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Abstract
In this paper we study a classical monotone and Lipschitz continuous variational
inequality in real Hilbert spaces. Two projection type methods, Mann and its viscosity
generalization are introduced with their strong convergence theorems. Our methods
generalize and extend some related results in the literature and their main advantages
are: the strong convergence and the adaptive step-size usage which avoids the need
to know apriori the Lipschitz constant of variational inequality associated operator.
Primary numerical experiments in finite and infinite dimensional spaces compare and
illustrate the behaviors of the proposed schemes.
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1 Introduction

In this paper, we study the classical Variational Inequality (VI) of Fichera [14,15] in
real Hilbert spaces. The VI is formulated as follows: Find a point x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1)

where C ⊆ H is a nonempty, closed and convex set of a real Hilbert space H and
A : H → H is a given mapping. We denote by V I (C, A) the solution set of the
VI (1).

Variational inequalities are fundamental problems which stand the core of diverse
applied fields such as in economics, engineering mechanics, transportation, and many
more, see for example, [2,3,20], just to name a few. In the last decades, many iterative
methods have been constructed for solving variational inequalities and their related
optimization problems, see for example the excellent book of Facchinei and Pang [13],
Konnov [20] and the many references therein.

The first simplest method for solving VIs, derived from optimization theory, is
known as the gradient method (GM). The iterative step of this method requires the
calculation of the orthogonal projection onto the feasible set of the VI, that is C ,
per each iteration. Given the current iterate xn , the algorithm’s iterative step has the
following form.

xn+1 = PC (xn − τ Axn), (2)

where τ ∈ (0,
1

L
), L is the Lipschitz constant of A and PC denotes the metric pro-

jection onto C . It is shown that gradient method (2) convergence under Lipschitz
continuity and some restrictive monotonicity assumption, such as strong monotonic-
ity or inverse strongly monotone, see for example [18]. Korpelevich [21] (also Antipin
[1] independently) proposed a double-projection method, known as the extragradient
method (EM)which enable to obtain convergence in Euclidean spaces under Lipschitz
continuity and just monotonicity. Given the current iterate xn , the algorithm’s iterative
step has the following form.{

yn = PC (xn − τ Axn),

xn+1 = PC (xn − τ Ayn),
(3)

where τ and PC are as above. This method is studied intensively and extended and
improved in various ways, for example see, e.g. [6–10,25,26,31,34,35] and the refer-
ences therein.

Although the extragradient method converges under weaker monotonicity assump-
tion than the gradient method, it requires to calculate two projections onto C per each
iteration. So, in case that the set C is not “easy” to project onto it, a minimum distance
subproblem has to be solved twice per each iteration in order to evaluate PC , a fact
which might affect the applicability and computational complexity of the method.

In a direction to overcome this obstacle, Censor et al. [7–9] introduced the so-called
subgradient extragradientmethod (SEM). In this algorithm, the secondprojection onto
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C is replaced by an easy and constructible projection onto some super set which con-
tains C . Given the current iterate xn , the algorithm’s iterative step has the following
form. ⎧⎪⎨

⎪⎩
yn = PC (xn − τ Axn),

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0},
xn+1 = PTn (xn − τ Ayn),

(4)

where τ ∈ (0, 1/L).
Another method which uses only one projection onto C is projection and con-

traction method (PC) of He [17] (see also Sun [32]). In this method, the point yn in
calculated in the same spirit of (3), but the next iterate xn+1 is calculated via some
adaptive step size rules. Given the current iterate xn , the algorithm’s iterative step has
the following form.

yn = PC (xn − τn Axn),

and then the next iterate xn+1 is generated via the following PC-algorithms:

xn+1 = xn − γ ηnd(xn, yn), (5)

where γ ∈ (0, 2), τn ∈ (0, 1/L) (or τn is updated by some self-adaptive rule),

d(xn, yn) := xn − yn − τn(Axn − Ayn),

and

ηn := 〈xn − yn, d(xn, yn)〉
‖d(xn, yn)‖2 .

Recently, projection and contraction type methods for solving VIs have received
great attention by many authors, see, e.g., [4,11,12], just to name a few.

Since the SEM and PC algorithms originally introduced in Euclidean spaces, a nat-
ural question which was studied is how to extend the method to infinite dimensional
spaces and obtain strong convergence. In 2012, Censor et al. [8] proposed two subgra-
dient extragradient variants, which converge strongly in real Hilbert spaces. One of
the SEM variant has the following form. Given the current iterate xn , the next iterate
xn+1 is calculated via the following.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn = PC (xn − τ Axn),

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0},
zn = αnxn + (1 − αn)PTn (xn − τ Ayn),

Cn = {w ∈ H | ‖zn − w‖ ≤ ‖xn − w‖},
Qn = {w ∈ H | 〈xn − w, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn x0, ∀n ≥ 0.

(6)
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Inspired by the results in [8], Kraikaew and Saejung [22] combined the subgradient
extragradient method and the Halpern-type method and propose the so-calledHalpern
subgradient extragradient method.Given the current iterate xn , the next iterate xn+1
is calculated via the following.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yn = PC (xn − τ Axn),

Tn = {x ∈ H | 〈xn − τ Axn − yn, x − yn〉 ≤ 0},
zn = PTn (xn − τ Ayn),

xn+1 = αnx0 + (1 − αn)zn, ∀n ≥ 0,

(7)

where τ ∈ (0,
1

L
), {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑∞
n=1 αn = +∞ and x0 ∈ H .

Similar to (6) of Censor et al. [8], (7) converges strongly to a specific point p =
PV I P(C,A)x0.

Another two very recent and related (viscosity type methods) which are also used
as comparison with our methods in Sect. 4 are Shehu and Iyiola [30, Algorithm 3.1]
and Thong and Hieu [33, Algorithm 3].

The setting of Shehu and Iyiola [30, Algorithm 3.1] is as follows. Given ρ,μ ∈
(0, 1) and let {αn}∞n=0 ⊂ (0, 1), f a contraction and choose an arbitrary starting point
x1 ∈ H . Given the current iterate xn , calculate.

yn = PC (xn − λn Axn),

where λn = ρln and ln is the smallest nonnegative integer l such that

λn‖xn − yn‖ ≤ μ‖rρln (xn)‖

where rρln (xn) := xn − PC (xn −ρln Axn). Construct the set Tn as in (4) and compute

zn = PTn (xn − λn Ayn),

and calculate the next iterate as follows.

xn+1 = αn f (xn) + (1 − αn)zn . (8)

The setting of Thong and Hieu [33, Algorithm 3] is as follows. Given ρ ∈ [0, 1),
μ, l ∈ (0, 1) and γ > 0. Let {αn}∞n=0 ⊂ (0, 1), f a contraction and choose an arbitrary
starting point x1 ∈ H . Given the current iterate xn , calculate.

yn = PC (xn − λn Axn),

where λn is chosen to be the largest λ ∈ {γ, γ l, γ l2, · · · } satisfying

λ‖Axn − Ayn‖ ≤ μ‖xn − yn‖.
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Calculate the next iterate as follows.

xn+1 = αn f (xn) + (1 − αn)zn (9)

where zn = yn − λn(Ayn − Axn).
Motivated and inspired by the above results and the ongoing research in these direc-

tions, we suggest two modified projection-type methods, Man-type [27] and viscosity
type [28], for solving monotone and Lipschitz continuous variational inequalities
which converge strongly in real Hilbert spaces and does not require the knowledge of
the Lipschitz constant of A a-priori.

The paper is organized as follows. We first recall some basic definitions and results
in Sect. 2. Our algorithms are presented and analysed in Sect. 3. In Sect. 4 we present
some numerical experiments which demonstrate the algorithms performances as well
as provide a preliminary computational overview by comparing it with some related
algorithms. Final remarks and conclusions are given in Sect. 5.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of
H . The weak convergence of {xn}∞n=1 to x is denoted by xn⇀x as n → ∞, while
the strong convergence of {xn}∞n=1 to x is written as xn → x as n → ∞. For each
x, y ∈ H and α ∈ R, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (10)

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2. (11)

‖αx + β y + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2 − αβ‖x − y‖2
−αγ ‖x − z‖2 − βγ ‖y − z‖2 (12)

for all x, y, z ∈ H and for all α, β, γ ∈ [0; 1] with α + β + γ = 1.

Definition 2.1 Let T : H → H be an operator. Then

1. the operator T is called L-Lipschitz continuous with L > 0 if

‖T x − T y‖ ≤ L‖x − y‖ ∀x, y ∈ H . (13)

if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1), T is
called contraction.

2. T is called monotone if

〈T x − T y, x − y〉 ≥ 0 ∀x, y ∈ H . (14)

3. the fixed point set of T , denoted by Fix(T ) is defined as follows.

Fix(T ) := {x ∈ H | T x = x}. (15)
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For every point x ∈ H , there exists a unique nearest point in C , denoted by PCx
such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C . PC is called themetric projection of H onto
C . It is known that PC is nonexpansive.

Lemma 2.1 [16] Let C be a nonempty closed convex subset of a real Hilbert space H .

Given x ∈ H and z ∈ C. Then z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0 ∀y ∈ C .

Lemma 2.2 [16] Let C be a closed and convex subset in a real Hilbert space H ,

x ∈ H. Then

i) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉 ∀y ∈ C;
ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 ∀y ∈ C;
iii) 〈(I − PC )x − (I − PC )y, x − y〉 ≥ ‖(I − PC )x − (I − PC )y‖2 ∀y ∈ C .

For properties of the metric projection, the interested reader could be referred to
Section 3 in [16].

The following Lemmas are useful for the convergence of our proposed methods.

Lemma 2.3 [22] Let A : H → H be amonotone and L-Lipschitz continuous mapping
on C. Let S = PC (I − τ A), where τ > 0. If {xn} is a sequence in H satisfying xn⇀q
and xn − Sxn → 0 then q ∈ V I (C, A) = Fix(S).

Lemma 2.4 [24] Let {an} be a sequence of nonnegative real numbers such that there
exists a subsequence {an j }of {an} such that an j < an j+1 for all j ∈ N. Then there exists
a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following
properties are satisfied by all (sufficiently large) number k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, · · · , k} such that an < an+1.

The next technical lemma is very useful and used by many authors, for example
Liu [23] and Xu [36]. Furthermore, a variant of Lemma 2.5 has already been used by
Reich in [29].

Lemma 2.5 Let {an} be sequence of nonnegative real numbers such that:

an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that
a)

∑∞
n=0 αn = ∞;

b) lim supn→∞ bn ≤ 0.
Then limn→∞ an = 0.

3 Main results

In this section we introduce our twomodified projection-typemethods for solvingVIs.
For the convergence analysis of the methods, we assume the following conditions.
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Condition 3.1 The VI (1) associated operator A : H → H is monotone and L-
Lipschitz continuous on H .

Condition 3.2 The solution set of the VI (1) is nonempty, that is V I (C, A) �= ∅.
Condition 3.3 Let {αn} and {βn} be two real sequences in (0, 1) such that {βn} ⊂
(a, b) ⊂ (0, 1 − αn) for some a > 0, b > 0 and

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

3.1 Mann-type projection algorithm

Algorithm 3.1

Initialization: Given λ > 0, l ∈ (0, 1), μ ∈ (0, 1), γ ∈ (0, 2). Let x0 ∈ H be
arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute

yn = PC (xn − τn Axn),

where τn is chosen to be the largest τ ∈ {λ, λl, λl2, ...} satisfying

τ‖Axn − Ayn‖ ≤ μ‖xn − yn‖. (16)

If xn = yn then stop and yn is a solution of V I (C, A). Otherwise
Step 2. Compute

zn = xn − γ ηndn,

where

dn := xn − yn − τn(Axn − Ayn),

and

ηn := (1 − μ)
‖xn − yn‖2

‖dn‖2 .

Step 3. Compute
xn+1 = (1 − αn − βn)xn + βnzn .

Set n := n + 1 and go to Step 1.

We start the analysis of the algorithm’s convergence by proving the validity of the
stopping criterion.
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Lemma 3.1 Assume that Conditions 3.1–3.2 hold. The Armijo-like search rule (16) is
well defined and

min

{
λ,

μl

L

}
≤ τn ≤ λ.

Proof See e.g., Lemma 3.1 in [33]. ��
Lemma 3.2 Let {dn} be a sequence generated by Algorithm 3.1. Then dn = 0 if and
only if xn = yn.

Proof Indeed, we will prove that

(1 − μ)‖xn − yn‖ ≤ ‖dn‖ ≤ (1 + μ)‖xn − yn‖. (17)

We have

‖dn‖ = ‖xn − yn − τn(Axn − Ayn)‖
≥ ‖xn − yn‖ − τn‖Axn − Ayn‖
≥ ‖xn − yn‖ − μ‖xn − yn‖
= (1 − μ)‖xn − yn‖. (18)

and it is also easy to see that

‖dn‖ ≤ (1 + μ)‖xn − yn‖. (19)

Combining (18) and (19) we obtain

(1 − μ)‖xn − yn‖ ≤ ‖dn‖ ≤ (1 + μ)‖xn − yn‖.

It implies from (17) that dn = 0 if and only if xn = yn . ��
Remark 3.1 From Lemma 3.2 we show that if dn = 0 then stop and yn is a solution of
V I (C, A).

Lemma 3.3 Assume that Conditions 3.1 and 3.2 hold. Let {zn} be a sequence generated
by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖xn − p‖2 − 2 − γ

γ
‖xn − zn‖2 ∀p ∈ V I (C, A). (20)

Proof Using (16) we have

〈xn − p, dn〉 = 〈xn − yn, dn〉 + 〈yn − p, dn〉
= 〈xn − yn, xn − yn − τn(Axn − Ayn)〉 + 〈yn − p, xn − yn

− τn(Axn − Ayn)〉
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= ‖xn − yn‖2 − τn〈xn − yn, Axn − Ayn〉
+ 〈yn − p, xn − yn − τn(Axn − Ayn)〉

≥ ‖xn − yn‖2 − τn‖xn − yn‖‖Axn − Ayn‖
+ 〈yn − p, xn − yn − τn(Axn − Ayn)〉

≥ ‖xn − yn‖2 − μ‖xn − yn‖2
+ 〈yn − p, xn − yn − τn(Axn − Ayn)〉. (21)

On the other hand, since yn = PC (xn − τn Axn) we get

〈xn − yn − τn Axn, yn − p〉 ≥ 0, (22)

By the monotonicity of A and p ∈ V I (C, A) we have

〈Ayn, yn − p〉 ≥ 〈Ap, yn − p〉 ≥ 0. (23)

Adding (22) and (23) we get

〈yn − p, xn − yn − τn(Axn − Ayn)〉 ≥ 0 (24)

Combining (21) and (24) we get

〈xn − p, dn〉 ≥ (1 − μ)‖xn − yn‖2. (25)

On the other hand, we have

‖zn − p‖2 = ‖xn − γ ηndn − p‖2
= ‖xn − p‖2 − 2γ ηn〈xn − p, dn〉 + γ 2η2n‖dn‖2. (26)

It implies from (25) and (26) that

‖zn − p‖2 ≤ ‖xn − p‖2 − 2γ ηn(1 − μ)‖xn − yn‖2 + γ 2η2n‖dn‖2.

Since ηn = (1 − μ)
‖xn − yn‖2

‖dn‖2 , it implies that ‖xn − yn‖2 = ηn‖dn‖2
1 − μ

. Thus,

‖zn − p‖2 ≤ ‖xn − p‖2 − 2γ η2n‖dn‖2 + γ 2η2n‖dn‖2
= ‖xn − p‖2 − γ (2 − γ )‖ηndn‖2

= ‖xn − p‖2 − 2 − γ

γ
‖γ ηndn‖2

= ‖xn − p‖2 − 2 − γ

γ
‖xn − zn‖2.

��
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Lemma 3.4 Assume that Conditions 3.1–3.2 hold and let the sequence {xn} be gener-
ated by Algorithm 3.1. Then

‖xn − yn‖2 ≤ (1 + μ)2

[(1 − μ)γ ]2 ‖xn − zn‖2. (27)

Proof We have

‖xn − yn‖2 = 1

1 − μ
.ηn‖dn‖2 = 1

ηn(1 − μ)
‖ηndn‖2

= 1

ηn(1 − μ)γ 2 ‖xn − zn‖2. (28)

On the other hand, from (17) we get

ηn = (1 − μ)
‖xn − yn‖2

‖dn‖2 ≥ 1 − μ

(1 + μ)2
,

thus,

1

ηn
≤ (1 + μ)2

1 − μ
(29)

It implies from (28) and (29) that

‖xn − yn‖2 ≤ (1 + μ)2

[(1 − μ)γ ]2 ‖xn − zn‖2.

��
Theorem 3.1 Assume that Conditions 3.1–3.3 hold. Then any sequence {xn} generated
by Algorithm 3.1 converges strongly to p ∈ V I (C, A), where ‖p‖ = min{‖z‖ : z ∈
V I (C, A)}.
Proof Thanks to Lemma 3.3 we get

‖zn − p‖ ≤ ‖xn − p‖ ∀n. (30)

Claim 1.We prove that the sequence {xn} is bounded. We have

‖xn+1 − p‖ = ‖(1 − αn − βn)xn + βnzn − p‖
= ‖(1 − αn − βn)(xn − p) + βn(zn − p) − αn p‖
≤ ‖(1 − αn − βn)(xn − p) + βn(zn − p)‖ + αn‖p‖. (31)

On the other hand, using (30) we get

‖(1−αn − βn)(xn − p) + βn(zn − p)‖2
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= (1 − αn − βn)
2‖xn − p‖2 + 2(1 − αn − βn)βn〈xn − p, zn − p〉

+ β2
n‖zn − p‖2

≤ (1 − αn − βn)
2‖xn − p‖2 + 2(1 − αn − βn)βn‖zn − p‖‖xn − p‖

+ β2
n‖zn − p‖2

≤ (1 − αn − βn)
2‖xn − p‖2 + 2(1 − αn − βn)βn‖xn − p‖2 + β2

n‖xn − p‖2
= (1 − αn)

2‖xn − p‖2.

This implies that

‖(1 − αn − βn)(xn − p) + βn(zn − p)‖ ≤ (1 − αn)‖xn − p‖ ∀n. (32)

From (31) and (32) we get

‖xn+1 − p‖ ≤ (1 − αn)‖xn − p‖ + αn‖p‖
≤ max{‖xn − p‖, ‖p‖}
≤ · · · ≤ max{‖x0 − p‖, ‖p‖}.

That is, the sequence {xn} is bounded and {zn} is also.
Claim 2.We show that

βn
2 − γ

γ
‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖p‖2. (33)

Indeed, using (12) we have

‖xn+1 − p‖2 = ‖(1 − αn − βn)xn + βnzn − p‖2
= ‖(1 − αn − βn)(xn − p) + βn(zn − p) + αn(−p)‖2
= (1 − αn − βn)‖xn − p‖2 + βn‖zn − p‖2 + αn‖p‖2 − βn(1

− αn − βn)‖xn − zn‖2
− αn(1 − αn − βn)‖xn‖2 − αnβn‖zn‖2

≤ (1 − αn − βn)‖xn − p‖2 + βn‖zn − p‖2 + αn‖p‖2, (34)

which, together Lemma 3.3 we obtain

‖xn+1 − p‖2 ≤ (1 − αn − βn)‖xn − p‖2 + βn‖xn − p‖2

− βn
2 − γ

γ
‖xn − zn‖2 + αn‖p‖2

= (1 − αn)‖xn − p‖2 − βn
2 − γ

γ
‖xn − zn‖2 + αn‖p‖2

≤ ‖xn − p‖2 − βn
2 − γ

γ
‖xn − zn‖2 + αn‖p‖2. (35)
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Therefore, we get

βn
2 − γ

γ
‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖p‖2.

Claim 3.We show that

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn[2βn‖xn − zn‖‖xn+1 − p‖
+ 2〈p, p − xn+1〉]. (36)

Indeed, setting tn = (1 − βn)xn + βnzn . We have

‖tn − p‖ = ‖(1 − βn)(xn − p) + βn(zn − p)‖
= (1 − βn)‖xn − p‖ + βn‖zn − p‖
≤ (1 − βn)‖xn − p‖ + βn‖xn − p‖
= ‖xn − p‖, (37)

and

‖tn − xn‖ = βn‖xn − zn‖. (38)

Using (37) and (38) we get

‖xn+1 − p‖2 = ‖(1 − αn − βn)xn + βnzn − p‖2
= ‖(1 − βn)xn + βnzn − αnxn − p‖2
= ‖(1 − αn)(tn − p) − αn(xn − tn) − αn p‖2
≤ (1 − αn)

2‖tn − p‖2 − 2〈αn(xn − tn) + αn p, xn+1 − p〉
= (1 − αn)

2‖tn − p‖2 + 2αn〈xn − tn, p − xn+1〉 + 2αn〈p, p − xn+1〉
≤ (1 − αn)‖tn − p‖2 + 2αn‖xn − tn‖‖xn+1 − p‖ + 2αn〈p, p − xn+1〉
≤ (1 − αn)‖xn − p‖2 + αn[2βn‖xn − zn‖‖xn+1 − p‖

+ 2〈p, p − xn+1〉].

Claim 4. Now, we will show that the sequence {‖xn − p‖2} converges to zero by
considering two possible cases on the sequence {‖xn − p‖2}.

Case 1: There exists an N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N .

This implies that limn→∞ ‖xn − p‖2 exists. It implies from Claim 2 that

lim
n→∞ ‖xn − zn‖ = 0,

which, together with Lemma 3.4, we get

lim
n→∞ ‖xn − yn‖ = 0.
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We also have

‖xn+1 − xn‖ ≤ αn‖xn‖ + βn‖xn − zn‖ → 0 as n → ∞.

Since {xn} is bounded we assume that there exists a subsequence {xn j } of {xn} such
that xn j ⇀q and

lim sup
n→∞

〈p, p − xn〉 = lim
j→∞〈p, p − xn j 〉 = 〈p, p − q〉.

Wehave xn j ⇀q,min{λ,
μl

L
} ≤ τn ≤ λ and‖xn−yn‖ = ‖xn−PC (xn−τn Axn)‖ → 0,

by Lemma 2.3 we get q ∈ V I (C, A).

Since q ∈ V I (C, A) and ‖p‖ = min{‖z‖ : z ∈ V I (C, A)}, that is p = PV I (C,A)0
we obtain

lim sup
n→∞

〈p, p − xn〉 = 〈p, p − q〉 ≤ 0.

By ‖xn+1 − xn‖ → 0 we get

lim sup
n→∞

〈p, p − xn+1〉 ≤ 0.

Therefore by Claim 3 and Lemma 2.5 we get limn→∞ ‖xn − p‖2 = 0, that is xn → p.
Case 2: There exists a subsequence {‖xn j − p‖2} of {‖xn − p‖2} such that ‖xn j −

p‖2 < ‖xn j+1 − p‖2 for all j ∈ N. In this case, it follows from Lemma 2.4 that
there exists a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the
following inequalities hold for all k ∈ N:

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (39)

Since {βn} ⊂ (a, b) and Claim 2, we have

a
2 − γ

γ
‖xmk − zmk‖2 ≤ βmk

2 − γ

γ
‖xmk − zmk‖2

≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + αmk‖p‖2
≤ αmk‖p‖2.

Therefore, we get

lim
k→∞ ‖xmk − zmk‖ = 0. (40)

As proved in the first case, we obtain

‖xmk+1 − xmk‖ → 0
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and

lim sup
k→∞

〈p, p − xmk+1〉 ≤ 0.

Since Claim 3 we have

‖xmk+1 − p‖2 ≤ (1 − αmk )‖xmk − p‖2
+ αmk [2βmk‖xmk − zmk‖‖xmk+1 − p‖ + 2〈p, p − xmk+1〉]

≤ (1 − αmk )‖xmk+1 − p‖2
+ αmk [2βmk‖xmk − zmk‖‖xmk+1 − p‖ + 2〈p, p − xmk+1〉].

This implies that

‖xk − p‖2 ≤ ‖xmk+1 − p‖2 ≤ 2βmk‖xmk − zmk‖‖xmk+1 − p‖ + 2〈p, p − xmk+1〉.

Therefore, we obtain lim supk→∞ ‖xk − p‖ ≤ 0, that is xk → p. The proof is
completed. ��

3.2 Viscosity projection type algorithm

In this section, we propose our viscosity projection type algorithm for solving varia-
tional inequalities, with the usage of a ρ-contraction f : H → H .

Algorithm 3.2

Initialization: Given λ > 0, l ∈ (0, 1), μ ∈ (0, 1), γ ∈ (0, 2). Let x0 ∈ H be
arbitrary

Iterative Steps:Given the current iterate xn, calculate the next iterate xn+1 as follows:

Step 1. Compute

yn = PC (xn − τn Axn),

where τn is chosen to be the largest τ ∈ {λ, λl, λl2, ...} satisfying

τ‖Axn − Ayn‖ ≤ μ‖xn − yn‖. (41)

If xn = yn then stop and yn is a solution of V I (C, A). Otherwise
Step 2. Compute

zn = xn − γ ηndn,

where

ηn := (1 − μ)
‖xn − yn‖2

‖dn‖2 ,
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and

dn := xn − yn − τn(Axn − Ayn).

Step 3. Compute
xn+1 = αn f (xn) + (1 − αn)zn .

Set n := n + 1 and go to Step 1.

Theorem 3.2 Assume that Conditions 3.1–3.2 hold and given a ρ-contraction f :
H → H. Assume that {αn} is a real sequence in (0, 1) such that

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

Then any sequence {xn} generated by Algorithm 3.2 converges strongly to an element
p ∈ V I (C, A), where p = PV I (C,A) ◦ f (p).

Proof Claim 1. We prove that the {xn} is bounded. Indeed, According to Lemma 3.3
we have

‖zn − p‖ ≤ ‖xn − p‖. (42)

Using (42) we obtain

‖xn+1 − p‖ = ‖αn f (xn) + (1 − αn)zn − p‖
= ‖αn( f (xn) − p) + (1 − αn)(zn − p)‖
≤ αn‖ f (xn) − p‖ + (1 − αn)‖zn − p‖
≤ αn‖ f (xn) − f (p)‖ + αn‖ f (p) − p‖ + (1 − αn)‖zn − p‖
≤ αnρ‖xn − p‖ + αn‖ f (p) − p‖ + (1 − αn)‖xn − p‖
≤ [1 − αn(1 − ρ)]‖xn − p‖ + αn(1 − ρ)

‖ f (p) − p‖
1 − ρ

≤ max{‖xn − q‖, ‖ f (p) − p‖
1 − ρ

}

≤ · · · ≤ max

{
‖x0 − p‖, ‖ f (p) − p‖

1 − ρ

}
.

This implies that the sequence {xn} is bounded. Consequently, { f (xn)}, {yn} and {zn}
are bounded.

Claim 2.We show that

(1 − αn)
2 − γ

γ
‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn) − p‖2.
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Indeed, using (11) and Lemma 3.3 we have

‖xn+1 − p‖2 = ‖αn( f (xn) − p) + (1 − αn)(zn − p)‖2
= αn‖ f (xn) − p‖2 + (1 − αn)‖zn − p‖2 − αn(1 − αn)‖ f (xn) − zn‖2
≤ αn‖ f (xn) − p‖2 + (1 − αn)‖zn − p‖2
≤ αn‖ f (xn) − p‖2 + (1 − αn)‖xn − p‖2

− (1 − αn)βn
2 − γ

γ
‖xn − zn‖2

≤ αn‖ f (xn) − p‖2 + ‖xn − p‖2 − (1 − αn)
2 − γ

γ
‖xn − zn‖2.

This implies that

(1 − αn)
2 − γ

γ
‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn‖ f (xn) − p‖2.

Claim 3. We show that

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn .
2

1 − ρ
〈 f (p)

− p, xn+1 − p〉.

Indeed, using (10) and (42) we have

‖xn+1 − p‖2 = ‖αn f (xn) + (1 − αn)zn − p‖2
= ‖αn( f (xn) − f (p)) + (1 − αn)(zn − p) + αn( f (p) − p)‖2
≤ ‖αn( f (xn) − f (p)) + (1 − αn)(zn − p)‖2

+ 2αn〈 f (p) − p, xn+1 − p〉
≤ αn‖ f (xn) − f (p)‖2 + (1 − αn)‖zn − p‖2

+ 2αn〈 f (p) − p, xn+1 − p〉
≤ αnρ‖xn − p‖2 + (1 − αn)‖xn − p‖2 + 2αn〈 f (p) − p, xn+1 − p〉
= (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn

.
2

1 − ρ
〈 f (p) − p, xn+1 − p〉. (43)

Claim 4. Now, we will show that the sequence {‖xn − p‖2} converges to zero by
considering two possible cases on the sequence {‖xn − p‖2}.

Case 1: There exists an N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N .

This implies that limn→∞ ‖xn − p‖2 exists.
Since the Claim 2 and limn→∞ αn = 0 we get

lim
n→∞ ‖xn − zn‖ = 0, (44)
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and by Lemma 3.4

lim
n→∞ ‖xn − yn‖ = 0. (45)

We also have

‖xn+1 − xn‖ = ‖αn f (xn) + (1 − αn)zn − xn‖
≤ αn‖ f (xn) − xn‖ + (1 − αn)‖zn − xn‖ → 0. (46)

Since the sequence {xn} is bounded, it implies that there exists a subsequence {xnk } of
{xn} that weak convergence to some z ∈ H such that

lim sup
n→∞

〈 f (p) − p, xn − p〉 = lim
k→∞〈 f (p) − p, xnk − p〉

= 〈 f (p) − p, z − p〉. (47)

From (45) and Lemma 2.3 we have z ∈ V I (C, A).
By the definition of p and z ∈ V I (C, A) we have

lim sup
n→∞

〈 f (p) − p, xn − p〉 = 〈 f (p) − p, z − p〉 ≤ 0. (48)

which, together with (46) and (47) we get

lim sup
n→∞

〈 f (p) − p, xn+1 − p〉 ≤ lim sup
n→∞

〈 f (p) − p, xn+1 − xn〉
+ lim sup

n→∞
〈 f (p) − p, xn − p〉

= 〈 f (p) − p, z − p〉 ≤ 0. (49)

Using Lemma 2.5, (49) and Claim 3 we obtain xn → p.
Case 2. There exists a subsequence {‖xn j − p‖2} of {‖xn − p‖2} such that ‖xn j −

p‖2 < ‖xn j+1 − p‖2 for all j ∈ N. In this case, it follows from Lemma 2.4 that
there exists a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the
following inequalities hold for all k ∈ N:

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, (50)

and

‖xk − p‖2 ≤ ‖xmk − p‖2. (51)

According to Claim 2 we get

(1 − αmk )
2 − γ

γ
‖xmk − zmk‖2 ≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2
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+ αmk‖ f (xmk ) − p‖2
≤ αmk‖ f (xmk ) − p‖2.

We obtain

lim
k→∞ ‖xmk − zmk‖ = 0, (52)

and by Lemma 3.4 we get

lim
k→∞ ‖xmk − ymk‖ = 0. (53)

Using the same arguments as in the proof of Case 1, we obtain

lim sup
k→∞

〈 f (p) − p, xmk+1 − p〉 ≤ 0. (54)

Thanks to Claim 3, we have

‖xmk+1 − p‖2 ≤ (1 − (1 − ρ)αmk )‖xmk − p‖2

+ (1 − ρ)αmk .
2

1 − ρ
〈 f (p) − p, xmk+1 − p〉, (55)

together with (50), we deduce that

‖xmk+1 − p‖2 ≤ (1 − (1 − ρ)αmk )‖xmk+1 − p‖2

+(1 − ρ)αmk .
2

1 − ρ
〈 f (p)−, xmk+1 − p〉.

This follows that

‖xmk+1 − p‖2 ≤ 2

1 − ρ
〈 f (p) − p, xmk+1 − p〉. (56)

Combining (51), (54) and (56) we get

lim sup
k→∞

‖xk − p‖ ≤ 0, (57)

that is xk → p. The proof is completed. ��

4 Numerical illustrations

In this section we present two numerical experiments which demonstrate the perfor-
mances of ourMann-type and viscosity-type projection algorithm (Algorithms 3.1 and
3.2) in finite and infinite dimensional spaces. In both experiments the parameters are
chosen as λ = 7.55, l = 0.5, μ = 0.85 and γ = 1.99, αk = 1/k, βk = (k − 1)/2k.
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Table 1 Algorithm 3.1 with different Cases

x1(t) No. of Iterations CPU time

1
600 [sin(−3t) + cos(−10t)] 13 0.0625

1
525

[
t2 − e−t

]
13 0.078125

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 1 x1(t) = 1
600 [sin(−3t) + cos(−10t)]

Example 1 Suppose that H = L2([0, 1]) with norm ‖x‖ :=
( ∫ 1

0 |x(t)|2dt
) 1

2
and

inner product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt, ∀x, y ∈ H . Let C := {x ∈ H | ‖x‖ ≤ 1} be

the unit ball. Define operator A : C → H by (Ax)(t) = max(0, x(t)). Then it can be
easily verified that A is 2-Lipschitz continuous and monotone on C (see [19]). With
these given C and A, the set of solution to the variational inequality is {0} �= ∅. It is
known that, see for example [5]

PC (x) =
{

x
‖x‖L2 , if ‖x‖L2 > 1,

x, if ‖x‖L2 ≤ 1,

We implement our algorithm with different starting point x1(t). We choose the
stopping criterion ||xn+1 − xn|| < ε with ε = 10−30. The results are presented in
Table 1 and Figs. 1 and 2.

Example 2 In this example we consider a nonlinear variational inequality with A :
R
m → R

m which is defined as Ax = Mx + Fx + q, with M an m × m symmetric
semi-definite matrix, q is a vector in R

m and Fx is the proximal mapping of the
function g(x) = 1

4 ||x ||4, i.e.,
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0
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Fig. 2 x1(t) = 1
525

[
t2 − e−t

]

Fx = argmin

{ ||y||4
4

+ 1

2
||y − x ||2 | y ∈ R

m
}

.

The feasible set is a polyhedral convex set, given by C = {x ∈ R
m | Qx ≤ b}, where

Q ∈ R
r×m and b ∈ R

l . In this case, A is monotone and Lipschitz continuous with
L = ||M || + 1. All the entries of Q, M, q are generated randomly in (−2, 2) and b
in (0, 1), m = 100, r = 10 and we choose the stopping criterion ||xn − yn|| < ε with
ε = 10−5. The starting point is x0 = (1, 1, . . . , 1) ∈ R

m . The projections onto C
and the evaluation of F are computed by using the MATLAB solvers fmincon. For
comparison we choose two very recent viscosity type methods, Shehu and Iyiola [30,
Algorithm 3.1] and Thong and Hieu [33, Algorithm 3]. In all algorithms we take the
contractions f (x) = x/2. The numerical results are showed in Fig. 3 with respect to
the logarithmic scale. In Fig. 4 we illustrate the performances of Algorithm 3.2 for
different choices of the contraction f (x) = 0.9x, 0.75x, 0.5x, 0.25x .

5 Conclusions

In this paper we proposed two projection-type methods, Mann and viscosity schemes
methods [27,28] for solving variational inequalities in real Hilbert spaces. Both algo-
rithms converge strongly under monotonicity and Lipschitz continuity of the VI
associated mapping A. The algorithms require the calculation of only one projec-
tion onto the VI’s feasible set C per each iteration and by using the projection and
contraction technique there is no need to know the Lipschitz constant of A in advance.
These two properties emphasize the applicability and advantages over several exist-
ing results in the literature. Numerical experiments in finite and infinite dimensional
spaces compare and illustrate the performance of the our new schemes.
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Shehu and Iyiola Alg. 3.1
Thong and Hieu Alg. 3

Fig. 3 Comparison between Algorithm 3.2 and [30, Algorithm 3.1] and [33, Algorithm 3]
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Algorithm 3.1 with f(x)=0.5x
Algorithm 3.1 with f(x)=0.25x
Algorithm 3.1 with f(x)=0.75x
Algorithm 3.1 with f(x)=0.9

Fig. 4 The performances of Algorithm 3.2 for different choices of the contraction f (x) =
0.9x, 0.75x, 0.5x, 0.25x
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