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Abstract
Conservation laws of the Hunter–Saxton equation for liquid crystal are constructed by
using multipliers. Based on the obtained conservation laws, we construct a tree of par-
tial differential equations systems nonlocally related to the Hunter–Saxton equation.
Many new local and nonlocal symmetries for these systems are found. The equivalence
transformations of two potential systems are obtained. A symmetry-based method is
employed to construct nonlocally related inverse potential systems. The symmetry-
based method does not rely on the existence of conservation laws for the original
equation.

Keywords Hunter–Saxton equation · Nonlocally related systems · Inverse potential
systems · Conservation laws
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1 Introduction

The nonlinear partial differential equations (PDEs) are useful in analyzing nonlinear
phenomena in engineering and scientific problems. In the past decades, many effec-
tive methods for investigating properties of PDEs have been developed, such as the
bilinear method [1–4], Riemann–Bäcklund method [5–7], inverse scattering method
[8,9] algebraic geometry method [10–12] and Fokas method [13,14]. Symmetry anal-
ysis method is one of the most effective method for analyzing PDEs [15–20]. Any
symmetry transforms the solutions of a PDE to the solutions of the same equation.
On the basis of the symmetry theory, one can construct conservation laws of PDEs.
Many method for deriving conservation laws of PDEs have been developed, such as
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Noether’s approach [21–23] direct method [24–27], Ibragimovs method [28,29] and
the mixed method [30]. The direct method is able to find all conservation laws for
any given system of PDEs. In contrast, Noether’s method is limited to variational
systems, while Ibragimov’s method and the mixed method are merely special cases
of the multiplier method [31–33]. The problem of finding all conservation laws for
a given PDEs is equivalent to the problem of finding all infinitesimal symmetries.
Therefore, there is no need to derive conservation laws with the aid of special methods
[33]. Once a PDE’s conservation laws are constructed, the nonlocally related systems
of this PDE can be established [25]. The nonlocally related systems are equivalent
to the given PDE system [34]. Nonlocally related systems play an important role in
finding the nonlocal symmetries and nonlocal conservation laws [35–38]. However,
the conservation law-based method for constructing nonlocally related systems is not
valid to the equation that has no nontrivial local conservation laws. It is notable that
Bluman et al. proposed a symmetry-based method to find nonlocally related PDE sys-
tems [39]. Each point symmetry can yield a nonlocally related PDE system (inverse
potential system). The symmetry-based method can also be used to construct trees of
nonlocally related PDE system.

In the paper [40], based on the polynomial recursion formalism, Hou et al. derive
the HS hierarchy. The first equation of this hierarchy is written as

U (x, t, u) = 0 : uxxt + 4ux uxx + 2uuxxx = 0. (1)

This equation is an important physical model which can be used to describe the prop-
agation of weakly nonlinear orientation waves in a massive nematic liquid crystal
director field. The liquid crystal state is a distinct phase of matter observed between
the solid and liquid states. The director field of the liquid crystal is usually floating
[41]. Equation (1) is useful in studying the dynamics of director field since it can be
used to model crucial point for nematic liquid crystals. Eq. (1) is Hunter–Saxton (HS)
equation. HS equation is a short-wave limit of the Camassa–Holm equation [42]. This
paper aims at constructing conservation laws and nonlocally related PDE systems of
this equation.

This paper is organized as follows. In Sect. 2, the conservation laws of HS equa-
tion are constructed by using direct method. The conservation law-based method is
employed to find the nonlocally related PDE systems of Eq. (1). Many new local and
nonlocal symmetries for these systems are found. In Sect. 3, the equivalence trans-
formations of two potential systems are investigated. In Sect. 4, the inverse potential
systems arising from each Lie point symmetries are presented. A tree of inverse poten-
tial systems of Eq. (1) is also constructed. Finally, some conclusions are given in the
last section.

2 Nonlocally related systems

Consider a k-order system of PDEs Rα [u] with n independent variables x =(
x1, x2, . . . , xn

)
and m dependent variables u = (

u1, u2, . . . , um
)
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Rα [u] = Rα

(
x, u, u(1), . . . , u(k)

) = 0, α = 1, 2, . . . , m, (2)

where u(k) is kth-order derivative. A local divergence-type conservation law of the
PDE system (2) is a divergence expression of the form

Di�
i [u] = D1�

1 [u] + · · · + Dn�
n [u] (3)

in terms of total derivative operators holding on solutions of (2). There exists a set of
conservation law multipliers

�α [u] = �α

(
x, u, ∂u, . . . , ∂ lu

)
, α = 1, 2, . . . m, (4)

such that

Di�
i [u] ≡ �α [u]Rα [u] (5)

holds for arbitrary u.
For any divergence expression Di�

i [u], one has

Eu j

(
Di�

i [u]
)

≡ 0, j = 1, 2, . . . m, (6)

where Eu j = ∂
∂u j − Di

∂

∂u j
i

+ · · · + (−1)s Di1 · · · Dis
∂

∂u j
i1 ···is

+ · · · is Euler operator

with respect to u j .
A set of local multipliers�α

(
x, u, ∂u, . . . , ∂ lu

)
yields a divergence expression for

PDE system (2) if and only if

Eu j

(
�α

(
x, u, ∂u, . . . , ∂ lu

)
Rα

(
x, u, ∂u, . . . , ∂ku

))
≡ 0, j = 1, 2, . . . m (7)

holds for arbitrary u [16].
Consider the conservation lawmultipliers�[u] = �(t, x, u) to HS equation. Then

Eu (� (x, t, u) (uxxt + 4ux uxx + 2uuxxx )) ≡ 0. (8)

Splitting with Eq. (8) respect to third derivatives of u yields the following determining
system

−�uu = 0, −2�xu = 0,
−�t xx − 2u�xxx = 0,
−6u�xu − �tu − 2�x = 0,
−6u�xuu − �tuu − 4�xu = 0,
−6u�xxu − 2�t xu − 2�xx = 0.

(9)

The solution of the determining system (9) is given by

�(x, t, u, ux , ut ) = xF ′(t) + u (−2F (t) + c1) + G (t) , (10)
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Table 1 Conservation laws of HS equation

CL Multipliers Conservation laws

V1 � = u
�t [u] = uuxx + 1

2 u2x ,

�x [u] = 2u2uxx − ut ux

V2 � = G (t)
�t [u] = G (t) uxx
�x [u] = 2G (t) uuxx + G (t) u2x − G′ (t) ux

V3 � = xF ′ (t) − 2uF (t)
�t [u] = −F (t) u2x + F ′ (t) ux − 2F (t) uuxx + xF ′ (t) uxx
�x [u] = −4F (t) u2uxx + xF ′ (t) u2x + 2F (t) ut ux

−xF ′′ (t) ux − F ′ (t) ut + 2F ′ (t) xuuxx

where c1 is an arbitrary constant and G(t) andF(t) are arbitrary differential functions
about t . The solution yields three local conservation laws multipliers

(1) � = u, (2) � = G (t) , (3) � = xF ′ (t) − 2uF (t) . (11)

Each multiplier determines a corresponding flux as Table 1 by using direct method
with the aid of GeM [43,44].

The three conservation laws in Table 1 result in the following potential systems

U V1 {x, t, u, v1} = 0 :
{

v1x = uuxx + 1
2u2

x ,

v1t = ut ux − 2u2uxx ,
(12)

U V2 {x, t, u, v2} = 0 :
{

v2x = G (t) uxx ,

v2t = − (
2G (t) uuxx + G (t) u2

x − G′ (t) ux
)
,

(13)

U V3 {x, t, u, v3} =

0 :
⎧
⎨

⎩

v3x = −F (t) u2
x + F ′ (t) ux − 2F (t) uuxx + xF ′ (t) uxx ,

v3t = − (−4F (t) u2uxx + xF ′ (t) u2
x + 2F (t) ut ux

−xF ′′ (t) ux − F ′ (t) ut + 2F ′ (t) xuuxx
)
.

(14)

The three conservation laws in Table 1 yield up to 23 − 1 = 7 nonlocally related PDE
systems. Therefore, the following theorem can be established.

Theorem 1 For the Hunter–Saxton equation, the set of locally inequivalent potential
systems arising from multipliers depending on x, t and u is established by the following
systems:

• Three potential systems (12), (13) and (14) involving single potentials.
• Three couplets U V1V2 {x, t, u, v1, v2} [(12), (13)], U V1V3 {x, t, u, v1, v3} [(12),
(14)] and U V2V3 {x, t, u, v2, v3} [(13), (14)].

• One triplet U V1V2V3 {x, t, u, v1, v2, v3} [(12), (13), (14)].
A tree of nonlocally related PDE system for the Hunter–Saxton equation is presented
in Fig. 1. In what follows, we shall investigate the Lie point and nonlocal symmetries
of the nonlocally related PDE systems. On the basis of the Lie symmetry analysis, the
Lie point symmetries of U V1 are given
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Fig. 1 A tree of nonlocally
related PDE system for the
Hunter–Saxton equation

1 2 3UVVV

U

3UV2UV1UV

1 2UVV 2 3UV V1 3UVV

Table 2 Point symmetry classification of the potential system U V2

G (t) No. Point symmetries

Arbitrary 2 Y1 = ∂

∂x
, Y2 = ∂

∂v2

t 4

Y1 = ∂

∂x
, Y2 = ∂

∂v2
, Y3 = t

∂

∂t
− u

∂

∂u

Y4 = t ln (t)
∂

∂t
+

−tu ln (t) − tu + 1

2
t

∂

∂u
− v2

∂

∂v2

tα, α �= 1 4
Y1 = ∂

∂x
, Y2 = ∂

∂v2
, Y5 = tα

∂

∂t
+ 1

2

α
(
−2utα+1 + (α − 1) tα

)

t2
∂

∂u

Y6 = t
∂

∂t
− u

∂

∂u
+ (α − 1) v2

∂

∂v2

et 4
Y1 = ∂

∂x
, Y2 = ∂

∂v2
, Y7 = ∂

∂t
+ v2

∂

∂v2

Y8 = −2et ∂

∂t
+ (2u − 1) et ∂

∂u

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = ∂

∂v1
,

X4 = −t
∂

∂t
− x

∂

∂x
+ v1

∂

∂v1
,

X5 = t
∂

∂t
+ 2x

∂

∂x
+ u

∂

∂u
.

(15)

The symmetry classification of system U V2 and U V3 are given by Tables 2 and 3
respectively. Table 4 presents the symmetry classification of other potential systems of
the tree of nonlocally related system (Fig. 1).

Theorem 2 IfF = et the symmetry Z10 of the system U V1V3 is the nonlocal symmetry
of the system U V1.
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Proof For the Lie point symmetry Z10,

ξ1 (x, t, u, v1, v3) = 2et , ξ2 (x, t, u, v1, v3) = 2xet ,

η1 (x, t, u, v1, v3) = xet , η2 (x, t, u, v1, v3) = v3,

η3 (x, t, u, v1, v3) = xe2t .

(16)

Then

(
∂ξ1

∂v3

)2

+
(

∂ξ2

∂v3

)2

+
(

∂η1

∂v3

)2

+
(

∂η2

∂v3

)2

= 1 > 0.

So the symmetry Z10 is the nonlocal symmetry of the system U V1. ��

Remark 1 We can conclude that Z11 and Z12 are the nonlocal symmetries of system
U V3 when F = ln (t) as the same analysis as Theorem 2. In addition, Z15 is the
nonlocal symmetry of U V1 and Z17 is the nonlocal symmetry of U V3. Z21 is the
nonlocal symmetry of the system U V1 and U V1V2. Z22 is the nonlocal symmetry of
the system U V2, U V1V2 and U V2V3. Finally, Z23 is the nonlocal symmetry of the
system U V3 and U V2V3 when G = et and F = c.

Remark 2 In this section, three local conservation laws of the Hunter–Saxton equa-
tion are constructed by limiting the multipliers to lowest-order. This class will
miss some conservation laws. For the HS equation, the three-order multiplier
�(x, t, u, ux , uxx , uxxx ) is xF ′ (t) − 2uF (t) + c1u + G (t) + c2

√
uxx . The term√

uxx will yield new conservation laws by using the direct method. However, the
√

uxx

is not a continuous function. It cannot split the flux continuously. For the multiplier

�(x, t, u, ux , uxx , uxxx , uxxxx , uxxxxx ), it will appear new term uxxxx

(uxx )

5
2

− 5
4

u2xxx

(uxx )

7
2

.

It is also hard to determine the conserved densities. Thus we don’t consider the high-
order multiplier in this paper.

Remark 3 The obtained nonlocally related systems of theorem 1 are not exhaustive. It
is a fact that linear combinations of the starting conservation lawsmay yield additional
systems [45]. The most general form of potential system can be written as

U V {x, t, u, v} = 0 :⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vx = c1
(
uuxx + 1

2u2
x

) + c2 (G (t) uxx )

+c3
(−F (t) u2

x + F ′ (t) ux − 2F (t) uuxx + xF ′ (t) uxx
)

vt = c1
(
ut ux − 2u2uxx

) + c2
(−2G (t) uuxx − G (t) u2

x + G′ (t) ux
)

−c3
(−4F (t) u2uxx + xF ′ (t) u2

x + 2F (t) ut ux

−xF ′′ (t) ux − F ′ (t) ut + 2F ′ (t) xuuxx
)
.

Together with the potential systems in Theorem 1, they exhaust all possible inequiv-
alent potential systems.
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Table 3 Point symmetry classification of the potential system U V3

F (t) No. Point symmetries

Arbitrary 2 W1 = ∂

∂v3
, W2 = x

∂

∂x
+ u

∂

∂u
+ v3

∂

∂v3

t 5 W1 = ∂

∂v3
, W2 = x

∂

∂x
+ u

∂

∂u
+ v3

∂

∂v3

W3 = t
∂

∂t
+ x

∂

∂x
, W4 = 2t

∂

∂x
+ ∂

∂u

W5 = t ln (t)
∂

∂t
+ x (ln (t) + 2)

∂

∂x
+

(
u + x

2t

) ∂

∂u
+ x

2t

∂

∂v3

tβ, β �= 1 5 W1 = ∂

∂v3
, W2 = x

∂

∂x
+ u

∂

∂u
+ v3

∂

∂v3
, W6 = t

∂

∂t
+ (β − 2) x

∂

∂x
− (β − 1) u

∂

∂u

W7 = 4tβ

β2
∂

∂x
+ 2tβ−1

β

∂

∂u
+ t2β−2 ∂

∂v3

W8 = 2tβ
∂

∂t
+ 2βxtβ−1 ∂

∂x
+ β (β − 1) xtβ−2 ∂

∂u
+ β2 (β − 1) xt2β−3 ∂

∂v3

et 5 W1 = ∂

∂v3
, W2 = x

∂

∂x
+ u

∂

∂u
+ v3

∂

∂v3

W9 = ∂

∂t
− x

∂

∂x
− u

∂

∂u
, W10 = 4et ∂

∂x + 2et ∂

∂u
+ e2t ∂

∂v3

W11 = et ∂

∂t
− xet ∂

∂x
+ 1

2
xet ∂

∂u
+ 1

2
xe2t ∂

∂v3

3 Equivalence transformations of potential systems UV2 and UV3

An equivalence transformation transforms an equation that has arbitrary functions
to an equation preserving the same differential structure but with different arbitrary
functions [46,47]. We shall use Lie’s infinitesimal criterion to derive the equivalence
transformations of potential systems U V2 and U V3. For the system (13), the equiva-
lence transformation is obtained by seeking an infinitesimal operator of the Lie algebra

E = τ
∂

∂t
+ ξ

∂

∂x
+ ζ 1 ∂

∂u
+ ζ 2 ∂

∂v2
+ ζ 3 ∂

∂G . (17)

The one-parameter group of equivalence transformation is given by

t̃ = t + ετ (t, x, u, v2) + O
(
ε2

)
,

x̃ = x + εξ (t, x, u, v2) + O
(
ε2

)
,

ũ = u + εζ 1 (t, x, u, v2) + O
(
ε2

)
,

ṽ2 = v2 + εζ 2 (t, x, u, v2) + O
(
ε2

)
,

G̃ = G + εζ 3 (t, x, u, v2,G) + O
(
ε2

)
,

(18)

where ε is the group parameter. The equivalence transformation operator (17) leaves
not only the invariance of (13) but also the invariance of Gx = Gu = Gv2 = 0. Then the
invariance criterion yields an overdetermined system for τ, ξ, ζ 1, ζ 2 and ζ 3. Solving
this system one has following operators
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Table 4 Point symmetry classification of the potential system U V1V2, U V1V3, U V2V3 and U V1V2V3

Potential
systems

G,F No. Point symmetries

U V1V2 Arbitrary 3 Z1 = ∂

∂x
, Z2 = ∂

∂v1
, Z3 = ∂

∂v2

G = tα 4 Z1, Z2, Z3, Z4 = −t
∂

∂t
+ u

∂

∂u
+ 2v1

∂

∂v1
+ (1 − α) v2

∂

∂v2

G = et 4 Z1, Z2, Z3, Z5 = ∂

∂t
+ v2

∂

∂v2

U V1V3 Arbitrary 2 Z2, Z6 = ∂

∂v3

F = tβ 3 Z2, Z6, Z7 = −t
∂

∂t
+ u

∂

∂u
+ 2v1

∂

∂v1
+ (2 − β) v3

∂

∂v3

F = et 5
Z2, Z6, Z8 = ∂

∂t
+ v3

∂

∂v3
, Z9 = x

∂

∂x
+ u

∂

∂u
+ v1

∂

∂v1
+ v3

∂

∂v3

Z10 = 2et ∂

∂t
+ 2xet ∂

∂x
+ xet ∂

∂u
+ v3

∂

∂v1
+ xe2t ∂

∂v3

F = ln (t) 4
Z2, Z6, Z11 = −t

∂

∂t
+ u

∂

∂u
+ 2v1

∂

∂v1
+ (2v1 + 2v3)

∂
∂v3

Z12 = t
∂

∂t
+ 2x

∂

∂x
+ u

∂

∂u
− 2v1

∂

∂v3

F = c 7

Z1, Z6, Z13 = ∂

∂t
, Z14 = f1 (−2cv1 − v3)

∂

∂v3

Z15 = f2 (2cv1 + v3)
∂

∂v1
, Z16 = t

∂

∂t
+ 2x

∂

∂x
+ u

∂

∂u

Z17 = −2t
∂

∂t
− 2x

∂

∂x
+ 2v1

∂

∂v1
+ (−2cv1 + v3)

∂

∂v3

U V2V3 Arbitrary 2 Z3, Z6

G= tα,F = tβ 3 Z3, Z6, Z18 = −t
∂

∂t
+ u

∂

∂u
+ (1 − α) v2

∂

∂v2
+ (2 − β) v3

∂

∂v3

G = F = et 3 Z3, Z6, Z19 = ∂

∂t
+ v2

∂

∂v2
+ v3

∂

∂v3

U V1V2V3 Arbitrary 3 Z2, Z3, Z6

G= tα,F = tβ 4
Z2, Z3, Z6

Z20 = −t
∂

∂t
+ u

∂

∂u
+ 2v1

∂

∂v1
+ (1 − α) v2

∂

∂v2
+ (2 − β) v3

∂
∂v3

G=et ,F =c 5
Z1, Z5, Z21 = f3 (2cv1 + v3)

∂

∂v1

Z22 = f4 (2cv1 + v3)
∂

∂v2
, Z23 = f5 (2cv1 + v3)

∂

∂v3

E1 = ∂

∂t
, E2 = ∂

∂x
, E3 = ∂

∂v2
,

E4 = v2
∂

∂v2
+ G ∂

∂G ,

E5 = −t
∂

∂t
+ u

∂

∂u
− G ∂

∂G ,

(19)

where G = G (t) is arbitrary function. Thus the five-parameter equivalence group
associated with above five generators is given by
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E1 : t̃ = t + a1, x̃ = x, ũ = u, ṽ2 = v2, G̃ = G,

E2 : t̃ = t, x̃ = x + a2, ũ = u, ṽ2 = v2, G̃ = G,

E3 : t̃ = t, x̃ = x, ũ = u, ṽ2 = v2 + a3, G̃ = G,

E4 : t̃ = t, x̃ = x, ũ = u, ṽ2 = ea4v2, G̃ = ea4G,

E5 : t̃ = e−a5 t, x̃ = x, ũ = ea5u, ṽ2 = v2, G̃ = e−a5G.

(20)

Therefore, the following theorem is established.

Theorem 3 Any transformation of the form

t̃ = a1 + e−a5 t, x̃ = a2 + x, ũ = ea5u,

ṽ2 = a3 + ea4v2, G̃ = ea4−a5G,

where a1, . . . , a5 are arbitrary constants, maps the potential systems U V2 (13) to the
PDE system with same form

{
ṽ2x̃ = G̃ (

t̃
)

ũ x̃ x̃ ,

ṽ2t̃ = −
(
2G̃ (

t̃
)

ũũ x̃ x̃ + G̃ (
t̃
)

ũ2
x̃ − G̃′ (t̃

)
ũ x̃

)
.

Then we can obtain the equivalence transformation theorem for the potential system
U V3 (14) similar to the process of the derivation of Theorem 3.

Theorem 4 Any transformation of the form

t̃ = a1 + e−a3+a4+a5 t, x̃ = e−a3+2a4+a5x, ũ = ea4u,

ṽ1 = a2 + ea3v1, F̃ = ea5F ,

where a1, . . . , a5 are arbitrary constants, maps the potential systems U V3 (14) to the
PDE system with same form

⎧
⎪⎪⎨

⎪⎪⎩

ṽ3x̃ = −F̃ (
t̃
)

ũ2
x̃ + F̃ ′ (t̃

)
ũ x̃ − 2F̃ (

t̃
)

ũũ x̃ x̃ + x̃F̃ ′ (t̃
)

ũ x̃ x̃ ,

ṽ3t̃ = −
(
−4F̃ (

t̃
)

ũ2ũ x̃ x̃ + x̃F̃ ′ (t̃
)

ũ2
x̃ + 2F̃ (

t̃
)

ũt̃ ũ x̃

−x̃F̃ ′′ (t̃
)

ũ x̃ − F̃ ′ (t̃
)

ũt̃ + 2F̃ ′ (t̃
)

x̃ ũũ x̃ x̃

)
.

4 Inverse potential systems arising from Lie point symmetries

In this section, a symmetry-based method is employed to construct inverse potential
systems of HS equation. The symmetry group will be generated by the vector field of
the form

X = ξ1 (t, x, u)
∂

∂t
+ ξ2 (t, x, u)

∂

∂x
+ η (t, x, u)

∂

∂u
, (21)
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then X (21) must satisfy Lie’s symmetry condition

pr (3) X(�)|�=0 = 0, (22)

where � = uxxt + 4ux uxx + 2uuxxx = 0. The Lie symmetry condition yields an
overdetermined system of partial differential equations about ξ1, ξ2 and η

ηxx = 0, ηxu = 0, ξ1t t = 2ηx ,

ηtu = 0, ηuu = 0, ξ1x = 0,
ξ2x = ξ1t + ηu, ξ2t = −2uηu + 2η,

ξ1u = 0, ξ2u = 0.

Solving this system, one can get

ξ1 = c2t + c3 + ∫
2g′ (t)dt,

ξ2 = (c2 + c1) x + c4 + ∫ (
2g′ (t) x + 2 f ′ (t)

)
dt,

η = g′ (t) x + c1u + f ′ (t) .

(23)

where c1, c2, c3 and c4 are arbitrary constants and f (t) and g (t) are arbitrary differen-
tial functions. Hence the infinitesimal symmetries of (1) form the infinite dimensional
Lie algebra L spanned by the following vector fields

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = x

∂

∂x
+ u

∂

∂u
,

X4 = t
∂

∂t
+ x

∂

∂x
, X5 = 2 f (t)

∂

∂x
+ f ′ (t)

∂

∂u
,

X6 = 2g (t)
∂

∂t
+ 2g (t) x

∂

∂x
+ g′ (t) x

∂

∂u
.

(24)

4.1 Inverse potential system from X1

For the symmetry X1, itmaps into the canonical form P = ∂
∂v

by introducing canonical
coordinates

r = x,

s = u,

v(r , s) = t .
(25)

At the same time, the Eq. (1) is mapped to an invertibly equivalent equation

12svrv
2
s v2sr − 18svsv

2
r vsrvss − 6sv3s vsrvrr

−6svrv
3
s vsrr+6sv3r v2ss + 6sv2s vrvssvrr + 6sv2s v2r vssr

− 2svsv
3
r vsss + 2sv4s vrrr + 8v2s v2r vsr

−4vsv
3
r vss − 4vrv

3
s vrr − 2v2s v2sr + 6vrvsvsrvss + v3s vsrr

− 3v2r v2ss − v2s vssvrr − 2vrv
2
s vssr + vsv

2
r vsss = 0.

(26)

Introducing the new variable φ = vr and ψ = vs , one can obtain the locally related
intermediate system
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φ = vr ,

ψ = vs,

12sφψ2ψ2
r − 18sψφ2ψrψs − 6sψ3ψrφr − 6sφψ3ψrr + 6sφ3ψ2

s
+6sψ2φψsφr + 6sψ2φ2ψsr − 2sψφ3ψss

+ 2sψ4φrr + 8ψ2φ2ψr − 4ψφ3ψs − 4φψ3φr − 2ψ2ψ2
r

+6φψψrψs + ψ3ψrr − 3φ2ψ2
s − ψ2ψsφr

− 2φψ2ψsr + ψφ2ψss = 0.

(27)

Eliminating v from the system (27), one obtains an inverse potential system (IP1) of
Eq. (1)

φs = ψr ,

12sφψ2ψ2
r − 18sψφ2ψrψs − 6sψ3ψrφr − 6sφψ3ψrr

+6sφ3ψ2
s + 6sψ2φψsφr + 6sψ2φ2ψsr − 2sψφ3ψss

+2sψ4φrr + 8ψ2φ2ψr − 4ψφ3ψs − 4φψ3φr − 2ψ2ψ2
r

+6φψψrψs + ψ3ψrr − 3φ2ψ2
s − ψ2ψsφr

− 2φψ2ψsr + ψφ2ψss = 0.

(28)

Due to the inverse potential system (28) is nonlocally related to the intermediate
system (27), the inverse potential system (28) is nonlocally related to Eq. (1). The
transformation (25) establishes a one-to-one mapping between the solutions of (28)
and (1). As the process of construction of the nonlocally related system by using
symmetry X1, one can construct the nonlocally related systems, which are based on
X2 to X6.

4.2 Inverse potential system from X2

For the symmetry X2, itmaps into the canonical form P = ∂
∂v

by introducing canonical
coordinates

r = t,
s = u,

v(r , s) = x .

(29)

At the same time, the Eq. (1) is mapped to an invertibly equivalent equation

v2s vssr − 3vsvsrvss + 3vrv
2
ss − 6sv2ss − vrvsvsss + 2svsvsss + 4vsvss = 0 (30)

Introducing the new variable φ = vr and ψ = vs , one can obtain the locally related
intermediate system

φ = vr ,

ψ = vs,

v2s vssr − 3vsvsrvss + 3vrv
2
ss − 6sv2ss − vrvsvsss + 2svsvsss + 4vsvss = 0.

(31)
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Eliminating v from the system (31), one obtains an inverse potential system (IP2) of
Eq. (1)

φs = ψr ,

ψ2ψsr − 3ψψrψs + 3φψ2
s − 6sψ2

s − φψψss + 2sψψss + 4ψψs = 0.
(32)

4.3 Inverse potential system from X3

For the symmetry X3, itmaps into the canonical form P = ∂
∂v

by introducing canonical
coordinates

r = t,

s = u

x
,

v(r , s) = x .

(33)

At the same time, the Eq. (1) is mapped to an invertibly equivalent equation

2sv4s − vsrv
3
s + vssvrv

2
s − 4svssv

2
s + 3vsvsrvss − v2s vssr − 3vrv

2
ss + 6sv2ss

+ vrvsvsss − 2svsvsss + 4v3s − 4vsvss = 0. (34)

Introducing the new variable φ = vr and ψ = vs , one can obtain the locally related
intermediate system

φ = vr ,

ψ = vs,

2sψ4 − ψrψ
3 + φψ2ψs − 4sψ2ψs + 3ψψrψs − ψ2ψsr − 3φψ2

s + 6sψ2
s

+φψψ2
ss − 2sψψss + 4ψ3 − 4ψψs = 0.

(35)

Eliminating v from the system (35), one obtains an inverse potential system (IP3) of
Eq. (1)

φs = ψr ,

2sψ4 − ψrψ
3 + φψ2ψs − 4sψ2ψs + 3ψψrψs − ψ2ψsr − 3φψ2

s + 6sψ2
s

+φψψ2
ss − 2sψψss + 4ψ3 − 4ψψs = 0.

(36)

4.4 Inverse potential system from X4

For the symmetry X4, itmaps into the canonical form P = ∂
∂v

by introducing canonical
coordinates

r = t

x
,

s = u,

v (r , s) = ln (x) .

(37)
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Equation (1) is mapped to an invertibly equivalent equation

−6sr3vrv
3
s vsrr + 6sr3v2s v2r vssr − 2sr3vsv

3
r vsss − 24sr2vrv

3
s vsr

+12sr2v2s v2r vss − 3r2vrv
2
s vrrvss + 6sr2v2s vrrvss

+ 9r2vsv
2
r vssvsr + 12sr2vrv

2
s vssr − 6sr2vsv

2
r vsss

+18rsvrv
2
s vss + 12rvsvrvssvsr

− 18rsvsvssvsr − 6rsvsvrvsss − 6sr3v3s vsrvrr + 12sr3vrv
2
s v2sr

−2rv2s vssvrr + 18rsvrv
2
ss − 4rvrv

2
s vssr

+ 6srv2s vssr + 2rvsv
2
r vsss − 12rvsvrvss + 2sr3v4s vrrr + 6sr3v3r v2ss

−4r3vrv
3
s vrr + 12sr2v4s vrr + 8r3v2s v2r vsr

−4r3vsv
3
r vss + 3r2v3s vsrvrr − 6r2vrv

2
s v2sr

+12sr2v2s v2sr + 3r2vrv
3
s vsrr − 6sr2v3s vsrr

+ 18sr2v2r v2ss − 3r2v2s v2r vssr + r2vsv
3
r vsss + 12rsvrv

4
s + 8rvrv

3
s vsr

+16r2vrv
2
s vsr − 18srv3s vsr − 4rv2s v2r vss

−12r2vsv
2
r vss + 6sr3vrv

2
s vssvrr − 18sr3vsv

2
r vssvsr

−36sr2vsvrvssvsr − 4v3s − v2s vssr

− 4vsvss − 3vrv
2
ss − 2vrv

4
s + 4sv4s + 3v3s vsr

+6sv2ss + vsvrvsss − 2svsvsss + 2rv3s vsrr − 6rv2r v2ss
− 12rvrv

3
s + 8rv2s vsr − 3vrv

2
s vss + 6sv2s vss + 3vsvsrvss

−r2v4s vrrr − 3r2v3r v2ss − 8r2v2r v3s − 4rv4s vrr

− 4r2v3s vrr − 4rv2s v2sr = 0.

(38)

Introducing the new variable φ = vr and ψ = vs and eliminating v from the locally
related intermediate system, one obtains the inverse potential system (IP4)

φs = ψr ,

−6sr3φψ3ψrr + 6sr3ψ2φ2ψsr − 2sr3ψφ3ψss

−24sr2φψ3ψr + 12sr2ψ2φ2ψs − 3r2φψ2φrψs

+6sr2ψ2φrψs + 9r2ψφ2ψsψr + 12sr2φψ2ψsr

−6sr2ψφ2ψss + 18rsφψ2ψs + 12rψφψsψr

−18rsψψsψr − 6rsψφψss − 6sr3ψ3ψrφr

+12sr3φψ2ψ2
r − 2rψ2ψsφr + 18rsφψ2

s − 4rφψ2ψsr

+6srψ2ψsr + 2rψφ2ψss − 12rψφψs + 2sr3ψ4φrr

+6sr3φ3ψ2
s − 4r3φψ3φr + 12sr2ψ4φr

+8r3ψ2φ2ψr − 4r3ψφ3ψs + 3r2ψ3ψrφr − 6r2φψ2ψ2
r

+12sr2ψ2ψ2
r + 3r2φψ3ψrr − 6sr2ψ3ψrr

+18sr2φ2ψ2
s − 3r2ψ2φ2ψr + r2ψφ3ψss + 12rsφψ4

+8rφψ3ψr + 16r2φψ2ψr − 18srψ3ψr

−4rψ2φ2ψs − 12r2ψφ2ψs + 6sr3φψ2ψsφr

−18sr3ψφ2ψsψr − 36sr2ψφψsψr − 4ψ3 − ψ2ψsr

−4ψψs − 3φψ2
s − 2φψ4 + 4sψ4 + 3ψ3ψr + 6sψ2

s
+ψφψss − 2sψψss + 2rψ3ψrr − 6rφ2ψ2

s
−12rφψ3 + 8rψ2ψr − 3φψ2ψs + 6sψ2ψs

+3ψψrψs − r2ψ4φrr − 3r2φ3ψ2
s − 8r2φ2ψ3 − 4rψ4φr

−4r2ψ3φr − 4rψ2ψ2
r = 0.

(39)



2324 Z. Zhao

4.5 Inverse potential system from X5

When f (t) = t for X5, canonical coordinates induced by X5 are given by

r = t,

s = u − 1

2

x

t
,

v (r , s) = 1

2

x

t
.

(40)

Transformation (40) maps Eq. (1) to the equation

rv2s vssr − rvrvsvsss + 3rvrv
2
ss − 3rvsvsrvss + svsvsss − 3sv2ss + 2vsvss = 0.

(41)

which is invertibly related to Eq. (1). Introducing the new variable φ = vr andψ = vs

and eliminating v from the locally related intermediate system, one obtains the inverse
potential system (IP5)

φs = ψr ,

rψ2ψsr − rφψψss + 3rφψ2
s − 3rψψrψs + sψψss − 3sψ2

s + 2ψψs = 0.
(42)

4.6 Inverse potential system from X6

When g (t) = et for X6, canonical coordinates induced by X6 are given by

r = − ln (x) + t,

s = −1

2
x + u,

v (r , s) = −1

2
e−t .

(43)

Transformation (43) maps Eq. (1) to the equation

(
12sv3r v2ss − 36svsv

2
r vsrvss + 12sv2s v2r vss + 12svrv

2
s vssvrr

+24svrv
2
s v2sr − 24sv3s vrvsr

− 12sv3s vsrvrr − 4svsv
3
r vsss + 12sv2s v2r vssr + 8sv4s vr

−12svrv
3
s vsrr + 12svrrv

4
s + 4sv4s vrrr s

− 8vsv
3
r vss + 16v2s v2r vsr − 8v3s v2r − 8vrv

3
s vrr

)
er

+3v2r v2ss − 6vsvrvssvsr + vrv
2
s vss + v2s vssvrr

+ 2v2s v2sr − v3s vsr − vsv
2
r vsss + 2vrv

2
s vssr − v3s vsrr = 0.

(44)

Introducing the new variable φ = vr and ψ = vs and eliminating v from the locally
related intermediate system, one obtains the inverse potential system (IP6)
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Fig. 2 A tree of inverse potential
systems for the Hunter–Saxton
equation

U

1IP 2IP 3IP 4IP 5IP 6IP

φs = ψr ,(
12sφ3ψ2

s −36sψφ2ψrψs+12sψ2φ2ψs+12sφψ2ψsφr+24sφψ2ψ2
r −24sψ3φψr

− 12sψ3ψrφr − 4sψφ3ψss + 12sψ2φ2ψsr

+8sψ4φ − 12sφψ3ψrr + 12sφrψ
4 + 4sψ4φrr

− 8ψφ3ψs+16ψ2φ2ψr−8ψ3φ2−8φψ3φrr
)

er+3φ2ψ2
s −6ψφψsψr+φψ2ψs

+ψ2ψsφr + 2ψ2ψ2
r − ψ3ψr − ψφ2ψss + 2φψ2ψsr − ψ3ψrr = 0.

(45)

Remark 4 The inverse potential system IP1, IP2, IP3, IP4, IP5 and IP6 play an impor-
tant role in analyzing HS equation, which are all equivalent to the HS equation. The
relationship between the solutions of inverse potential system and HS equation is one-
to-one.All the inverse potential systems are nonlocally related toHS equation. Figure2
presents a tree of inverse potential systems arising from Lie point symmetries, which
further extend the tree of nonlocally related systems (see Fig. 1) form conservation
law-based method.

5 Conclusions

In this paper Lie symmetry analysis method is performed on the HS equation. The
direct method is used to derive local conservation laws of the HS equation. The nonlo-
cally related PDE systems of HS equation are constructed with the aid of conservation
law-based method. Based on the symmetry classification of the potential systems, we
obtainmany new local and nonlocal symmetries. A tree of nonlocally related PDE sys-
tem for HS equation is presented in Fig. 1. Two equivalence transformation theorems
of the potential systems are established. In order to extend the tree we established
a tree of the inverse potential systems (Fig. 2) by using a symmetry-based method.
The results of this paper are helpful for further analysis of the properties of the HS
equation.
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