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Abstract
Let U be a bounded open subset of the complex plane. Let 0 < α < 1 and let Aα(U )

denote the space of functions that satisfy a Lipschitz condition with exponent α on the
complex plane, are analytic on U and are such that for each ε > 0, there exists δ > 0
such that for all z, w ∈ U , | f (z) − f (w)| ≤ ε|z − w|α whenever |z − w| < δ. We
show that if a boundary point x0 for U admits a bounded point derivation for Aα(U )

and U has an interior cone at x0 then one can evaluate the bounded point derivation
by taking a limit of a difference quotient over a non-tangential ray to x0. Notably our
proofs are constructive in the sense that they make explicit use of the Cauchy integral
formula.
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1 Background and statement of results

In this paper, we consider the behavior of Lipschitz functions which are analytic on
a bounded open subset of the complex plane and how much analyticity extends to
the boundary of the domain. Let U be an open subset in the complex plane and let
0 < α < 1. A function f : U → C satisfies a Lipschitz condition with exponent α

on U if there exists k > 0 such that for all z, w ∈ U

| f (z) − f (w)| ≤ k|z − w|α (1)

Let Lipα(U ) denote the space of functions that satisfy a Lipschitz condition with
exponent α on U . Lipα(U ) is a Banach space with norm given by || f ||Lipα(U ) =
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supU | f | + k( f ), where k( f ) is the smallest constant that satisfies (1). If we let
|| f ||′Lipα(U ) = k( f ) then || f ||′Lipα(U ) is a seminorm on Lipα(U ).

An important subspace of Lipα(U ) is the little Lipschitz class, lipα(U ), which
consists of those functions in Lipα(U ) that also satisfy the additional property that for
each ε > 0, there exists δ > 0 such that for all z, w inU , | f (z) − f (w)| ≤ ε|z − w|α
whenever |z − w| < δ.

The importance of lipα(U ) is illustrated by the following result ofDeLeeuw [1]. Let
Δ be a closed disk. Then the restriction spaces Lipα(Δ) = { f |Δ : f ∈ Lipα(C)} and
lipα(Δ) = { f |Δ : f ∈ lipα(C)} are Banach spaces and lipα∗∗(Δ) is isometrically
isomorphic to Lipα(Δ). Thus the weak-star topology can be applied to Lipα(Δ) as
the dual of lipα∗(Δ).

Let U be a bounded open subset of the complex plane. We will restrict our study
to those functions in lipα(C) which are analytic on U . Let Aα(U ) = { f ∈ lipα :
∂ f = 0 on U }, where ∂ f = 1

2

(
∂ f

∂x
+ i

∂ f

∂ y

)
. For an arbitrary set E ⊂ C, let

Aα(E) = ⋃{Aα(U ) : U open , E ⊂ U }.
While the functions in Aα(U ) are differentiable on the interior ofU , they need not

be differentiable on the boundary ofU . In this paper, we consider the question of how
close the functions in Aα(U ) come to being differentiable at boundary points ofU . To
answer this question we will make use of the concept of a bounded point derivation.
For x0 ∈ C, it is known that Aα(U ∪ {x0}) is dense in Aα(U ). [4, Lemma 1.1] Thus
we say that Aα(U ) admits a bounded point derivation at x0 if the map f → f ′(x0)
extends from Aα(U ∪ {x0}) to a bounded linear functional on Aα(U ). Equivalently,
Aα(U ) admits a bounded point derivation at x0 if and only if there exists a constant
C > 0 such that

| f ′(x0)| ≤ C || f ||Lipα(C), (2)

for all f in Aα(U ∪ {x0}).
The existence of a bounded point derivation at x0 shows that the functions in Aα(U )

possess some semblance of analytic structure at x0. If, in addition, U has an interior
cone at x0, a more explicit description of this analytic structure can be obtained. We
say thatU has an interior cone at x0 if there is a segment J ending at x0 and a constant
k > 0 such that dist(x, ∂U ) ≥ k|x − x0| for all x in J . The segment J is called a
non-tangential ray to x0. It is a result of O’Farrell [5] that ifU has an interior cone at a
boundary point x0, then a bounded point derivation on Aα(U ) at x0 can be evaluated
by taking the limit of the difference quotient over a non-tangential ray to x0. To be
precise, O’Farrell has proven the following theorem.

Theorem 1 Let 0 < α < 1, and let U be an open set with x0 in ∂U. Suppose that U
has an interior cone at x0 and that J is a non-tangential ray to x0. If Aα(U ) admits a
bounded point derivation D at x0, then for every f in Aα(U ),

D f = lim
x→x0,x∈J

f (x) − f (x0)

x − x0
.



Non-tangential limits for analytic Lipschitz functions 823

Thus the difference quotient for boundary points that admit bounded point deriva-
tions for Aα(U ) converges when taken over a non-tangential ray to the point. This
illustrates the additional analytic structure of functions in Aα(U ) at these points.

O’Farrell comments that the methods used in his proof of Theorem 1 are noncon-
structive, involving abstract measures and duality arguments from functional analysis
as opposed to using the Cauchy integral formula directly, and suggests that it should
be possible to give a proof using constructive techniques. In this paper we present a
constructive proof of Theorem 1, which confirms O’Farrell’s conjecture. In Sect. 2
we review some key properties of Aα(U ) and in Sect. 3 we prove Theorem 1 using
constructive techniques.

2 Preliminary results

We begin by reviewing the Hausdorff content of a set, which is defined using measure
functions. A measure function is a monotone nondecreasing function h : [0,∞) →
[0,∞). For example, rβ is a measure function for 0 ≤ β < ∞. If h is a measure
function then the Hausdorff content Mh associated to h is defined by

Mh(E) = inf
∑

h(diam B),

where the infimum is taken over all countable coverings of E by balls and the sum is
taken over all the balls in the covering. If h(r) = rβ then we denote Mh by Mβ . The
lower 1 + α dimensional Hausdorff content M1+α∗ (E) is defined by

M1+α∗ (E) = supMh(E),

where the supremum is taken over all measurable functions h such that h(r) ≤ r1+α

and r−1−αh(r) converges to 0 as r tends to 0. The lower 1+α dimensional Hausdorff
content is a monotone set function; i.e. if E ⊆ F then M1+α∗ (E) ≤ M1+α∗ (F).

In [4], Lord and O’Farrell gave necessary and sufficient conditions for the existence
of bounded point derivations on Aα(U ) in terms of Hausdorff contents. There are sim-
ilar conditions for bounded point derivations defined on other function spaces. ([2,3]).

Theorem 2 Let U be an open subset of the complex plane with x0 on the boundary of
U. Let 0 < α < 1. Then Aα(U ) has a bounded point derivation at x0 if and only if

∞∑
n=1

4nM1+α∗ (An(x0)\U ) < ∞.

Another key lemma is the following Cauchy theorem for Lipschitz functions which
also appears in the paper of Lord and O’Farrell [4, pg.110].

Lemma 1 LetΓ be a piecewise analytic curve bounding a regionΩ ∈ C, and suppose
thatΓ is free of outward pointing cusps. Let 0 < α < 1 and suppose that f ∈ lipα(C).
Then there exists a constant κ > 0 such that
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∣∣∣∣
∫

f (z)dz

∣∣∣∣ ≤ κ · M1+α∗ (Ω ∩ S) · || f ||′Lipα(Ω).

The constant κ only depends on α and the equivalence class of Γ under the action of
the conformal group of C. In particular this means that κ is the same for any curve
obtained from Γ by rotation or scaling.

3 The proof of themain theorem

To prove Theorem 1, we first note that by translation invariance we may suppose
that x0 = 0. Moreover by replacing f by f − f (0) if needed, we may suppose that
f (0) = 0. In addition, we may suppose that U is contained in the unit disk. Let J
be a non-tangential ray to x0 and for each x in J , define a linear functional Lx by

Lx ( f ) = f (x)

x
− Df . Then to prove Theorem 1 it suffices to show that Lx tends to

the 0 functional as x → 0 through J . We make the following claim.

Lemma 2 The collection {Lx : x ∈ J } is a family of bounded linear functionals on
Aα(U ); that is there exists a constant C > 0 that does not depend on x or f such that
|Lx ( f )| ≤ C || f ||Lipα(C) for all f in Aα(U ) and all x ∈ J .

Proof We will first prove Lemma 2 for the case when f belongs to Aα(U ∪ {0})
and then extend to the general case. It follows from (2) that it is enough to show that∣∣∣∣ f (x)x

∣∣∣∣ ≤ C || f ||Lipα(C) where the constantC does not depend on f or x . If f belongs

to A(U ∪ {0}), then there is a neighborhood Ω of 0 such that f is analytic on Ω . We
can further suppose thatU ⊆ Ω . Let Bn denote the ball centered at 0 with radius 2−n .
Then there exists an integer N > 0 such that Ω contains BN and hence f is analytic
inside the ball BN . In addition, there exists an integer M such that Ω ⊆ BM . Since J
is a non-tangential ray to x0, it follows that there is a sector in Ů with vertex at x0 that
contains J . Let C denote this sector. It follows from the Cauchy integral formula that

f (x)

x
= 1

2π i

∫
∂(C

⋃
BN )

f (z)

z(z − x)
dz

where the boundary is oriented so that the interior of C
⋃

BN lies always to the left
of the path of integration. (See Fig. 1.) Let Dn = An\C . Then

f (x)

x
= 1

2π i

N∑
n=M

∫
∂Dn

f (z)

z(z − x)
dz + 1

2π i

∫
|z|=2−M

f (z)

z(z − x)
dz.

Since x lies on J , which is a non-tangential ray to x0, there exists a constant k > 0 such

that for z /∈ U ,
|x |

|z − x | ≤ k−1. Thus for z /∈ U ,
|z|

|z − x | ≤ 1 + |x |
|z − x | ≤ 1 + k−1.
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0
C BNx

0

Dn

C BNx

Fig. 1 The contour of integration

Hence
1

|z| · |z − x | ≤ 1 + k−1

|z|2 and therefore

| f (x)|
|x | ≤ 1

2π

N∑
n=M

∣∣∣∣
∫

∂Dn

f (z)

z(z − x)
dz

∣∣∣∣ + 4M (1 + k−1)

2π
|| f ||∞. (3)

Since
f (z)

z(z − x)
is analytic on Dn\U for M ≤ n ≤ N , an application of Lemma 1

shows that
∣∣∣∣
∫

∂Dn

f (z)

z(z − x)
dz

∣∣∣∣ ≤ κM1+α∗ (Dn\U ) ·
∥∥∥∥ f (z)

z(z − x)

∥∥∥∥
′

Lipα(Dn)

. (4)

Recall that the constant κ is the same for curves in the same equivalence class. Since
the regions Dn differ from each other by a scaling it follows that κ doesn’t depend on
n in (4).

We now show that

∥∥∥∥ f (z)

z(z − x)

∥∥∥∥
′

Lipα(Dn)

can be bounded by a constant independent

of f and x . It follows from the definition of the Lipschitz seminorm that

∥∥∥∥ f (z)

z(z − x)

∥∥∥∥
′

Lipα(Dn)

= sup
z =w;z,w∈Dn

∣∣∣∣ f (z)

z(z − x)
− f (w)

w(w − x)

∣∣∣∣
|z − w|α

= sup
z =w;z,w∈Dn

|w(w − x) f (z) − z(z − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α .

Thus it follows from the triangle inequality that

∥∥∥∥ f (z)

z(z − x)

∥∥∥∥
′

Lipα(Dn)

≤ sup
z =w;z,w∈Dn

|w(w − x) f (z) − w(w − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α

+ sup
z =w;z,w∈Dn

|w(w − x) f (w) − z(z − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α .

(5)
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We first bound the first term on the right of (5)

sup
z =w;z,w∈Dn

|w(w − x) f (z) − w(w − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α

≤ sup
z∈Dn

1

|z| · |z − x | · || f ||′Lipα(Dn)
.

Since z /∈ U ,
1

|z| · |z − x | <
1 + k−1

|z|2 , and therefore,

sup
z =w;z,w∈Dn

|w(w − x) f (z) − w(w − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α ≤ C4n|| f ||′Lipα(Dn)

. (6)

We now bound the second term on the right side of (5). Since f (0) = 0 it follows that

for w ∈ C,
| f (w)|
|w|α ≤ || f ||′Lipα(C)

. Moreover, a computation shows that w(w − x) −
z(z − x) = (w − z)(z + w − x). Hence

sup
z =w;z,w∈Dn

|w(w − x) f (w) − z(z − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α

≤
(

sup
z =w;z,w∈Dn

|w − z|1−α

|z − x | · |w|1−α · |w − x | + |w − z|1−α

|z| · |z − x | · |w|1−α

)
· || f ||′Lipα(C).

(7)

Since x lies on J , there exists a constant k > 0 such that
1

|z − x | <
1 + k−1

|z| and

1

|w − x | <
1 + k−1

|w| . Hence

sup
z =w;z,w∈Dn

|w − z|1−α

|z − x | · |w|1−α · |w − x | ≤ C
2n · (2n)2−α

(2n)1−α
= C4n, (8)

and

sup
z =w;z,w∈Dn

|w − z|1−α

|z| · |z − x | · |w|1−α
≤ C

4n · (2n)1−α

(2n)1−α
= C4n . (9)

Then (7), (8), and (9) yield

sup
z =w;z,w∈Dn

|w(w − x) f (w) − z(z − x) f (w)|
|z| · |z − x | · |w| · |w − x | · |z − w|α ≤ C4n|| f ||′Lipα(C), (10)
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and it follows from (5), (6), and (10) that

∥∥∥∥ f (z)

z(z − x)

∥∥∥∥
′

Lipα(Dn)

≤ C4n|| f ||′Lipα(C). (11)

Thus (3), (4), and (11) together yield

| f (x)|
|x | ≤ C

∞∑
n=1

4nM1+α∗ (Dn\U ) · || f ||′Lipα(C).

Since Hausdorff content is monotone, M1+α∗ (Dn\U ) ≤ M1+α∗ (An\U ) and hence

| f (x)|
|x | ≤ C

∞∑
n=1

4nM1+α∗ (An\U ) · || f ||Lipα(C),

and it follows from Theorem 2 that

| f (x)|
|x | ≤ C || f ||Lipα(U ),

whereC does not depend on x or f . Thus Lx ( f ) ≤ C || f ||Lipα(C) for f ∈ Aα(U∪{0})
and since Aα(U ∪ {0}) is dense in Aα(U ), it follows that Lx is a family of uniformly
bounded linear functionals on Aα(U ). ��

To complete the proof of Theorem 1, since Aα(U ∪ 0) is dense in Aα(U ), there
exists a sequence { f j } in Aα(U ∪ 0) such that f j → f in the Lipschitz norm. Since
each f j is analytic in a neighborhood of 0 and since Df j = f ′

j (0), it follows that for
each j , Lx ( f j ) → 0 as x → 0. It follows from the claim that |Lx ( f ) − Lx ( f j )| ≤
C || f − f j ||Lipα(U ). By first choosing j sufficiently large, the right hand side can be
made arbitrarily small. Then by choosing x sufficiently close to 0, Lx ( f j ) can bemade
arbitrarily close to 0. Thus Lx ( f ) → 0 as x → 0 through J , which proves Theorem 1.
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