non-triviality using the method in [4] we need only to prove
that R(z) > 0 at some point z. For z somewhat inside the (rescaled) droplet this can
be done exactly as in [4], since Q = Q(c) in S. 
�

4 An approach to universality usingWard’s equation

In this section, we shall analyze solutions R(z) to the (modified)Ward equation (1.10)
which satisfy the “physically reasonable” condition of translation invariance. This
leads to an approach to universality of the 1-point function R(c) based only on Ward’s
equation.

Given the nature of our rescaling (with the rescaled droplet occupying the left half
plane) it is natural to assume that each limiting 1-point function R in Theorem 1.1
should be vertical translation invariant, in the sense that R(z) = R(z + i t) for each
t ∈ R. This is equivalent to that the holomorphic kernel Ψ should satisfy Ψ (z, w) =
S(z + w̄) for some entire function S. (In view of the computations in the preceding
section, we know that this holds for the Ginibre ensemble, in which case S = bc.)

In the following, we shall work within the class of abstract translation invariant
“limiting kernels” where S has the “error function-type” (cf. [5])

S(z) = 1√
2π

∫ +∞

−∞
e−(ξ−z)2/2s(ξ) dξ

for some Borel measurable, non-negative function s on R.
To each such function we define a corresponding function B = BS (the “Berezin

kernel”) by

B(z, w) = e−|z−w|2e2(1−c)(Rew)2+ S(z + w̄)S(z̄ + w)

S(z + z̄)
.
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We will describe all the functions s such that the Berezin kernel B satisfies two
conditions called the mass-one condition and Ward’s equation.

We say that B satisfies the mass-one equation if for all z

∫
C

B(z, w) d A(w) = 1. (4.1)

In the case of a regular point on the boundary, Ward’s equation has the form

∂̄C = R − 1 − Δ log R + (1 − c)1Re z>0, (4.2)

where R(z) = B(z, z) and

C(z) =
∫
C

B(z, w)

z − w
d A(w). (4.3)

Throughout this section, we write z = x + iy and w = u + iv with x, y, u, v ∈ R.

Theorem 4.1 The mass-one condition (4.1) holds if and only if

s(ξ) = 1E
Φc(ξ)

almost everywhere for some Borel subset E ⊂ R, where Φc : R → (0,∞) is the
function defined in (1.4).

Proof A straightforward computation shows that

√
2

π

∫ ∞

−∞
e−2u2+2ξu+2(1−c)u2+ du = e

1
2 ξ2ϕ(ξ) + 1√

c
e

1
2c ξ2

(
1 − ϕ

(
ξ√
c

))
.

It follows immediately that

∫
C

e−|z−w|2e2(1−c)u2+ S(z + w̄)S(z̄ + w) d A(w)

= 1

π

∫ ∞

−∞

∫ ∞

−∞
e−2x2−2u2−ξ2+2ξ(x+u)+2(1−c)u2+s(ξ)2 dudξ

= 1√
2π

∫ ∞

−∞
e− 1

2 (ξ−2x)2s(ξ)2
(

ϕ(ξ) + 1√
c
e
1−c
2c ξ2

(
1 − ϕ

(
ξ√
c

)))
dξ.

Here, the expression in the large parenthesis is recognized as the function Φc defined
in (1.4).

Equating the last expression with S(2x), we see that the mass-one equation is
equivalent to that (for a.e.-ξ )

s(ξ) = s(ξ)2 Φc(ξ).
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The last condition means that (up to sets of measure 0) s(ξ) = 1/Φc(ξ) whenever
s(ξ) �= 0. 
�

We will now analyze Ward’s equation (4.2). We will require a few initial remarks
about the Cauchy transform (4.3).

By a change of variables, the Cauchy transform C takes the form

C(z) = −
∫ ∞

−∞

∫ ∞

−∞
e−u2−v2+2(1−c)(u+x)2+

u + iv

S(2x + u − iv)S(2x + u + iv)

S(2x)

dv du

π
.

Let

L(x) =
∫ ∞

−∞

∫ ∞

−∞
e−u2−v2+2(1−c)(u+x/2)2+

u + iv
S(x + u − iv)S(x + u + iv)

dv du

π
.

Then

C(z) = − L(2x)

S(2x)
, ∂̄C(z) = −

( L

S

)′
(2x).

Now we describe all solutions to Ward’s equation (4.2).

Theorem 4.2 Ward’s equation holds if and only if

s(ξ) = 1I
Φc(ξ)

almost everywhere, where Φc is the function (1.4) and I is an interval in R. Further-
more, if R satisfies

lim inf
x→−∞ R(x) > 0, (4.4)

then I = (−∞, c) for some constant c.

Proof Let

�(x; ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
l(x; ξ, η; u, v)

e−iv(ξ−η)

u + iv

dv du

π
,

where

l(x; ξ, η; u, v) = e−2u2− 1
2 (ξ−x)2− 1

2 (η−x)2+u(ξ+η−2x)+2(1−c)(u+x/2)2+

so that

L(x) =
∫ ∞

−∞

∫ ∞

−∞
�(x; ξ, η)s(ξ)s(η)

dξ dη

2π
.



On boundary confinements for the Coulomb gas Page 19 of 42 68

First, observe that

∫ ∞

−∞
e−iv(ξ−η)

u + iv

dv

π
=

{
−2eu·(ξ−η)1ξ>η, if u < 0;
2eu·(ξ−η)1ξ<η, if u > 0.

(4.5)

Let

�1(x; ξ, η) = −1ξ>η

∫ ∞

−∞
2e−2u2− 1

2 (ξ−x)2− 1
2 (η−x)2+2u(ξ−x)+2(1−c)(u+x/2)2+ du

and

L1(x) =
∫ ∞

−∞

∫ ∞

−∞
�1(x; ξ, η)s(ξ)s(η)

dξ dη

2π
.

By direct computation, we have

�1(x; ξ, η) = −e− 1
2 (η−x)2

√
2π1ξ>ηΦc(ξ)

and

L1(x) = −
∫ ∞

−∞

∫ ∞

−∞
1ξ>ηe

− 1
2 (η−x)2s(ξ)s(η)Φc(ξ)

dξdη√
2π

. (4.6)

Next, let L2(x) = L(x) − L1(x). Then by (4.5), we have

L2(x) =
∫ ∞

−∞

∫ ∞

−∞
�2(x; ξ, η)s(ξ)s(η)

dξ dη

2π
,

where

�2(x; ξ, η) = 2
∫ ∞

0
e−2u2− 1

2 (ξ−x)2− 1
2 (η−x)2+2u(ξ−x)+2(1−c)(u+x/2)2+ du.

This implies that

L2(x) = S(x)
∫ ∞

x
S(v)e

1
2 (1−c)v2+ dv. (4.7)

From the relation

R(z) = e2(1−c)x2+S(z + z̄),

we have

∂∂̄ log R = (1 − c)1x>0 +
( S′

S

)′
(2x).
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Thus Ward’s equation holds if and only if

( L

S

)′
(2x) =

( S′

S

)′
(2x) + 1 − R(z).

From the Eq. (4.7), L2 satisfies

( L2

S

)′
(2x) = −R(z),

and hence Ward’s equation holds if and only if

( L1

S

)′ =
( S′

S

)′ + 1.

Equivalently,

L1(x) = S′(x) + (x − c)S(x)

for some constant c. We find

L1(x) =
∫ ∞

−∞
(η − c)e− 1

2 (η−x)2s(η)
dη√
2π

.

Comparing it to (4.6), we have

η − c = −
∫ ∞

η

s(ξ)Φc(ξ) dξ

for almost everywhere in the set I = {η ∈ R : s(η) �= 0}. This implies that s ·Φc = 1I
almost everywhere and I is connected. For the last statement, assume on the contrary
that I is left-bounded. Then it is a direct consequence that R(x) → 0 as x → −∞.
This implies that if R satisfies the condition (4.4), then I = (−∞, c) where c is
determined by

η − c = −
∫ ∞

η

1I .

Our proof of Theorem 4.2 is complete. 
�
Remark Theorem 4.2 shows that for an “abstract” translation invariant kernel, Ward’s
equation only determines it up to a real constant c. It is worth pointing out that each
limiting 1-point function R inTheorem1.1 satisfies the condition (4.4).More precisely,
one can prove that R(x) → 1 as x → −∞ from the argument presented in [4, Section
5].

In the free boundary case when the confinement parameter c = 1, we know that
I = (−∞, 0). Indeed, this is shown in [4] depending on the interior estimate of R
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and the boundary fluctuation theorem from [3]. Moreover, we have seen above that
I = (−∞, 0) for the Ginibre ensemble (with general c) andwe believe that this should
be a universal fact. In the following sections, we will prove the statement for concrete
scaling limits in (for example) radially symmetric cases, by applying the method of
quasipolynomials.

5 Boundary universality: some preliminaries

In this section, we collect some preliminary observations which will come in handy in
several occasions, when we prove universality of scaling limits and maximum moduli
(Theorems 1.2, 1.4). We will also give some background about Laplacian growth.

5.1 Outline of strategy

Let p j,n be the j :th orthonormal polynomial with respect to the weight e−nQ(c)
, and

write w j,n = p j,ne−nQ(c)/2. We start with the basic identity for the 1-point function

Rn(ζ ) = Kn(ζ, ζ ) =
n−1∑
j=0

|w j,n(ζ )|2.

As a preliminary step, we shall prove that if ζ is very close to the outer boundary
Γ = ∂ Pc S, then all terms but the last

√
n log n ones can be neglected. More precisely,

if ζ belongs to a belt

NΓ = {ζ ; dist(ζ, Γ ) ≤ C/
√
n}, (5.1)

then

Rn(ζ ) ∼
n−1∑

j=n−√
n log n

|w j,n(ζ )|2. (5.2)

The idea is to prove an asymptotic formula for the remaining w j,n’s, so that uni-
versality will follow after a simple-minded summation. (See Figs. 3, 4.)

5.2 Preliminaries on Laplacian growth

In this subsection we recast some results on Laplacian growth; this is convenient, if not
otherwise, to introduce some notation. References and further reading can be found,
for instance in [14,16,20,27] and in [18, Section 2].

For a parameter τ with 0 < τ ≤ 1, we let Q̌τ be the obstacle function defined by
the obstacle Q, subject to the growth condition

Q̌τ (ζ ) = 2τ log |ζ | + O(1), as ζ → ∞.
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Fig. 4 Graphs of squared weighted orthonormal polynomials |w j,n |2 when n = 500 and j varies from 100
to 500 in steps of 20 with different c: c = 1 (left), c = 0.05 (middle), and c = 50 (right). The abscissa
x = 1 is a boundary point of the droplet

The precise definition runs as follows: for each η ∈ C, Q̌τ (η) is the supremum
of s(η) where s is a subharmonic function which is everywhere ≤ Q and satisfies
s(ζ ) ≤ 2τ log |ζ | + O(1) as ζ → ∞.

Write Sτ for the droplet in external potential Q/τ and note that σ(Sτ ) = τ where
σ is the equilibrium measure (1.8). Under our conditions, Sτ equals to closure of the
interior of the coincidence set {Q = Q̌τ } and the measure στ := 1Sτ · σ minimizes
the weighted energy (1.7) amongst positive measures of total mass τ .

Clearly the droplets Sτ increase with τ . The evolution of the Sτ ’s is known as
Laplacian growth. We will write Γτ for the outer boundary,

Γτ = ∂ Pc Sτ .

Hence Γτ = ∂Uτ where

Uτ = Ĉ\ Pc Sτ .

Finally, we denote by

φτ : Uτ → De

the unique conformal (surjective) map, normalized so that φτ (∞) = ∞ and φ′
τ (∞) >

0. (De is the exterior disk {|ζ | > 1} ∪ {∞}.)
It is well known that Q̌τ isC1,1-smooth onC and harmonic onUτ . Moreover, since

Γ = Γ1 is everywhere regular, it follows from standard facts about Laplacian growth
that Γτ is everywhere regular for all τ in some interval τ0 ≤ τ ≤ 1, where τ0 < 1.
Below we fix, once and for all, such a τ0.

Lemma 5.1 (Richardson’s lemma) If 0 < τ < τ ′ ≤ 1 and if h is harmonic in Uτ and
smooth up to the boundary, then

∫
Sτ ′ \Sτ

hΔQ dA = (τ ′ − τ)h(∞).

Proof Since σ(Sτ ) = τ , the asserted identity is true when h is a constant. Hence we
can assume that h(∞) = 0. Let us fix such an h and extend it to C in a smooth way.
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It follows from the properties of the obstacle function Q̌τ that

∫
Sτ

hΔQ dA =
∫
C

hΔQ̌τ d A =
∫
C

Δh · 1Sτ Q dA.

Subtracting the corresponding identity with τ replaced by τ ′, we find
∫
Sτ ′ \Sτ

hΔQ dA = 0,

which finishes the proof of the lemma. 
�
The lemma says that if dστ = ΔQ · 1Sτ d A is equilibrium measure of mass τ ,

then near the outer boundary component Γτ , we have, in a suitable “weak” sense that
dστ

dτ
= ωτ where ωτ is the harmonic measure ofUτ evaluated at∞. This means: if h is

a continuous function on ∂Sτ , then ωτ (h) = h̃(∞), where h̃ is the harmonic extension
to Uτ of h.

Let us define the Green’s function of Uτ with pole at infinity by G(ζ,∞) =
log |φτ (ζ )|2. Then by Green’s identity,

h̃(∞) =
∫
Uτ

h̃(ζ )ΔG(ζ,∞) d A(ζ ) = −1

2

∫
∂Sτ

h
∂G

∂n
dsτ ,

where dsτ stands for the arclength measure on Γτ divided by 2π .
Now for values of τ such that Γτ is everywhere regular − ∂

∂n G(ζ,∞) = 2|φ′
τ (ζ )|

when ζ ∈ Γτ so we conclude that d
dτ

(1Sτ ΔQ dA) = |φ′
τ |dsτ , meaning that the outer

boundary Γτ moves in the direction normal to Γτ , at local speed |φ′
τ |/2ΔQ. (The

factor 2 comes about because of the different normalizations of d A and dsτ .)
The above dynamic of Γτ was of course deduced in a “weak” sense, but using

the regularity of the curves involved, one can turn it into a pointwise estimate. More
precisely, one has the following result, which is essentially [18, Lemma 2.3.1].

In the following, we denote by nτ the outwards unit normal on the curve Γτ .

Lemma 5.2 Let ζ be a point of Γ = Γ1 and fix τ with τ0 ≤ τ ≤ 1. Let ζτ be the point
in Γτ ∩ (ζ + n1(ζ )R) which is closest to ζ . Then we have

ζτ = ζ + (τ − 1)nτ (ζτ )
|φ′

1(ζ )|
2ΔQ(ζ )

+ O((τ − 1)2), τ → 1

and

nτ (ζτ ) = n1(ζ ) + O(τ − 1), τ → 1.

In particular there are constants c1, c2 > 0 such that for all ζ ∈ Γ and all
τ0 ≤ τ ≤ 1,

c1(1 − τ) ≤ dist(Γτ , ζ ) ≤ c2(1 − τ).
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For τ0 < τ ≤ 1, we will denote by Vτ the harmonic continuation of the harmonic
function Q̌τ on Uτ across the analytic curve Γτ . Considering the growth as ζ → ∞,
we obtain the basic identity

Vτ (ζ ) = ReQτ + τ log |φτ (ζ )|2, (5.3)

whereQτ is the holomorphic function onUτ with ReQτ = Q on Γτ and ImQτ (∞)

= 0.
The function Q−Vτ , considered in a neighborhood of the curve Γτ , plays a central

role for the theory.

Lemma 5.3 Fix a number τ ∈ [τ0, 1] and a point pτ ∈ Γτ . Then we have for v ∈ C

(Q − Vτ )(pτ + v) = 2ΔQ(pτ ) · v2n + O(|v|3), |v| → 0,

where vn = v · n = Re(vn̄) is the component of v in the normal direction n = nτ (pτ ).

Proof Let ∂n and ∂t denote the exterior normal and tangential derivatives onΓτ , respec-
tively. Since Q = Vτ and ∇Q = ∇Vτ on Γτ , we have for all ζ ∈ Γτ

∂n(Q − Vτ ) = ∂t(Q − Vτ ) = ∂2t (Q − Vτ ) = 0.

This implies ∂2n (Q − Vτ ) = 4Δ(Q − Vτ ) = 4ΔQ on Γτ , finishing the proof of the
lemma. 
�

In particular, it follows from Lemma 5.3 that there is a number c > 0 such that, if
ζ ∈ NΓ ,

(Q − Q̌τ )(ζ ) = (Q − Vτ )(ζ ) ≥ c dist(ζ, Sτ )
2. (5.4)

5.3 Discarding lower order terms

Let NΓ be the belt (5.1) and recall that Q = Q(c) in NΓ . Below we fix an arbitrary
point ζ ∈ NΓ . Also fix a number τ0 < 1 such that the curves Γτ are regular for all τ
with τ0 ≤ τ ≤ 1. Now write

τ = τ( j) = j/n, ( j ≤ n − 1).

It follows from Lemma 3.2 that there is a number C = Cc such that

τ ≤ τ0 ⇒ |w j,n(ζ )|2 ≤ Cne−n(Q(c)−Q̌τ0 )(ζ ) ≤ Cne−cn,

where c = infNΓ {Q(c) − Q̌τ0} > 0. Hence

Rn(ζ ) ∼
n−1∑
j=τ0n

|w j,n(ζ )|2.



On boundary confinements for the Coulomb gas Page 25 of 42 68

Next fix j such that τ0n ≤ j ≤ n − √
n log n, i.e., τ0 ≤ τ ≤ 1 − δn where we put

throughout

δn = log n√
n

.

By Lemma 5.2, we have dist(Γτ , Γ ) ≥ c(1 − τ) ≥ cδn for some constant c > 0.
By (5.4), n(Q(c) − Q̌τ )(ζ ) ≥ c1 log2 n where c1 > 0, so

|w j,n(ζ )|2 ≤ Cne−n(Q(c)−Q̌τ )(ζ ) ≤ Cne−c1 log2 n, ( j ≤ n − √
n log n).

We have shown that

Rn(ζ ) ∼
n−1∑

j=n−√
n log n

|w j,n(ζ )|2, (n → ∞)

in the sense that the difference of the left and right sides converges uniformly to zero
on NΓ , as n → ∞.

6 Approximation by quasipolynomials

In this section, we discuss an asymptotic formula for weighted quasipolynomialsw j,n

when j is in the range n−√
n log n ≤ j ≤ n−1. This formula will be used repeatedly,

in our proofs of Theorems 1.2 and 1.4.
The asymptotic formula leads to functions behaving “essentially” like weighted

orthogonal polynomials, provided that certain conditions are satisfied (e.g., the
potential is radially symmetric). However, in the following discussion, we make
no assumptions concerning radial symmetry, except where this is explicitly stated
(namely, it is used in the proof of property (P2) below).

Throughout the section, we assume that n is large enough, andwewrite τ = τ( j) =
j/n and δn = n−1/2 log n. Thus 1 − δn ≤ τ < 1.

6.1 Basic definitions

When n is large, Γτ is a real-analytic Jordan curve and thus the map φτ : Uτ → De

can be continued analytically across Γτ to C\K where K is a suitable compact set
chosen so that φτ maps K biholomorphically onto De(ρ0 − δ) for some ρ0 < 1 and
δ > 0. (De(ρ) denotes the set {|ζ | > ρ} ∪ {∞}.)

Let Qτ be the bounded holomorphic function defined on a neighborhood of Uτ

with ReQτ = Q on Γτ and ImQτ (∞) = 0. (See (5.3).)
For each j with n − nδn ≤ j ≤ n − 1, we write

ξ j,n(ζ ) = j − n√
n

· |φ′
τ (ζ )|√

ΔQ(ζ )
, (ζ ∈ Ĉ\K ).



68 Page 26 of 42 Y. Ameur et al.

It is convenient to introduce the notation

Φ j,n(ζ ) := Φc(ξ j,n(ζ )),

where Φc is the function defined in (1.4).
Finally, we define the approximate quasipolynomial Fj,n = Fj,n,c of degree j

associated with the external field nQ(c) by

Fj,n =
( n

2π

) 1
4 √

φ′
τ φ j

τ e
nQτ /2 eH j,n/2, (6.1)

where H j,n is the bounded holomorphic function defined on Ĉ\K such that

ReH j,n = log
√

ΔQ − logΦ j,n on ∂Sτ

and ImH j,n(∞) = 0.
We shall show that Fj,n satisfies the following properties in Sects. 6.2 and 6.3. Fix

a smooth function χ0 on Ĉ such that χ0 = 0 on K and χ0 = 1 on O := φ−1
τ (De(ρ0)).

(P1) Fj,n is approximately normalized:

∫
C

χ2
0 |Fj,n|2 e−nQ(c)

d A = 1 + O
(
n−1/2 log2 n

)
.

(P2) Fj,n satisfies the following “approximate orthogonality”: for any polynomial p
with deg p < j ,

∫
C

χ0 Fj,n p̄ e−nQ(c)
d A = O

(
n−1/2 log2 n ‖p‖nQ(c)

)
.

Following [18] we now define a “positioning operator” Λ j,n by

Λ j,n[ f ] = φ′
τ · φ j

τ · enQτ /2 · f ◦ φτ .

Then the map Λ j,n is an isometric isomorphism from L2
nRc,τ

(De(ρ0)) to L2
nQ(c) (O)

where

Rc,τ := (Q(c) − Vτ ) ◦ φ−1
τ ,

and it furthermore preserves holomorphicity. (See [18, Section 3.1].)
The isometry property means that for all f , g ∈ L2

nRc,τ
(De(ρ0))

∫
O

Λ j,n[ f ] Λ j,n[g] e−nQ(c)
d A =

∫
De(ρ0)

f ḡ e−nRc,τ d A.
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We now define a function f j,n on De(ρ0) by the formula

n
1
4 Λ j,n[ f j,n] = Fj,n .

This gives

f j,n = (2π)−1/4((φ′
τ )

−1/2 · eH j,n/2) ◦ φ−1
τ .

6.2 Approximate normalization

In this subsection we prove the property (P1) of the approximate quasipolynomials.
Recall that Uτ = Ĉ\ Pc Sτ .

We first note that, for points ζ close to the unit circle T,

Rc,τ (ζ ) =
{

(Q − Vτ − (1 − c)(Q − V1)) ◦ φ−1
τ (ζ ) if ζ ∈ φτ (U1),

(Q − Vτ ) ◦ φ−1
τ (ζ ) otherwise.

For each τ ∈ [1 − δn, 1], the curve φτ (∂S) is an analytic Jordan curve, a slight
perturbation of the unit circle T. It is convenient to represent this curve according to
the polar parameterization

φτ (∂S) = {rτ (η) · η : η ∈ T},

where rτ is a smooth function T → R+. (It is easy to see that such a parameterization
is possible when τ is sufficiently close to 1.)

For a fixed η ∈ T we now consider the local speed ṙτ (η) = drτ (η)
dτ

. Since the
conformal map φτ locally magnifies distances by a factor |φ′

τ | and since the curve Γτ

moves towards Γ1 with local speed |φ′
τ |/(2ΔQ) (see discussion before Lemma 5.2),

we find that

ṙτ (η) =
( |φ′

τ |2
2ΔQ

)
◦ φ−1

τ (η) + O(1 − τ).

We have shown that

rτ (η) = 1 + (1 − τ) ·
( |φ′

τ |2
2ΔQ

)
◦ φ−1

τ (η) + O((1 − τ)2), τ → 1. (6.2)

In the following we will write

Rτ := R1,τ .

It is useful to note that (since Vτ is harmonic)

ΔRτ =
(

ΔQ

|φ′
τ |2

)
◦ φ−1

τ .
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We shall now analyze the behavior of the function Rc,τ close to T.

Lemma 6.1 Fix a point η ∈ T. If r < rτ (η),

Rc,τ (rη) = 2ΔRτ (η)(r − 1)2 + O((r − 1)3), r → 1.

If r > rτ (η),

Rc,τ (rη) = 2ΔRτ (η)(r − 1)2 − 2(1 − c)ΔRτ (η)(r − rτ (η))2 + O((r − 1)3), r → 1.

Proof If r < rτ (η), then Rc,τ = (Q − Vτ ) ◦ φ−1
τ = Rτ . From the argument in

Lemma 5.3, we obtain the following Taylor series expansion of Rc,τ about η:

Rc,τ (rη) = 2ΔRτ (η)(r − 1)2 + O((r − 1)3), r → 1.

Now assume that r > rτ (η). By Lemma 5.2, we have

n1(rτ (η)η) = η + O(τ − 1), τ → 1, (6.3)

where n1(ζ ) denotes the outer unit normal to φτ (∂S1) at ζ ∈ φτ (∂S1). Hence the
second-order Taylor expansion of (Q − V1) ◦ φ−1

τ about the point rτ (η)η ∈ φτ (∂S1)
takes the form

((Q − V1) ◦ φ−1
τ )(rτ (η)η + ξ)

= 2ΔRτ (rτ (η)η)(ξ · n1(rτ (η)η))2 + O(|ξ |3), |ξ | → 0. (6.4)

Now note that Δ((Q − V1) ◦ φ−1
τ ) = |(φ−1

τ )′|2(ΔQ) ◦ φ−1
τ = ΔRτ since V1 is

harmonic. Also note that if r → 1 with r > rτ (η), then rτ (η) − 1 = O(1 − r) and
1 − τ = O(1 − r) by (6.2). Now combining (6.3) and (6.4), we obtain

((Q − V1) ◦ φ−1
τ )(rη) = ((Q − V1) ◦ φ−1

τ )(rτ (η)η + (r − rτ (η))η)

= 2ΔRτ (η) · (rτ (η) − r)2 + O((r − 1)3), r → 1.

Hence the proof is complete. 
�
Let Dj,n = {ζ ∈ C : 1 − Mδn ≤ |ζ | ≤ 1 + Mδn} for a large number M . We

have the following lemma which will be used to show that our quasipolynomials are
approximately normalized.

Lemma 6.2 For any integer j with τ = j/n ∈ [1 − δn, 1), we have

∫
Dj,n

n
1
2 | f j,n(ζ )|2 e−nRc,τ (ζ ) d A(ζ ) = 1 + O(n−1/2 log2 n).
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Proof For each η ∈ T, we compute the integral

∫ 1+Mδn

1−Mδn

| f j,n(rη)|2e−nRc,τ (rη)rdr .

Fix η ∈ T and consider the function Rc,τ,η(r) := Rc,τ (rη). For r < rτ (η), using the
expansion of Rc,τ in Lemma 6.1, we have

∫ rτ (η)

1−Mδn

| f j,n(rη)|2e−nRc,τ,η(r)rdr

=
∫ rτ (η)

1−Mδn

r | f j,n(rη)|2e−2nΔRτ (η)(r−1)2+O(nδ3n)dr .

Note that for all r with |r − 1| < Mδn and all j with j/n ∈ [1 − δn, 1)

| f j,n(rη)|2 = | f j,n(η)|2 + O (δn log n) .

Recall from the expansion (6.2) that

rτ (η) − 1 = (1 − τ) · (2ΔRτ (η))−1 + O((1 − τ)2).

Thus the above integral is approximated by

∫ rτ (η)

1−Mδn

| f j,n(rη)|2e−nRc,τ,η(r)rdr = | f j,n(η)|2√
4nΔRτ (η)

∫ −ξτ (η)

−∞
e− 1

2 x
2
dx + E1, (6.5)

where E1 is an error term with E1 = O(n−1 log2 n) and

ξτ (η) =
√
n(τ − 1)√
ΔRτ (η)

= j − n√
n

( |φ′
τ |√

ΔQ

)
◦ φ−1

τ (η).

On the other hand, using Lemma 6.1 again, we obtain for r > rτ (η)

Rc,τ,η(r) = 2cΔRτ (η)
(
r − r∗

c
)2 + 2(c − 1)

c
ΔRτ (η)(rτ (η) − 1)2 + O((r − 1)3),

where r∗
c = (1 − (1 − c)rτ (η))/c. It follows from the expansion (6.2) that

Rc,τ,η(r) = 2cΔRτ (η)
(
r − r∗

c
)2 + c − 1

2c
· (1 − τ)2

ΔRτ (η)
+ O((r − 1)3)

and r∗
c has the asymptotic expansion of the form

r∗
c = 1 − 1 − c

c
· 1 − τ

2ΔRτ (η)
+ O((1 − τ)2).
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Estimating the integral by Laplace’s method, we thus obtain

∫ 1+Mδn

rτ (η)

| f j,n(rη)|2e−nRc,τ,η(r)rdr

= | f j,n(η)|2√
4ncΔRτ (η)

e
1−c
2c ξτ (η)2

∫ ∞

−ξτ (η)/
√
c
e− x2

2 dx + E2 (6.6)

where E2 is a new error term with E2 = O(n−1 log2 n). Combining (6.5) and (6.6),
we obtain

n
1
2

∫
Dj,n

| f j,n|2 e−nRc,τ d A = √
2π

∫
T

| f j,n(η)|2√
ΔRτ (η)

Φ j,n(φ
−1
τ (η)) ds(η) + E3

= 1 + E3

where E3 = O(n−1/2 log2 n) and ds(η) = |dη|/2π is the normalized arclength
measure. 
�

We now conclude our proof of the approximate normalization property (P1) of our
quasipolynomials.

Lemma 6.3 For any integer j with τ = j/n ∈ [1 − δn, 1), we have

∫
C

χ2
0 |Fj,n|2e−nQ(c)

d A = 1 + O(n−1/2 log2 n). (6.7)

Proof By Lemma 6.2 we obtain

∫
C

χ2
0 |Fj,n|2e−nQ(c)

d A

= n
1
2

∫
C\Dj,n

(χ0 ◦ φ−1
τ )2| f j,n|2e−nRc,τ d A + 1 + O(n−1/2 log2 n).

In order to estimate the first term on the right, we observe that the functions f j,n are
uniformly bounded in De(ρ0). By Lemma 6.1, there is an ε > 0 such that for all η

with Mδn ≤ dist(η,T) ≤ ε,

Rc,τ (η) ≥ c δ2n

for some constant c. Also, by the growth rates of Q and Vτ near infinity, i.e.,

lim inf
ζ→∞

Q(ζ )

log |ζ |2 > 1, lim inf
ζ→∞

Vτ (ζ )

log |ζ |2 = τ,

there exists a constant C > 0 such that

|η| ≥ 1 + ε ⇒ Rc,τ (η) ≥ C log |η|.
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Summing up, we obtain

n
1
2

∫
C\Dj,n

(χ0 ◦ φ−1
τ )2| f j,n|2e−nRc,τ d A ≤ O(n

1
2 e−c′ log2 n) (6.8)

for some constant c′, which completes the proof. 
�

6.3 Approximate orthogonality

Up to this point we have not assumed that Q be radially symmetric. However, in order
to prove the following lemma, we shall use this assumption.

Lemma 6.4 Suppose that Q is radially symmetric. Fix an integer j with τ = j/n ∈
[1 − δn, 1). Let p be a holomorphic polynomial of degree � less than j . Then

∫
C

χ0 p Fj,ne
−nQ(c)

d A = O(n1/4e−c(log n)2‖p‖nQ(c) ).

Proof Write q = Λ−1
j,n[p]. Then q is holomorphic on De(ρ0) and satisfies q(η) =

O(|η|�− j ) as η → ∞. We first show that

∫
Dj,n

q f j,n e
−nRc,τ d A = 0. (6.9)

Define a function h by h = q/ f j,n . Then h is holomorphic in De(ρ0) and vanishes at
infinity since f j,n does not vanish at infinity. Now we write the above integral as

∫ 1+Mδn

1−Mδn

∫
T

2h | f j,n|2 e−nRc,τ rdsdr .

Since | f j,n|2 e−nRc,τ is radially symmetric and
∫
T
h ds = h(∞) = 0 by mean-value

theorem, the above integral vanishes and we obtain (6.9).
For the remaining part, using Cauchy–Schwarz inequality, we have

∣∣∣∣∣
∫
C\φ−1

τ (Dj,n)

χ0 p Fj,ne
−nQ(c)

d A

∣∣∣∣∣
2

≤ ‖p‖2nQ(c)

∫
C\φ−1

τ (Dj,n)

|χ0|2|Fj,n|2e−nQ(c)
d A,

which gives the bound O(n1/4e−c(log n)2‖p‖nQ(c) ) for some c by (6.8). 
�

Remark Lemma 6.4 says that the quasipolynomials Fj,n satisfy the approximate
orthogonality property (P2) with a better error bound. In the sequel we will not use
radial symmetry of Q, but merely that the property (P2) holds.
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6.4 Pointwise estimates

Going back to the general case, we assume that Fj,n satisfies the properties (P1) and
(P2). (But we do not necessarily assume that Q be radially symmetric.)

Lemma 6.5 Let p j,n the j:th orthonormal polynomial in L2(C, e−nQ(c)
d A). Then for

all j with j/n ∈ [1 − δn, 1)

‖p j,n − Fj,nχ0‖nQ(c) = O(n−1/2 log2 n).

Proof Let u0 be the L2(e−nQ(c)
) norm-minimal solution to the ∂̄-problem

∂̄u = Fj,n ∂̄χ0

which satisfies u0(ζ ) = O(|ζ | j−1) as ζ → ∞. By a standard Hörmander estimate
(cf. [17, Section 4.2]), we have

‖u0‖2nQ(c) ≤ Cn−1
∫
C

|∂̄χ0Fj,n|2e−nQ(c) = O(e−cn). (6.10)

Here, the O(e−cn) bound is obtained from the fact that ∂̄χ0 vanishes on a neighborhood
of Γτ and |Fj,n|2e−nQ(c)

has an exponential decay (in n) on the support of ∂̄χ0.
Define a function p̃ j,n by

p̃ j,n = Fj,n χ0 − u0.

Then p̃ j,n is entire and has the polynomial growth p̃ j,n(ζ ) = a|ζ | j + O(|ζ | j−1) with
some nonzero a near infinity. It follows that p̃ j,n is a polynomial of exact degree j .
By (6.10)

‖ p̃ j,n − Fj,n χ0‖nQ(c) ≤ O(e−cn).

We thus obtain from (P1) and (P2) that

‖ p̃ j,n‖nQ(c) = 1 + O(n−1/2 log2 n) (6.11)

and
∫
C

p̃ j,n p̄ e−nQ(c)
d A = O(n−1/2 log2 n ‖p‖nQ(c) ) (6.12)

for all polynomials p of degree ≤ j − 1.
Now we consider the orthogonal projection π j,n from L2(e−nQ(c)

) onto the space

consisting of all polynomials in L2(e−nQ(c)
) of degree ≤ j − 1. Then the function

p�
j,n := p̃ j,n − π j,n[ p̃ j,n]



On boundary confinements for the Coulomb gas Page 33 of 42 68

is a polynomial degree j which satisfies by (6.12)

‖p�
j,n − p̃ j,n‖nQ(c) = O(n−1/2 log2 n).

Since p�
j,n is orthogonal to all polynomials of degree at most j − 1, it can be written

as p�
j,n = c j,n p j,n for some constant c j,n . Since ‖p�

j,n‖nQ(c) = 1+ O(n−1/2 log2 n)

by (6.11) and (6.12), we have |c j,n| = 1+ O(n−1/2 log2 n). We can assume that c j,n
is a positive real number. Hence we get

‖p j,n − Fj,nχ0‖nQ(c) = O(n−1/2 log2 n).


�

Lemma 6.6 Suppose that

dist(ζ, Γτ ) ≤ n−1/2(log log n)1/2.

Then we have the approximation for all j with j/n ∈ [1 − δn, 1)

p j,n(ζ ) = Fj,n(ζ )(1 + O(n−β)),

where β > 0 and the O-constant is uniform in ζ .

Proof For ζ with dist(ζ, Γτ ) ≤ n−1/2(log log n)1/2, we have

(Q̌τ − Vτ )(ζ ) ≤ c dist(ζ, Γτ )
2 ≤ c n−1 log log n.

The estimate in Lemma 3.2 gives that there exists a constant C > 0 such that

|p j,n − Fj,n| ≤ C
√
n ‖p j,n − Fj,nχ0‖nQ(c) enQ̌τ /2,

which implies there exists a constant c′ > 0 such that

|p j,n(ζ ) − Fj,n(ζ )| = O((log n)2enQ̌τ (ζ )/2) = O((log n)c
′
enVτ (ζ )/2).

Since

|Fj,n| = n1/4|√φ′
τ | enVτ /2eReH j,n/2

and ReH j,n is bounded, the lemma is proved. 
�
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7 Error function approximation

In this section, we prove Theorem 1.2. We assume that conditions (P1) and (P2) of
Sect. 6 are satisfied. (E.g., Q is radially symmetric.)

Take a point p on the outer boundary Γ of S and consider points ζ in the disc
|ζ − p| ≤ M/

√
n for some large constant M . As we observed in Sect. 5.2, the 1-point

function rescaled about p can be written as

Rn(z) = R�
n(z) + o(1), R�

n(z) = e−nQ(c)(ζ )

nΔQ(p)

n−1∑
j=mn

|p j,n(ζ )|2 (7.1)

where mn = n − nδn and ζ = p + n1(p) z/
√
nΔQ(p). To obtain the asymptotics of

R�
n(z), we shall apply the quasipolynomial approximation in Sect. 6.
Consider a point ζ with dist(ζ,Uτ ) ≤ n−1/2(log log n)1/2. By Lemma 6.6, we

obtain that for all j with n − nδn ≤ j ≤ n − 1

|p j,n(ζ )|2e−nQ(c)(ζ ) = |Fj,n(ζ )|2e−nQ(c)(ζ )(1 + O(n−β)),

=
( n

2π

)1/2 |φ′
τ |e−n(Q(c)−Vτ )eReH j,n (1 + O(n−β)).

Here the error term is uniform for all j with n − nδn ≤ j ≤ n − 1. Recall that H j,n

is a bounded holomorphic function on the relevant set of ζ satisfying

ReH j,n(ζ ) = log
√

ΔQ(ζ ) − logΦc(ξ j,n(ζ )), ζ ∈ ∂Sτ

where Φc is the function defined in (1.4) and ξ j,n(ζ ) = ( j − n)|φ′
τ (ζ )|/√nΔQ(ζ ).

Lemma 7.1 We have that

lim
n→∞ R�

n(z) = S(2Re z) e2(1−c)(Re z)2+ , z ∈ C.

Here the convergence is bounded on C and locally uniform in C\iR.
Proof We first observe that

R�
n(z) = 1√

2π

nδn∑
k=1

|φ′
τ (ζ )|√

nΔQ(p)
e−n(Q(c)−Vτ )(ζ )eReH j,n(ζ )(1 + O(n−β)),

where k = n − j and ζ = p + n1(p) z/
√
nΔQ(p). For any compact subset D ⊂ C,

we have

|φ′
τ (ζ )| eReH j,n(ζ ) = |φ′

τ (p)|
√

ΔQ(p)

Φc(ξ j,n(p))
+ O(n−1/2 log n), n → ∞,
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where the error term is uniform for z ∈ D and for j with n − nδn ≤ j ≤ n − 1. To
obtain the asymptotic expansion of Q−Vτ , let pτ denote the closest point to p where
the line p + n1(p)R intersects the boundary ∂Sτ . Then in view of Lemma 5.2 the
following asymptotic formulas hold: as τ → 1,

pτ = p + (τ − 1) n1(p)
|φ′

τ (p)|
2ΔQ(p)

+ O((1 − τ)2), nτ (pτ ) = n1(p) + O(1 − τ).

The Taylor series expansion about pτ in Lemma 5.3 gives that for τ ∈ [1 − δn, 1)

(Q − Vτ )(ζ ) = (Q − Vτ )
(
pτ + nτ (pτ )

k

n

|φ′
τ (p)|

2ΔQ(p)
+ nτ (pτ ) z√

nΔQ(p)
+ O(n−1 log2 n)

)

= 2ΔQ(pτ )

(
k

n

|φ′
τ (p)|

2ΔQ(p)
+ Re z√

nΔQ(p)

)2

+ O(n−3/2 log3 n),

where the error is uniform for z ∈ D and for τ ∈ [1 − δn, 1). We also note that

n(Q − V1)(ζ ) = 2(Re z)2 + O(n−1/2), z ∈ D.

Take a compact subset D1 of L. Then for sufficiently large n the points

ζ = p + n1(p) z/
√
nΔQ(p), z ∈ D1

are contained in the droplet S. Thus for z ∈ D1, we have

e−n(Q(c)−Vτ )(ζ ) = e−n(Q−Vτ )(ζ ) = e−(−ξ j,n(p)+2Re z)
2
/2(1 + o(1)).

On the other hand, for a compact subset D2 of C\L, it holds that for z ∈ D2

e−n(Q(c)−Vτ )(ζ ) = e−n(Q−Vτ )(ζ )+n(1−c)(Q−V1)(ζ )

= e−(−ξ j,n(p)+2Re z)2/2e2(1−c)(Re z)2(1 + o(1)).

Combining the above asymptotics, we obtain

R�
n(z) = 1√

2π

|φ′
τ (p)|√

nΔQ(p)

√
n log n∑
k=1

e− 1
2 (ξ j,n(p)−2Re z)2e2(1−c)(Re z)2+

Φc(ξ j,n(p))
(1 + o(1)).

Recall that ξ j,n(p) = −k|φ′
τ (p)|/

√
nΔQ(p). The sum can be considered as an

approximate Riemann sum with step length |φ′
τ (p)|/

√
nΔQ(p), which implies

R�
n(z) =

∫ 0

−∞
e− 1

2 (ξ−2Re z)2

Φc(ξ)

dξ√
2π

· e2(1−c)(Re z)2+ · (1 + o(1)), (n → ∞).

Hence the lemma is proved. 
�
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Proof of Theorem 1.2 Recall that by Theorem 1.1 every limit K of correlation kernels
cnKn is of the form

K (z, w) = G(z, w)Ψ (z, w)e(1−c)((Re z)2++(Rew)2+),

where Ψ is a Hermitian-entire function. As a result of Lemma 7.1 we obtain the
convergence

lim
n→∞ Rn(z) = S(2Re z) e2(1−c)(Re z)2+ , z ∈ C.

This implies Ψ (z, z) = S(2Re z). By analytic continuation, we obtain Ψ (z, w) =
S(z + w̄), completing our proof of Theorem 1.2. 
�

8 Scaling limit of themaximal modulus

In this section we discuss the asymptotic distribution of the maximal modulus at
the edge and prove Theorem 1.4. For this purpose, we pick a random sample {ζ j }n1
(associated with a modified potential Q(c)) and recall that the maximal modulus is
defined by

|ζ |n = max
1≤ j≤n

|ζ j |.

Observe that |ζ |n ≤ r if and only if none of the points ζ j belongs to the exterior disk
De(r). Thus we must investigate the gap probability that no point belongs to De(r).

It is well known that the distribution function of |ζ |n is represented by

Pn(|ζ |n ≤ r) = det

(
δ j,k −

∫
De(0,r)

p j,n pk,ne
−nQ(c)

d A

)n−1

j,k=0

,

where p j,n is an orthonormal polynomial of degree j in L2(C, e−nQ(c)
d A). Cf. [22,

Section 3] or [21, Section 15.1].
Here and in what follows we use the shorthand Pn to denote the Boltzmann–Gibbs

measure P1
n,c.

In the case that Q is radially symmetric, the above probability reduces to

Pn(|ζ |n ≤ r) =
n−1∏
j=0

(
1 −

∫
De(0,r)

|p j,n|2e−nQ(c)
d A

)
. (8.1)

Note that the outer boundary of the droplet is a circle centered at the origin. Let ρ
be the radius of that circle. We rescale |ζ |n about ρ by

ωn = √
4ncγnΔQ(ρ)

(
|ζ |n − ρ −

√
γn

4ncΔQ(ρ)

)
,
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where γn = log(n/2π) − 2 log log n + log(ρ2ΔQ(ρ)/Φ2
c (0)).

Now we compute the distribution function of the random variable ωn

Pn(ωn ≤ x) = Pn

(
|ζ |n ≤ ρ + 1√

4ncΔQ(ρ)

(√
γn + x√

γn

))
.

It is convenient to write, for x ∈ R,

hn(x) = rn(c, x)√
4nΔQ(ρ)

; rn(c, x) = 1√
c

(√
γn + x√

γn

)
.

Then by (8.1) we have

Pn(ωn ≤ x) =
n−1∏
j=0

(
1 −

∫
|ζ |>ρ+hn(x)

|p j,n|2e−nQ(c)
d A

)
. (8.2)

Lemma 8.1 We have the convergence

lim
n→∞

n−1∑
j=0

∫
|ζ |>ρ+hn(x)

|p j,n|2e−nQ(c)
d A = e−x .

Here the convergence is uniform in any compact subset of R.

Proof For each x , ρ + hn(x) is located in C\S with O(n−1/2√log n)-distance from
the boundary ∂S. By the growth assumption on Q and the estimate in Lemma 5.3 we
have for some c > 0

Q(c)(ζ ) − Vτ (ζ ) ≥ cmin{dist(ζ, Γτ )
2, log(1 + |ζ |)}, ζ ∈ Uτ ,

where we remind of the notation Uτ = Ĉ\Pc Sτ and Γτ = ∂Uτ .
From this and Lemma 3.2 we infer that the sum of lower degree terms

∑
j≤n−nδn

∫
|ζ |>ρ+hn(x)

|p j,n|2e−nQ(c)
d A

is negligible. (Here δn = n−1/2 log n, as usual.)
Using the quasipolynomial approximation fromSection 6, we now analyze the limit

of the sum of higher degree terms. We will write

Dn,x = {ζ ∈ C : ρ + hn(x) ≤ |ζ | ≤ ρ + Mδn}.

The problem is reduced to computing, for each x ∈ R, the sum

n−1∑
j=mn

∫
Dn,x

|Fj,n|2e−nQ(c)
d A
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=
√

n

2π

n−1∑
j=mn

∫ ρ+Mδn

ρ+hn(x)
|φ′

τ |e−n(Q(c)−Vτ )eReH j,n2rdr , (8.3)

where mn = n − nδn . By the Taylor series expansion for Q − Vτ and Q − V1 about
Γτ and Γ respectively, we get for all r with r −ρ = O(δn) and τ with τ ∈ [1− δn, 1)

(Q(c) − Vτ )(r) = (Q − Vτ )(r) − (1 − c)(Q − V1)(r)

= 2ΔQ(ρτ )(r − ρτ )
2 − 2(1 − c)ΔQ(ρ)(r − ρ)2 + O(δ3n)

where ρτ is the radius of the circle Γτ . By the change of variable

s = √
4nΔQ(ρ)(r − ρ)

and the argument in Sect. 7, the above integral (8.3) is equal to

n−1∑
j=mn

ρ|φ′
τ (ρ)|√

2πΦc(ξ j,n)

∫ M ′ log n

rn(c,x)
e(1−c)s2/2e−(s−ξ j,n)

2/2ds (1 + o(1)) (8.4)

where M ′ is a positive constant and ξ j,n = ξ j,n(ρ) = ( j − n)|φ′
τ (ρ)|/√nΔQ(ρ). By

the Riemann sum approximation as in Sect. 7, we obtain for k = n − j and s with
rn(c, x) ≤ s ≤ M ′ log n

|φ′
τ (ρ)|√

nΔQ(ρ)

nδn∑
k=1

e−(s−ξ j,n)
2/2

Φc(ξ j,n)
=

∫ 0

− log n

e−(s−ξ)2/2

Φc(ξ)
dξ + εn(s).

The error term εn(s) from the Riemann sum approximation has a bound

εn(s) ≤ C
(log n)2√

n
sup

− log n≤ξ≤0

∣∣∣∣∣
d

dξ

(
e−(s−ξ)2/2

Φc(ξ)

)∣∣∣∣∣

so that εn(s) is negligible in (8.4). Hence we need to find the limit of the integral

√
nΔQ(ρ)

2π
ρ

∫ M ′ log n

rn(c,x)
e(1−c)s2/2

∫ 0

−∞
e−(s−ξ)2/2

Φc(ξ)
dξ ds.

Write

En(x) =
∫ ∞

rn(c,x)
e(1−c)s2/2

∫ 0

−∞
e−(s−ξ)2/2

Φc(ξ)
dξ ds.
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By the change of variables u = s − ξ/c and v = u − rn(c, x), we obtain

En(x) =
∫ 0

−∞
e
1−c
2c ξ2

Φc(ξ)

∫ ∞

rn(c,x)−ξ/c
e− c

2 u
2
du dξ

=
∫ ∞

rn(c,x)
e− c

2 u
2
∫ 0

c(rn(c,x)−u)

e
1−c
2c ξ2

Φc(ξ)
dξ du =

∫ ∞

0
e− c

2 (v+rn(c,x))2 f (v)dv,

where

f (v) =
∫ 0

−cv

e
1−c
2c ξ2

Φc(ξ)
dξ.

Now the integration by parts gives

∫ ∞

0
e− c

2 v2−cv rn(c,x) f (v)dv = − 1

crn(c, x)

[
e−cv rn(c,x)e−cv2/2 f (v)

]∞
v=0

+
∫ ∞

0

e−cv rn(c,x)

c rn(c, x)
e−cv2/2 (−cv f (v) + f ′(v)

)
dv.

(8.5)

Since f (0) = 0 and e−cv2/2 f (v) = o(1) as v → ∞, the first term in the right-hand
side of (8.5) vanishes. By integrating by parts again we obtain

∫ ∞

0
e− c

2 v2−cv rn(c,x) f (v)dv = − 1

(c rn(c, x))2

[
e−cv rn(c,x)e−cv2/2 f1(v)

]∞
v=0

+
∫ ∞

0

e−cv rn(c,x)

(c rn(c, x))2
e−cv2/2 (−cv f1(v) + f ′

1(v)
)
dv

where f1(v) = f ′(v) − cv f (v). Since f1(0) = f ′(0) = c(Φc(0))−1,

∫ ∞

0
e− c

2 v2−cv rn(c,x) f (v)dv = 1

cΦc(0)rn(c, x)2
+ O(rn(c, x)−3).

It follows that

En(x) = e− c
2 rn(c,x)

2
(

1

cΦc(0)rn(c, x)2
+ O(rn(c, x))−3

)
.

Recall that rn(c, x) = 1√
c

(√
γn + x√

γn

)
where

γn = log(n/2π) − 2 log log n + log(ρ2ΔQ(ρ)/Φ2
c (0)).
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Thus we obtain

√
nΔQ(ρ)

2π
ρEn(x) = e−x + o(1),

where o(1) → 0 locally uniformly as n → ∞. Hence we prove the lemma. 
�
It follows from (8.2) that

logPn(ωn ≤ x) = −
n−1∑
j=0

∫
|ζ |>ρ+hn(x)

|p j,n|2e−nQ(c)
d A + o(1).

By Lemma 8.1, we finally obtain the convergence

Pn(ωn ≤ x) → e−e−x
, n → ∞.

Our proof of Theorem 1.4 is complete.

9 Summary and outlook

We have introduced a scale of boundary confinements for the Coulomb gas and ana-
lyzed them in the planar, determinantal case. In particular, we have proved existence
of a new scale of point fields, and investigated them for universality in two differ-
ent ways; (1) using the method of Ward equations and (2) using a quasipolynomial
approximation formula.

The first method works well for any reasonable potential, but has the drawback that
we need to impose some apriori conditions on a solution in order to draw relevant
conclusions.

Themethod of quasipolynomials becomesmore complicated than in the free bound-
ary case, depending on that the quasipolynomial approximation formula has different
forms inside and outside of the droplet. Thismakes it complicated to verify the approx-
imate orthogonality property (P2) in Sect. 6. An exception occurs in cases when the
curves Γτ has everywhere a uniform distance to Γ , meaning in practice that we are
working with a radially symmetric situation. In this case the method works well, and
allows us to conclude universality of scaling limits and to calculate the distribution of
the maximum modulus.

We hope that our twomethods will contribute to a future resolution of the intriguing
question of universality in the above setting.

It is well known that fluctuations about the equilibrium measure of a determinantal
Coulombgas {ζ j }n1 converges, e.g., in the sense of distributions, to aGaussianfieldwith
free boundary conditions, see [3,19]. It is also known (see [5]) that if one imposes hard
edge conditions, then the fluctuations will converge to another kind of Gaussian field.
The question of convergence of fluctuationswith an arbitrary value of the confinement-
parameter c presents itself naturally.
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In the paper [1], a notion of “distance to the vacuum” was introduced and analyzed
for β-ensembles. This gives a natural generalization of the maximummodulus, which
works also for non radial potentials. The paper [1] provides some estimates of the
distribution function for this distance; cf. the paper [8] for numerical simulations and
more precise predictions.

Finally, we wish to point out that our construction can in principle be applied
to a Coulomb gas in any dimension, or, say, in a compact Riemannian manifold.
Indeed, given a suitable external potential, it is possible to define natural notions of
interaction kernel, droplet, obstacle function, and soon (cf. e.g., [9,15]).By introducing
a confinement-parameter as above, one obtains more general ensembles with various
restrictions near the boundary.
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