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Abstract

Let the vector fields X1, ..., X¢ form an orthonormal basis of H, the orthogonal
complement of a Cartan subalgebra (of dimension 2) in SU(3). We prove that weak
solutions u to the degenerate subelliptic p-Laplacian

6
Appu(x) = 3 X7 (Muw*zxiu) -0,

i=1

have Holder continuous horizontal derivatives Viyu = (X1u, ..., Xeu) for p > 2. We
also prove that a similar result holds for all compact connected semisimple Lie groups.

Keywords Compact - Semi-simple Lie groups - Cartan sub-algebra - Sub-elliptic
PDE - Regularity

Mathematics Subject Classification 35J92 - 35R03

1 Introduction

Given a set of m vector fields X1, Xo, ..., X, in a domain Q C RV, where m < N,
the horizontal gradient of a function u: € — R is the vector field

Wwu=X1w)X1+Xow)Xo+ ...+ X)X,y
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For p > 1 the horizontal Sobolev space W#p (2) consists of functions u for which
we have

1/p
”“”WJ{"(Q) = (/Q (IVHu(x)Ip + |u(x)|p)dx> < 0.

Here we have used

m 12
|Vhgu| = (Z(x,-u>2) :
i=1

As usual, we define W;{’%(Q) as the closure in the W;_l’p (2)-norm of the the smooth

functions with compact support. Given a function F € W;_(’p (£2), consider the varia-
tional problem

inf /|VHu(x)|pdx. (1.1)
u—FeW, /(@) /2

When p > 1 there exists a minimizer, that it is also unique when the vector fields
satisfty the Hormander condition

rank Lie span{X, X2, ..., Xp}(x) = N forall x € , (1.2)

which we assume from now on. Minimizers of (1.1) are weak solutions of the subel-
liptic or horizontal p-Laplacian

A pu(x) = Xm: X7 <|W.[u|p_2X,~u> —0, (1.3)

i=1

where X7 is the adjoint of X; with respect to the Lebesgue measure. Note that in the
linear case p = 2 we get

Apou(x) =Y X Xiu(x).

i=1

If the dimension of the Lie algebra generated by X1, X», ..., X,, at each point x
is N (Hormander’s condition (1.2)), then it is well-known that the operator A4 5 is
hypoelliptic [9]. In fact, Hormander proved several estimates in L?-fractional Sobolev
spaces. These estimates were extended to more general L”-fractional Sobolev and
Besov space by Rothschild and Stein [18].

In the quasilinear case p # 2, when the non-degeneracy and boundedness condition
for the horizontal gradient

1
O<M§|Wu|(x)<M, fora.e. x € Q. (1.4)
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is satisfied, Capogna [2,3] proved that solutions to (1.3) are C*°-smooth for the Heisen-
berg group, and Carnot groups, respectively. The case of general semi-simple Lie
groups follows from work done by us in [6] for special classes of vector fields.

The situation is more complicated when we only assume the non-degeneracy con-
dition for the horizontal gradient

1
0< m < |Wyu|(x), fora.e.x € Q. (1.5)

In this case the key step is to show first the boundedness of the horizontal gradient. In
the case of the Heisenberg group this is due to Zhong [20], who extended the Hilbert-
Haar theory to the Heisenberg group. Assuming (1.5), Ricciotti [16] proved C*°-
smoothness of p-harmonic functions in the Heisenberg group for I < p < oo. This
result was extended to general contact structures by using Riemannian approximations
in [5], which is the method we will extend below.

When condition (1.5) is not assumed, we can only expect C'"%-regularity as in the
Euclidean case. For the Heisenberg group this is indeed the case. See [17] for the case
p > 4,[20] for p > 2,and [14] for | < p < oo.

The case of general contact structures is considered in [5], where the C'1:%-regularity
of p-harmonic functions is obtained for p > 2.

In this paper, we consider first the group SU(3) and second, all compact, connected,
semi-simple Lie groups, and prove that if « is a solution of (1.3) and p > 2, then Vyu
is Holder continuous. As we shall explain below, the dimension of the space of non-
horizontal vectors fields, which turns out to be the dimension of the maximal torus,
may be greater than 1; thus, it cannot support a contact structure since the dimension
of the non-horizontal subspace is greater than or equal to two.

We extend the Riemannian approximation method of [4] to SU(3) (and general
semisimple compact Lie groups) to get boundedness of the gradient, and build on the
work of [6,13,15,20], and [5] to extend the regularity proof to our case. Note that, as
in the case if the previous contributions mentioned above, we don’t have a nilpotent
structure, so when we differentiate the equation we need to account for all commutators
by relying on the root structure of the Lie algebra.

Given the technical character of the regularity proofs, we present first the proof for
SU(3) in full detail, and later indicate the minor modifications needed in the general
case.

2 Statements of the main results for SU(3)

The special unitary group of 3 x 3 complex matrices is defined by
SUB)={¢geGLQB,C): g-g"=1, detg =1},

and its Lie algebra by

su3) ={X €gl(3,C) : X+ X* =0, trace X =0}.
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The inner product is defined by a multiple of the Killing form
1
(X,Y) = ) trace(XY).

We consider the two-dimensional maximal torus

P 0 0
T = 0 e 0 cag,ap,a3€R, a1 +ay+az=0
0 0 s

and its Lie algebra

ray 0 0
7T = 0 iay 0 ta, ap, a3 €R, ar+ay)+a3 =07,
0 0 ias

which is our choice for the Cartan subalgebra. The following are the Gell-Mann
matrices, which form an orthonormal basis of su(3):

—i 0 0 s 00
h={0 i 0]}, =] 0 \_/—% 0 ,
0o 0 O 2i
0 0 7
0O 1 0 0 i O
Xi=|-1 0 0]}, Xo,=|i 0 0]},
0O 0 O 0 0 O
0O 0 0 0 0 0
X3=1|0 0 1], X4=|0 0 —i],
0O -1 0 0 —i O
0O 0 1 0 0 i
Xs=10 0 0], Xe=10 0 O
-1 0 O i 0 0

For the method of Riemannian approximation, described in Sect. 3, the following
two vector fields provide simpler calculations than 77 and 7». As it is described in
Sect. 5, these are two of the positive roots.

-2i 0 O 0 0 0
X7 =—[X1, X2] = 0 20 0], Xg=—[X3,X4]={0 2i 0
0 0 0 0 0 =2
We list all the commutators of the vector fields X, ..., Xg in the next table.

In case of SU(3) the orthonormal basis for the horizontal subspace H is

By = {X1, X2, X3, X4, X5, X6} .
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Table 1 Commutators in SU(3)

X1 X2 X3 Xy X5 X6 X7 Xg

X1 0 —X5 X5 —X6 —X3 Xy 4Xy 2X,
X> X7 0 X6 X5 —Xy —-X3 —4X —2X
X3 —Xs “X¢ 0 Xg X X» 2X4 4X4
X4 Xe ~Xs X 0 X, ' 2X3  —4X3
X5 X3 X4 —-X1 —-X7 0 Xg — Xy 2X¢6 —2X¢
X6 —X4 X3 —X7 X1 X7 —Xg 0 —2X5 2X5s
X7 —4Xo 4X —2Xy 2X3 —2Xg 2Xs 0 0

Xg —2Xo 2X1 —4Xy 4X3 2Xe —2X5 0 0

Bold values indicate the vector fields from the vertical subspace, which are the most challenging to estimate
throughout the paper
The commutation properties in Table 1 show that, by identifying G with the Lie algebra
of left-invariant vector fields, B, satisfies the Hérmander condition and generates the
horizontal distribution of a sub-Riemannian manifold.

Recall that the curve y : [0, T] — G is subunitary associated to By if y is an
absolutely continuous function, such that for all i € {I1,..., 6} there exists o; €
L®°[0, T'] with the properties

6 6
Y1) =) i) Xi(y(1). Y af(t) <1, ae.t€[0,T].

i=1 i=1
The control distance (Carnot—Carathéodory distance) with respect to By is defined
by
d(x,y) =inf{T >0 : there exists y : [0, T] — G, a subunitary curve
for By, connecting x and y} . 2.1
We use B, for the Carnot—Carathéodory balls of radius » generated by d.
Let us fix a bi-invariant Haar-measure and note that for left-invariant vector fields

we always have X;* = —X;. Consider a domain 2 C SU(3), and the following
quasilinear subelliptic equation:

6
D Xi(ai(Mu) =0, inQ, 2.2)
i=1

where forsome 0 <3 <1,p > 1,0 <1 < L,andforall n,& € RO the following
properties hold:

6 p—2

> g—g"_@) mny = 1(5+1612) T Inl?, 23)
ij=1°J
5 |da; B2
_ < s .
Y l5e ®|=L(s+1ep) 24)
J

i,j=1
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p—1

jai© < L(8+16P) ° 25)
The quintessential representative example for the functions g; is given by
N
ai(§) =@ +I1517) 7§ .
A function u € W;_t’[;OC(Q) is a weak solution of (2.2) if
6

Z/ ai(Vqu(x)) Xi¢p(x)dx =0, forall ¢ € C°(S). (2.6)
i=1 Y%

We list our main results:

Theorem2.1 Let p > 1 and u € W;{’;OC(Q) be a weak solution of (2.2). Then
there exists a constant ¢ > 0, depending only on p,l, L, such that for any Carnot—
Carathéodory ball B, CC 2 we have

1
sup [Vyu| < ¢ Qﬁ 6+ |W|2>‘5dx)” . @7
B,

Brya

Theorem2.2 Let p > 2 and u € W;_(’IfOC(Q) be a weak solution of (2.2). Then
Wu € Cf ().

3 The proof of Theorem 2.1

Consider an arbitrary, but fixed 0 < & < 1. Define the following vector fields:

e Fori e {l,...,6} define X} = X;.
e Fori e {7, 8} define X; = ¢X;.

Regarding the behavior as ¢ — 0, we have three types of commutators:

1 1 1
[Xf. X531 = ——X5. [X5.X{l= ——X§, [X5 Xg)= —(X§ - X9)

(X5, XS] = —deX5, ..., [X5, X5] = —2eX5, ... (X5, X6 = —2ex5,...GD
(XS, X5] = X5, [XE, XS] = —XE. ..., [X5, XS] = XE,...

We will use the following notations:

o Vi = (X7, X3), Wy = (X1, ..., X¢)-
o Vi = (X3, Xg), Ve = (XT,..., Xg, X3, Xg).
o w, =8+ |Viu |2
We can always extend the vector function (ay, ..., ag) to (ai, ..., ag) in such a way

that we keep the properties (2.3), (2.4) and (2.5). Consider the quasilinear elliptic PDE,
which will serve as a Riemannian approximation of (2.2):
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8
ZXf(ai(Vsu))zo, in Q. (3.2)

i=1

Remark 3.1 If 5§ > 0 and ¢ > 0, the weak solutions of the non-degenerate quasi-
linear elliptic equation (3.2) are smooth in 2 by classical regularity theory. See for
example [12].

The series of lemmas that follow contain generalizations of the Cacciopoli-type
inequalities that were developed and gradually refined in the case of Heisenberg group
in [5,13,15,16,20].

Lemma3.1 Let0 <8 < 1, B > 0and n € C°(2) be such that 0 < n < 1. Then
there exists a constant ¢ > 0 depending only on p, | and L such that for any solution
us, € C*°(Q) of (3.2) we have

p=2
/nzwgz Nue| P Vo VEue | dx
Q
P2
SC/ VnPwn? [9Eus P4 dx
Q
P
+ce*(B+ 1)2/ n* w? [VEue* dx. (3.3)
Q

Proof In order to accommodate all the terms, we will simplify the writing of (3.2):

> Xi@) =0. 34

By differentiating (3.4) with respect to X3 and switching X5 and X} we get

Z X{(X5(ai)) = 4eX5(ar) —4eX{(a2) + 2e X} (a3) — 2eX5(as)

+2eX¢(as) — 2e X< (ap).

Using the notation a;; = g%, for any ¢ € Cgo(Q) we get
Z/ aij X7X5ue Xj¢pdx = 48] a; X5 ¢dx + similar terms.
;Y9 Q

Another switch between X5 and X i leads to

Z /Q aij X5 X5ue X{ ¢ dx
i

= 48/ a; X5¢ dx + similar terms
Q
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+4¢ Z[ aj1 X5ugs X; ¢ dx + similar terms.
—~ Ja
1

Let us use ¢ = n? |VEue|*# XEu, in (3.5). Then,
Xip =20 X{n|Vful P X5u,
+ 0% BIVEue| P2 XE (1 ue ) Xbue
+ 772|V]§"48|2ﬁ Xfxgus s
and hence
Z/ aij X§X§u5 2nXin |%‘3u£|2’3 X5us dx
ijve
+ngai,- XEXSue n* BIVFue P72 X5 (IVfue ) X5ue dx
i
+ Z/Qaif XjX?uS n? |V2§u8|2ﬁ X:XZug dx
i
= 4af ar 20 X450 |VEue [P X5u, dx
Q
4 / ar 0 BIVEue P2 X5(1VEu, ) Xoup dx
Q
+48/ a1 n? [ VEue | X5X5ue dx + - --
Q
+4e Z/ aiy X5ue 2n X;n I%‘Eug|2’3 X5u, dx
X Q
1
e 3 [ an X B 1% PP X5 ) X, da
R Q
1

+4e E / aj1 X5ue n2|VZ§u5|2ﬁ X{Xougdx +---
. Q
1

(3.5)

(3.6)

As we already did in (3.6), in the following estimates we will list one member of each
group of terms requiring certain type of inequalities and signal the presence of similar
terms by “- - - . By writing an identical equation for Xg and adding it to (3.6), we get

nine representative terms:

(L1) + (L2) + (L3)
= (R11) + (R12) + (R13) + -+
+ (R21) + (R22) =+ (R23) + ..
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We estimate each term.

(Ls)Zl/ Pwo? |v7u 1P | Ve U |* dx.
Q

1 & £ £ - & £
<L2>=§Z/Qai,- X% 1 B 19 PP XE (1) dx

[
> %fgn OrT YU 1V (L )2 dx

7 2
(L) < cf 0rT |[VEVEug| 20 (Vo] [VEue PP dix
Q

p—2

e | VEue 2P|V U, > dx
Q

< —
~ 100
p=2
+c/ IVEnl? we” [Vug P2 dx
Q

p—1

(R11) + (Ray) <ce/ 0T V| [VEue PP dx
/|V8n|2 2 |%—M |2/3+2dx

+ce /n w§|%§u5|2ﬂdx
Q
(R12) + (R13) + (R22) + (R23)

=1
< ce(ﬁ+l)/ w2 0 Ve PP |VEVEug | dx
=100 ’7 o7 Ve PP 197 G, P dx

P
+ee? (B + 1)2/ n* w? [VEue|* dx
Q

By combining all these estimates we get (3.3). O

Remark 3.2 If in Lemma (3.1) we change 1 to n+2 we get the following estimate:

/ 2/3-‘1—4 82 |%M |2ﬁ|v8%u |2dx
Q
Sc(,B+1)2|IV€n||%oof 2842 ) Vju 12P+2 dx
Q

P
+ce?(B+ 1)2/ 1P ol [VEu | dx. (3.7)
Q

Lemma3.2 LetO0<§ < 1,8 >0andn € CSO(Q) be suchthat0 < n < 1. Then there
exists a constant ¢ > 0 depending only on G, p, | and L such that for any solution
ug € C*®°(Q) of (3.2) we have
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p 2
/n wg? |V8V8u 1> dx
Q
p=2
5c(ﬂ+1)4/ PorT P \ru, P dx
Q

5+
Fe(B+ 1)2/9072 VP 4+ iV wf P dx

(3.8)

Proof Let’s differentiate Eq. (3.4) with respect to X{ and switch X{ and X7. In this

way we get

ZXS(Xlal) = —X7a2 —4eX5a7 — X5az + similar terms.

The weak form of this equation looks like

> /Q aij X§ X5ue X{ ¢ dx
ij

1
:—/a2X§¢dx—48/a7X§¢dx—/a3X§¢dx+---
€JQ Q Q

After switching X i and X7 in (3.9) we get

Z/ aij X5 X{ue X dx

1
=—/a2X§¢>dx—48/a7X§¢dx—/a3X§¢dx+~'
& Jo Q Q

1
42 3 [ X X dx— 46 3 [ an Xsue X
; Q FRRAY

—Zf ai3 Xsug Xipdx + - -
Let us use ¢ = 0’ f X{u, in (3.10),
Z/ al,X X{uen a)’gXE {ue dx
43 [y X5 X o™ XEQV ) X

+Z/ aij X;Xfu82anna)sﬂXfu8dx+---
— Ja

1
= —/ ay n* P XEXSue dx
e Ja

1
+;/ ar P Bl XE(\VEue ) Xue dx
Q

(3.9)

(3.10)
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4

1
+—/a22nX§nwafu8dx+~-~
& Ja

—45/Qa7 n* of X5X5ue dx
—48/9617 n* Bof ™ X5V ue|?) X§u, dx
—48/9(17217X§na)§ Xjugdx +---

/agn a)’6 X5X{ug dx

Q

— [ o Bt X5 ) X d
—/Q%ZnXénwa‘fugdx-l--'-
+§Z_/Qai2X§us nza)g X{X{ug dx
1 Z/ aiz Xiue 1 Bl ™ XE(Vu, ) Xiu, dx
+- Z/ a,2X7u5277X na)ﬁXlugdx-l—n-
—482/941,-7X§u£ nzwf X X{ug dx
—482/{201'7 X5u, nzﬂwf_le(Wguglz) X{ugdx
—482/941,-7 X5ue 27]ana)f Xiugdx +---
—Zfﬂaw XSu, nzwf X X{ug dx
—Z/ ais Xsue n? B~ XE(VFu, ) Xiu, dx

—Z/ a3 X§u€2annwafu€dx+~-~ .
— Ja

Repeat the above calculations for X3, ..., Xg and add all equations. In this way we

get an equation in the following format

L(1.1) + L(1.2) + L(1.3)
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6
= Z R(i.1) + R(.2) + RG.3) + - - -
i=1

We estimate each term.

L(1.1) = Z/ aij X5 Xgue n° of X§X{u, dx
i,j.k

p=2
Zl/ n> we? +h |VEVEu, |2 dx.
Q
L(1.2) = Z/ aij Y XEX{ue Xjuen® Bof ™' XE(1VFue|?) dx
.. Q
i,j k

B _
=5 i XE(IVEuel?) 0 0f = X7 (Ve ue)?) dx
i.j

[ P25
z% PorT PV dx.
Q

P /3+l
|L(1.3>|5c/ 0 [VEVeug|n|Venlwf T dx
Q
l L24p
< 100 P wer | |VEVu |2 dx
A
c/ |V817|2w52+ﬂdx.
Q

1
R(1.1) = g/ ayn* P X5X5ue dx + -
Q

1
= —/ an a)ﬁ (X{X5ue —4eX5u.) dx + -
& Ja

1
:_E/QXf(aznzwf)X?ugdx +4/;2a2'7 f Xjue dx + -

:—Z/Qagi XX ug nzwf X7u8dx—/9a2217ana)§ X7u. dx
—/;25127] ﬂa)ﬂ Lyv Véue, X{Veug) Xque dx
—1—4/951277 a)ﬁqugdx—i—

< [ o 9 VUl wﬂ|vrug|dx+c/9wg 1 IVE 0l of Vel dx

1
w2 n? Bl w2 |VEVEUL| [Vrue| dx
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! 2 2y
< ﬁ 0 we 2 |V8V8u5| dx+2c/ n ws |VI'M5| dx
Q
+c/ Ve wl P ax
+ﬁ n’ a)g |V€V€u8| dx + cp? /77 we |V7u8| dx
Pr
+c /n w? +ﬁdx
Q
l p Ex7E 2 2
< m n we? |V \Y usl dx+c(B+1) n a),; |Vfu£| dx
Q

P
+c/ 0+ 1V o2 dx .
Q

For the next set of estimates we will use the following identity that comes from the
commutators’ Table 1:

(Veue, XEVPuUe) = (Voue, VEXu,), if i =7 or 8.

1
R(1.2) = 5/ ay n* Bl XE(\VEu ) X§ug dx + - -
Q

1
E/ ay n* Bl 2(VEu,, XEVEuL) XSue dx + - -
Q

1
/azn ,Ba)ﬁ Lyv Véue, VEXZue) Xjugdx + - -
& JQ
_%Z a 2 B—1 ye & vyve e
= o wy  Xjue Xj Xque X{ugdx + - -+
& ; Q
2B e 2 Bl ye vy e
——Z Xi(axn wy " Xjue Xjue) Xqugdx + -
& ; Q
=—2,BZ/ Xi(aan a)'3 lX’suaXlu‘,;)X7usdx+
—~ Ja
=—2ﬂ2/ azj XfXjua 1720)571 Xiug X{ug Xqugdx + - -
—Ja
—Z,BZ/ aanana)f_leug Xiue Xqupgdx + - -+
—~ Ja
1
—2B8(8 — 1)2/ ar ol XE(\VEue ) Xfue XSue Xque dx + - -
—~ Ja
1
—2,82/ an a)/3 lX‘EX‘EILE X{ue Xqup dx + - -

-2 Z/;Zag 77251)’8371 Xiue X7 XTue Xqugdx + -
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=2
SCﬂ/ e P 1YV e o [Vrue | dix
+
+cﬂ/w8 0 IVEn] (Ve | dx
FeB+ 1) / B9V | (Ve dx
Q
[
<
- 200
+cf VR wd dx+cﬂ2f ot P \rul dx
Q Q

p
[0 P+ o /n 0T P \Vru, P dx

p=2
TR e +ﬂ|V’3v€ug|%zx+c<ﬂ+1)“] PorT P \Vru, P dx
200 Jo o
p 2
< 100 /., 0 wg? |V‘9V8u 1 dx
+c(ﬁ+1)4fn we® V| dx+c/ VEnPRwd P dx .
Q

R(1.3)+R(2.3)+R(5.3) < c(e + 1)/ nVrenl e dx.
Q

R2.DHRQ2REDHRE2RGDHRG2HREDHR62)
<ce+1)(B+ 1)[ P orT VeV dx

l 2
< 100 ). P’ PIveveu P dx + (e + 1)2 (,3+1)2/ n a)§+ﬂ dx .
Q

p—1

R(3.3)+R(6.3) < c/ ws? 1 |V‘9n|a)‘,3 +3 dx
Q
P
SC/(772+|V8n|2)w52+’3dx
Q
E‘Fﬂ 2 AV
R(4.1)+R#4.2) < c(B + l)f g [Vrug| n” |V Voug| dx

< |7 0. P \veveu, P dx+c(ﬁ+1)2/ PorT P \ru, P dx.
100 o

p—1

R@.3) < c/ 07 P 1Srug 0 |Ve ) dx
Q

2 p 2 +’3
fc/ n° we? |V7u€| dx—l—c/ IVEn? w2 " dx .
Q

By adding the estimates from above we get (3.8) and this finished the proof of
Lemma 3.2. O

Lemma33 Let0 <8 < 1,8 > 1andn € C(‘)’O(Q) be such that 0 < n < 1. Then
there exists a constant ¢ > 0 depending only on p, | and L such that for any solution
ug € C*®°(Q) of (3.2) we have
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/ 2642,
Q

scez(ﬁ+l)4llvgn||%oo/ 72 wf |vTus|2‘9 2\VEVEuPdx . (3.11)
Q

vfu 1?8 |1VEVeu,|? dx

Proof Let us use ¢ = n*P+2 IVFue |28 x¢ ue in (3.9). First, let us organize the terms
of X7 ¢ in the following way:

XEp = P G XX {81~ P2 [N PP X
—48;7 6?2 U 1P X + -+ — 83 P2 1w PP X + -
012 BN |2 XE (Ve ) XS,
+Q2B + 20T Xy [V u 1% X u, .

Therefore, Eq. (3.9) has the following form.
Z /Q ai; XfXj»ug n2h+? |VZ§u5|2’3 X{Xiugdx
+é Z/Qazj XfXjus n*h+2 |V1§u8|2ﬂ Xougdx + - - -
J

—4¢ Z/gza7j XiX5ue n*h+2 |VZ§ue|2ﬁ X5ugdx + - - -

— Z/Qagj XfXjug n*hf+? |%§u8|2ﬁ Xiugdx + - -
+,BZ/ aij X{ Xaug n2’3+2 IVFu, |2ﬁ 2X8(|V2-u8| ) X{uedx
+2(8 + 1)Z/Qa,~,- X5 X ue ™ Xy [Vfue P XSu dx

1
= —gf X5ap n2’3+2|V78u5|2ﬁ Xiugdx + - -
Q
+48/ X§a7n2’3+2|V]§u8|2ﬂ X{ugdx +---
+/ Xbaz n?P72 | VEu | XSug dx + - - - .

By repeating this fori = 1,2, ..., 8 and adding the equations we get the following
terms:

6 3
DLy =) (Ri).
i=1 i=1
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Once more, let’s estimate each term.
(L) = ZZ/Q% XX ™42 U PP XEX Eug dx
> lfQ 2642 52 IVEue [P | VEVEU | dx.
(L) = % Z/chgj XfXju‘s n2h+? |Vfu£|2’3 Xougdx + - -
J

1
= E/ Xtay n*Pt? |VZ§u5|2’3 Xugdx + - -
Q

1
— _g/ a X5 P2 | ue 1P XSug) dx + - -
Q

_é/Qaz QB +2) P X Vw2 Xeugdx + -

_éfgamzﬁumvru B2 (V) X d 4 -

_é/s;az '72ﬁ+2|v]§’46|2/S X§X5ue dx + -+

< C(,3~|-1)/ 2B+1 52 V] [ 2P dx
c(,3+1)/ 2842 62 IEue PP Vo dx

= zmlW/gnzm or7 G dy

+C(ﬁ+1)2/ P wl |V |v7us|2ﬁdx
Q

l 2
+ B+4 ) Ug 28 |ye Ug 2dx
200ce2 (B + 12| Ven| 3 /" VT ML

+c3<ﬁ+1>4||V8n||%oo/ PP of 1%, dx.
Q
In the following we use (3.7), the inequalities
Vpuel? < 26% | VEVu P, Inllze <1,

and that without loss of generality we can assume ||Vén|| e~ > 1.

!
(Ly) < 200/ P2 0.7 190 195V eu, P dx

+e(B+ DHIVER o 82/ 72 wf |vfus|2f’ 2|VEVEu, | dx
Q
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[
+20082/ n2ﬁ+2 VT“ 2542 g

P
+c/ 1?4 wf [VEu P dx
Q

P
+3B+ DHIVERE szf 1% 0l |NVEue |2P 72 |VEVEu|? dx
Q

l 2 L
- B+2
=700 /Q n We

+e(B+ DIVl e /n w? |v7us|2ﬂ 2|VEVEu|? dx.
Q
(L3) + (La) + (R2) + (R3)
<c(£+1)/ 2PH2 0,7 |NEue 1P |VEVE U | dx

-2
T NEu [P | VEVE U | dx

l
< m/ﬁn”” i 1% 1V dx

P
+ee+1)° f NP2 of [Gue dx
Q
!
< ﬁ/ nzﬁ“wx IVEue | |VEVEu > dx
ya
+ce’(e + 1)2f P2 wf |VEue P72 |VEVEu | dx.
Q

<L5)<cﬁ/ 242 5T 1, P VOV [VE | dx

[
<
~ 200ce2(B + D2IVEnlI7o

/n2ﬁ+4 82 |%~M |2ﬂ|v8%_u | d.x
P
+3? (B + 1)4||v€n||%oo/ 1P w? |VEu |2 | VEVEu | dx
l 2
< B+2 22 26+2 4
_20082an w7 | VEug| x
P
+c/ P4 wf |VEue | dx
Q

P
+ 3B+ DIVl / 1P w? |VEu |2 | VEVEu | dx

[
S m n2ﬂ+2 62 |%~l;{ |2ﬁ |VSV£u | d.x
P
+ce (B + 1>4||v€n||ioo/ 1P w? |VEu P2 | VEVEu | dx.
Q
p—1
(Le) < c(B+ 1)/ PV @7 U P VO VU | dx

[
S m‘/s\zn2ﬁ+2 %—I/l |2ﬂ|v€v€u8| dx
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+ce2(B+ 1)2IVEn| 3 /Q el w§ |eru£|2ﬂ72 VEVeu, P da.
(R1) = —é Z'/Qazj X5XCu, 022 1920, 26 X g dix + -
J
= _é Z/Qazj X XEug 1P 2 V2w, [P Xup dx + -+
+4/§2‘121 Xue 0?42 |VEue | Xoup dx + -

P
< f[ 2642 , 17 Ve, 2P Vo, | dx + c[ 2 w2 Ve, |2 dx .
& Jo Q

Following now the estimates from (L,) we get that

/
(R = 305 [ 7207 1900 199 e
+c(B+ DAVl 2 /n w? |vTus|2” 2|VEVEu |2 dx.
Q

We can finish now the proof by combining the above estimates. O

Using the fact that |Vru,|> < 2|VEVZu,|?, we can adapt the proof of Lemma 3.3
to the case 8 = 0, to obtain the following estimate.

Corollary 3.1 Let 0 < § < 1 and n € C§°(R2) be such that 0 < n < 1. Then there
exists a constant ¢ > 0 depending only on p, | and L such that for any solution
€ C®(Q) of (3.2) we have

=3
/n a)g2 |VEVeu, | dx
Q

P
sc(teIvalls+1%miis) [ ofar. G
supp(11)

Lemma34 Let0 <8 < 1,8 > 1landn € CSO(Q) be such that 0 < n < 1. Then
there exists a constant ¢ > 0 depending only on p, | and L such that for any solution
ug € C*®(Q) of (3.2) we have

/ 2ﬂ+2 82 |%’M |2ﬂ |V8V8u£| dx
Q
17
<P+ v, / Poll Pveven tdx. (3.13)
Q

Proof The case B = 1 is included in Lemma (3.3).
In the case of 8 > 1, in the right hand side of (3.11) we use Young’s inequality with
the constants p = % and g = B.
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/ 2B+2 vru 1?2 |1VEVeu,|* dx
Q

scez<ﬂ+1)4uvenn%m/ 2 w? IVEue [P =2 |VEVEu, | Pdx
Q
B-1
2842 L e 28 oewe, |2 £
= n We |V7“s| IVEVoue|”dx
Q

o<cﬂazﬂ B + D" VeI, f PorT P Iveveu, dx)
Q

1

Taking into consideration a division by £#, estimate (3.13) is now a simple conse-
quence of the above inequality. O

Proof of Theorem 2.1 We start with the first term on the rlght hand side of (3.8). By
Young’s inequality with exponents p = 8+ 1 and g = ’3 1 and Lemma 3.4 we get
that

c(B+ 1)} / Por® P 1 dx
Q

1
BT
5c(ﬂ+1)4</ 420, Vyu, |2f‘+2dx) )
Q

B
P B+1
+
. </ g P dx)
supp 7

1
B+
<c(B+D* <2/ 2p+2 82 IVrup| P |VEVeu,| dx)
Q

B
» B
+
. </ wé p dx)
supp n

1
BFI
<c(B+ 1 <cﬁ(ﬁ+1)4ﬂllvanlli€o /Qn w2 P IVEVEL,| dx)

B
P B+1
+
. </ g P dx)
supp 7

1
L 2B P 2y BHI
(B4 1) AT IVEnllFa (/ 2w P IVEVEL,| dx)
Q

B

)4 B+T
(L
supp n

1 r=2
< — / n2w52 +’8|V£V‘€145|2c1)c
Q

[~
mm

ya
S B ||v€n||Loo/ w2 P dx .
supp n
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Hence, inequality (3.8) implies the following estimate:

p=2
/ N we P IVEVEu,|? dx
Q

Since for any integer 1 < i < 8 we have

PP 2
(3 (2a%))

)4 2 4
=2Vl +2(5+8) el T IvviLp,
it follows that

pyB
f7 ()
Q
b1p

§c(ﬂ+1)14<1+||Vgnllioc+llvrn||m°)/ wi " dx.

supp7)

2
dx

Similarly to (2.1), for any small ¢ > 0, consider subunitary curves associated to
{Xf, 1 <i < 8}, the control distance d® and balls B.
Notice that for all ¢ > 0 and x, y € SU(3) we have d®(x, y) < d(x, y), and hence
it follows that B, C BZ. The homogeneous dimension Q = 10 provides a constant ¢
independent of ¢ such that for volumes of balls of radius 0 < r < 1 we have

cr? < |B,| < |Bf|.

By [19, Theorem V.4.5, page 70], the Sobolev inequality holds for x = & = % and
a constant ¢, depending only on Q and independent of ¢. For a careful study of the
independence of ¢ of €, see [4]. Therefore, for 0 < % <r1 < rp <r and appropriate

cut-off function n we have

! |

<cp+ 0" (1 1V I+ 1) [ of P a

rn

1
K

2 wé’z’+ﬁ)'<j|

3
1

The well-known Moser iteration leads to a constant independent of &, such that for
any weak solution u, of (3.2) in B, satisfying u, = u on 9 B we have

1
P
sup | Veue| < ¢ (/ﬁ 6+ |V5u5|2)]2dx> . (3.15)
Bé‘

B

r
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Letting ¢ — 01in (3.15), we obtain (2.7). O

4 The proof of Theorem 2.2

Based on the Lipschitz regularity from Theorem 2.1 and [6, Theorem 1.1] we have
the following result:

Theorem4.1 Letp > 2,5 > 0andu € W;{fOC(Q) be a weak solution of (2.2). Then
u e C®(Q).

We can observe that the estimates from the Lemmas and Corollaries from the
previous section are homogeneous in €. Therefore, by dividing with the corresponding
power of ¢ and then letting ¢ — 0, we obtain the following intrinsic Cacciopoli type
inequalities for solutions of (2.2). Similar inequalities were obtained in the case of the
Heisenberg group in [13,15,17,20]. We will use the notation w = 8 + |Viyu/|?.

Corollary 4.1 Let 0 < § < 1 and n € C{°(2) be such that 0 < n < 1. Then there
exists a constant ¢ > 0 depending only on p, | and L such that for any solution
u € C*(Q) of (2.2) the following inequalities hold:

(1) IfB =0, then

/anw”T‘ﬁvquﬂmvfmzdxSc/QMnlzw"T’ﬁvquﬂ“dx
+c(ﬂ+1)2fgn2w%|v7u|2ﬁdx. 4.1
)1t B >0, then
/anw’%”ﬂmwﬁdxsc<ﬁ+1>4/§2n2w”7‘2+ﬁ|vfu|2dx
+c<ﬁ+1)2/Q(nz+|vhn|2+n|vfn|)w§+ﬁdx. 4.2)
(3) It B > 1, then
/Q P2 02 |G [V houl? dx
< c(B+ D Vil /Q P w [ Vrul 72 |y Vg 4.3)
@@ IfB =1, then
fgn””w# IV ul?® %Sl dx

n—2
< PB4+ DG /Q 72w | Gu 2dx (4.4)
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S)IfB = 0, then

p—2
/ 7w T | Gul? dx
Q

e+ (1419l +1%lls) [ wbPar @)

supp

In case of § = 0 the key result in proving the C¢ regularity of weak solutions of
Eq. (2.2) is the following lemma:

Lemmad4.1 Let § > 0, u € C°(Q) be a solution of (2.2) and consider a CC-ball
B3, C Q. Foranyq > 4there exists aconstant c > 0, depending onlyonG, p,1, L, ro
and q, such that for allk € R, |k| < M,0 <r' <r <rg, s € I we have

[ G 1By (5 = o P

Ax,k,r

¢ p=2
ST 2 /A @+ %) (Xou — ") dx
s.k,r
4 _2
Fe(+ MO AL T, (4.6)

where M = Supg,, |Vru| and Aik,r ={x € B, : Xsu(x)—k > 0}.

Proof We will present the proof for s = 1, the other cases are identical. Let us denote
v = (Xu—k)T.AsinSect. 3, let us differentiate Eq. (2.2) with respect to X |, multiply
itby a ¢ € C3°(£2) and integrate. In this way we obtain

Z/QainleuXifbdx=—/S2X7a2¢)dx—/ga3)(5¢dx+-«-
i,j

+Z/ air X7u Xi¢dx—Z/ aiz Xsu Xipdx + - - - “4.7)
X Q - Q
i i

Consider a cut-off function n € C§°(B;) such that n = 1 in By, |[[VWyn||z= < rEr/

and ||[VIrnllpe < —8 . After substituting the test function ¢ = n2v in Eq. 4.7),

(r—r")?
we get the following terms:

Li+Ly=R +Ry+--+Rs+Rs+---

We will estimate each term. Note that X ; Xju(x) = X;jv(x) if v(x) # 0 and we can
assume | By, | < 1.

n—2
L ZZ/ aij X Xiun* X;jvdx zl/ P w'T W)t dx .
— JB, 5,
ij
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-2
L2=Z/ ainjX1u2nvadx§c/ pr|VHv|n|Wm|vdx
— JB,
i

B,

100

R]:—/ X7a2772vdx=—2/ a2iX7Xi’/“72de
B, — JB,

:—Z/ aziXiX7un2vdx+4/ alezunzvdx—l—-'-
- . B,

l p—2 p—2
< — nzw]T|W.[v|2dx+c/ |Wm|2wlT vV dx.
B, B,

fc/ N{Wulvdx—i—c 77 w = vdx
B, B

r

IA

c/nw2 |V§{V7u|vdx+c/r/w;vdx+c/ nzwgdx
B, AT

r 1k,r
<c[ ru
B,

+e(B+ M2 AT

c/ r;w2 |WV7u|vdx+c/ an v2dx
B,

By

[~

N{Wulvdx—i—c/ n w by v2dx

r

=

IA

+e(8+ MY AT, |1‘*

1
Ry=3 / a3 (> Xsv + 21 Xsnv) dx
B,

IA

—1 —1
c/ prn2|VHv|dx—|—cf prnN.mlvdx
B, B,

[
100

IA

-2
nzprN.tmzdx—i—c/ nzwgdx
B, *

Al,k,r
-2
+c/ N{iﬂzwpT v2 dx
B,

[ o p2 2 2 P2 9
< — w2z |Wul“dx +c [Vl w 2 vodx
100 Jp, B,

L -2
+e@+ MM AT,

R3 =Z/ ain» X7u (an,-v—l—ZnX,-r) v)dx
—~ Ja
p=2 2 p=2
<cf w2z [Vruln” [Wldx +c | w2 |[Vruln|VWnlvdx
B, B,
! 2 22 2 2, 22 9
< — n w2 |Wul|“dx +c¢ [Vyn|“w 2 vodx
100 B,

+c/nw2 |V]-u| dx .
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The last term needs more attention. We will use the Holder inequality and inequal-
ities (4.4) and (4.5). All multipliers involving g and ry will be included in the general
constant c.

p—2
c/ nzw 2 |%—u|2dx
B,

2
p—2 l_a p=2 %
c /+ w2 dx (/ nqw2|V7u|qu>
A E

=
1k,r
2

(p=2)(q=2) 2 n—2 q

2 1-= L -2 2
<c@+M) 2w |Af, 1T (/ n?w'T | VrulT2 |y Vgl dx)

By

(p=2(g=2) -2

<c@+M) AL, 1T

ESN[N}

_ 2q—4 q-2 g
TR, e meras
2 ro BSrO

4

=

IA

»P=2)(q-2) -2 ptq—2
8+ M%) AL, T / v
B6r0

(P=2)(q=2)

2
e+ M) AT (54 m7)

IA

IA

4 1=2
cB+ M)A, |7,

The estimate of R4 is similar to the estimate of R,. In conclusion, at this stage for a
constant cp > 0, we have the following estimate:

2 p—2 2 2 p—2
ncw 2 [Wltdx <co | nTw 2 [ Vrulvdx
r B,

p—2 p _2
+Co/ P + M) w'T v2dx +oo(+MHT AT, 17T @8)
Br

It is left to estimate the term
5 =2
Ag = ¢o w2z |WWrulvdx.
By

By introducing the term

1

n—2 n—2 2
KZ(/ %+ [BenP) w2 vzdx+/ w2 lezf”) ’
B, B,
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inequality (4.8) can be rewritten as

-2
K2 < Ag + (co+ 1)/ 0 + B w'T v? dx
B,

1—
|

2
teo B+ MO |Af, I (4.9)

We will focus now on Ag. By Holder’s inequality we obtain

1 1

—2 2 -2 2
Ag < ¢p (/ n2w12 dx) <f nzpr |W1V1—u|2v2dx)
AT B,

1.k,r

1
-2 2 2
<o+ MH'T |Atk,,|% (/ P w'T |V Vrul? vzdx> .
B,
For g > 0, we introduce the following terms:
p=2
g =/ w7 |V Vrul® Vel v?dx
B,
Ag = / nzw% |V7u|’g v2dx .
By
Note that we have
2. P2 ja"
Ao < co(8+M*)T |AT, 12T . (4.10)

By the fact that v? < 4(8+ M?) and after repeated use of the inequalities (4.1)-(4.5),
we find a constant ¢ > 0 depending on p, [, L, rg, 8 such that

p+B+2

Tg+Ag<c@+M)"7 . 4.11)

Applying the Holder inequality to Ag, for 8 > 0 we get that

1
Ap <k 3+ MDA, (4.12)

and after iterating (4.12) m times, we find that there exists a constant ¢ > 0 depending
alsoon p, [, L, rg, B and m such that

_1 1
Ap < T 5+ MY AL (4.13)

To estimate I'g let us differentiate (2.2) with respect to X7 to get

6
Z / aijj XjX7M X,-¢dx
Q

i,j=l1
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6
=4/ a1X2¢dx+-~-+4ZfaileuX,~¢dx—--~
Q i=17¢

We willuse ¢ = n? v? |Vru|? X7u.1In X;¢ we will order the four terms in the following
way:

Xi¢ =21 Xinv* |Vrul? Xqu 4+ 0 2v X;v | Vrul? Xqu
B _
+n? v25|vfu|ﬂ 2 X (\Vrul®) Xqu + n* v? |Vrul? X, Xqu .

By repeating the same steps for Xg and adding the two equations we get the following
terms:

4

L]+L2+L3+L4=ZR1i+"'+ZR2i+
i=1 j

For each term we have the following estimates.

P2
L <c/ w T [ Vrul g [Venl v? [ Vrul P dx

<o [ 1P dX)
i 1
-2 2
</ w2 | Yrul [V vzdx) = ckTopia:
Q
1
Ly < similarly to Ly < cx Tyg 5.

Ly > %ﬂfgnzw”%z S (N u )2 V)P =2 0 dx
Ly> Z/anw”%z N Vrul? |Viulf v dx = IT.
By Holder’s inequality we get
Ri1 + Rio+ Ry + Ry <ck A2%ﬁ+2'

Young’s inequality leads to

[ 1 1
Ris+ Ria+ Roy + Roy < =T+ ek (B+ 17 (6 + M) Ay

Therefore in case of B > 2 we obtained the following inequality:

1 1 1L
Tg<ck (1"22ﬁ+2 + Ay + G+ M2 Agﬁ) : (4.14)
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where the constant ¢ depends on f.
In case of B = O the terms L3, R13 and R»3 are missing and, for an integer m € N,
the estimate for R4 + Ry4 can be changed to the following.

-1
Rig+ Ry < C/ w'T 02 v? |V Virul dx
Q

1 _

< — 772pr2 |W—(%’M|2 v2dx +cf nzwg v2dx
I _

< EFO+C(8+M2)/Q7]2U)[)TZ vzdx

1

) _ 1 p—2 m+1
§—Fo+c(6+M2)K2(l 7T /n2w12 v dx ?
100 Q
! 2— ok 21+ 55
< r m(§ M om+2
=100 0+ ck 8+ M")

Therefore, we have obtained the following estimate:
3 3 I+ L
Fo<ecx Ty +A; +@+M°) "2 727 ), (4.15)

In inequality (4.15) we will have to have to iteratively apply (4.14). First, by using
(4.12) and (4.11), we can rewrite (4.14) in the following way:

i L o B2y b
g §CKF2/3+2+CK 2T (§ 4+ M“) 2 T oamt2 (4.16)

After m iterations of (4.16) and by choosing S, = 2™ — 2, we get the following
inequality:

m-11 L m—1 1 P
AP 7 2———— 24+ —5—
Py =Tpy < e 7 TR0 4 Y77 (64 MHTTIT L @)
i=0

By applying (4.11) and (4.17) in (4.15) we get that

o U -
o < ck® 2 5+ M) 97 40 3 FTI (54 MP) T

i=1

_pr
+2ckX T (5 4+ MY T

Hence, we obtained a constant ¢; such that

m
1 _pr__
Fo<ci Y ()77 (5 4 M) v (4.18)
i=0
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We return now to inequality (4.10) and obtain

Ao < o+ MD'T (AT, 12

1

“ 1 _»\?
. (Cl Z(K2)l T (§ 4 M2)1+2m+i+2)

i=0

om+i+1_
< co(8 + MHE 1A} kr|2 (C1 Z(K ) S (s +M2)2m+z+%)
i=0

5 om+i+l_y 1 ) P(2m+i.+l+1)
< Z(K ) AT <CoC12 (8 + M?) nHits |A1 P r|2> )

By applying Young’s inequality to each term we obtain

Z 2(m+ 1)

i=0
2m+l+2 om+i+2
F3 clm) (co/aT) P (54 M) AT, [
i=0
By choosing m € N such that
2 om+2
l——<—,
qg ~ 2mt242

and taking into consideration (4.9), we obtain that

1 1
A0§§A0+C0+

/<n2+|w|2>w”%2v2dx
+(— +o) (6 +MHE AT, I

In conclusion, from (4.8) we get that

/ n2w”T‘2|w|2dx5c/ (n2+IWn|2)pr_2v2dx
B,
+c(5+M2)2|A |

and this finishes the proof of Lemma 4.1. O

In a similar way we can prove Lemma 4.1 for the lower level sets A, , . and then
the proof of Theorem 2.2 relies only on properties of functions belonging to the De
Giorgi classes. The De Giorgi-type iteration methods leading to Holder continuity
are well known and are available in a wide range of spaces, including homogeneous
metric measure spaces. For references we quote [7,10-12,17,20].
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5 The case of a general semi-simple, compact, connected Lie group

The proofs of our results are based on the properties of the commutators listed in Table 1
and (3.1). This is how we can handle the fact that we don’t have a nilpotent stucture.
Similar properties of commutators of vector fields hold in any compact, connected,
semi-simple Lie group. For the sake of clarity we presented all details for the case
of SU(3), which is the simplest non-nilpotent group case that takes into account all
possible commutators present in the general case.

Next, we describe those algebraic and analytic properties of semi-simple, compact,
connected Lie groups, which allow mutatis mutandis for the extension of our proofs
in SU(3) to any semi-simple, compact, connected Lie group.

Let G be a semi-simple, connected, compact matrix Lie group and G its Lie algebra.
Note that every compact Lie group is isomorphic to a compact group of matrices [8,
Corollary 2.40], so there is no loss of generality assuming that G is a matrix group.

On G we consider an inner product with properties

(Adg(X),Adg(Y)) =(X,Y), forall g€ G, X,Y g,
and
(ad X(Y),Z) = —(Y,ad X(Z)), forall X,Y,Z€egG,

where Ad g(X) = ng’1 and ad X(Y) = [X, Y]. An example of such an inner
product is given by any negative multiple of the Killing form [1].

Consider a maximal torus T of G and its Lie algebra 7, which is a maximal
commutative subalgebra of G, called a Cartan subalgebra. Let us fix an orthonormal
basis By = {T1, ..., T,} of 7, and identify the dual space 7* (space of roots) with
T (space of root vectors).

We extend the inner product bi-linearly to the complexified Lie algebra Gc =
G @ iG. The mappings ad T: Gc — G¢, T € 7, form a commuting family and are
skew-symmetric, so they share eigenspaces and have purely imaginary eigenvalues.

Definition 5.1 We define R € 7 to be a root if R # 0 and the root space G # {0},
where

Gr=1{Z€Gc : [T,Z1=i (R, T)Z, forall TeT}.

Let R be the set of all roots. We call a root positive if its first non-zero coordinate
relative to the ordered basis B7 is positive and let R denote the set of all positive
roots.

For the following properties of the real root space decomposition we quote [8,
Proposition 6.45, Theorem 6.49]. We have

G=TdH
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where

H=T"= P Hr and Hg = (Gr®G-r)NG. 5.1)
ReR*

Therefore, we can choose an orthonormal basis of H,
B ={X1,X2,..., Xon_1, Xon}, (5.2)
with the following properties:

(i) Forall 1 < j < n there exists R; € R such that
span{Xs;—1, X2} = Hg;.
(il) [X2j-1, X2j1=—Rj, [X2j, Rj1=—|IR;|*X2j—1,
[Rj, X2j—11 = [IR;II*X2; .
(i) If (m, k) # (2j — 1,2J), then [X, Xi] € H.
(iv) If T € T, then {[X2j_1.T]. [X2;.T1} C Hg, .

(5.3)

Notice that [1, Proposition 2.20] the positive roots span the Cartan subalgebra 7,
but might not form a linearly independent set. To extend By to a basis of G, let us
select a subset of positive roots {Ry, ..., R,}, which form a basis of 7. This can be
the set of simple roots, but not necessarily.

For 0 < ¢ < 1, define the following vector fields:

e Fori € {1,2n} define X] = X;.
e For j € {1, v} define R; =¢R;.

Consider the Riemannian approximation given by setting as an orthonormal basis of
G the vector fields

{le e Xog, Rf, e Ri}
We now set the horizontal and vertical gradients

2n v

Viu =Y (Xi)Xi, Vru=Y (Rju)R;,

i=1 j=1

and the full Riemannian gradient
Véu = Yu + eVru.

We also set

we = 8+ |VEue|?,
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and

Viu = €Vru

Let us fix a bi-invariant Haar-measure in G. Consider a domain 2 C G, and the
following quasilinear subelliptic equation:

2n

> Xi (@ (Bu) =0, inQ, (5.4)

i=1

where for some 0 <6 <1,p>1,0<[ < L,andforall n,& € R2" the following
properties hold:

da; ) 232 )
”Zl R TE CR ) I (5.5)
pTJ
Z '@@) <L 5+|é| ) , (5.6)
p—1
@)= L(s+187) T . 5.7)

We list our main results for a general semi-simple, compact, connected Lie group

G.

Theorem 5.1 Let p > l and u € W;{’;OC(Q) be a weak solution of (5.4). Then there
exists a constant ¢ > 0, depending only on G, p,l, L, such that for any Carnot—
Caratheodory ball B, CC 2 we have

1

sup | Vigu| 5c(/£ (3+|wu|2)5dx)" . (5.8)
B,

Bry2

Theorem5.2 Let p > 2 and u € W;{I;OC(Q) be a weak solution of (5.4). Then
Vu € Cy ().

Regarding the Riemannian approximation as ¢ — 0, by (5.3), the commutation
relations that arise are exactly the same as those described in (3.1). This means that
all the proofs in Sects. 3 and 4 carry over with minor modifications (for example, the
homogeneous dimensionis Q = 2n+2v), and our results are valid in any semi-simple,
compact, connected Lie group G.
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