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Abstract

Let U be a bounded open subset of the complex plane. Let 0 < o« < 1 and let A, (U)
denote the space of functions that satisfy a Lipschitz condition with exponent « on the
complex plane, are analytic on U and are such that for each € > 0, there exists § > 0
such that for all z, w € U, | f(z) — f(w)| < €]z — w|* whenever |z — w| < §. We
show that if a boundary point xy for U admits a bounded point derivation for A, (U)
and U has an interior cone at x( then one can evaluate the bounded point derivation
by taking a limit of a difference quotient over a non-tangential ray to xo. Notably our
proofs are constructive in the sense that they make explicit use of the Cauchy integral
formula.
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1 Background and statement of results

In this paper, we consider the behavior of Lipschitz functions which are analytic on
a bounded open subset of the complex plane and how much analyticity extends to
the boundary of the domain. Let U be an open subset in the complex plane and let
0 < o < 1. A function f : U — C satisfies a Lipschitz condition with exponent «
on U if there exists k > 0 such that forall z, w € U

If(@) = fw)] < klz —w|” ey

Let Lipa(U) denote the space of functions that satisfy a Lipschitz condition with
exponent & on U. Lipa(U) is a Banach space with norm given by || f||Lipa() =
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supy | f| + k(f), where k(f) is the smallest constant that satisfies (1). If we let
||f||’Ll.pa(U) = k(f) then ||f||’Lipa(U) is a seminorm on Lipa (U).

An important subspace of Lipa(U) is the little Lipschitz class, lipa(U), which
consists of those functions in Lipa (U) that also satisfy the additional property that for
each € > 0, there exists § > O such that forall z, win U, | f(z) — f(w)| < €|z — w|¥
whenever |z — w| < 8.

The importance of lipa (U) is illustrated by the following result of De Leeuw [1]. Let
A be a closed disk. Then the restriction spaces Lipa(A) = {f|A : f € Lipa(C)} and
lipa(A) = {f|A : f € lipa(C)} are Banach spaces and lipa™*(A) is isometrically
isomorphic to Lipa(A). Thus the weak-star topology can be applied to Lipa(A) as
the dual of lipa™(A).

Let U be a bounded open subset of the complex plane. We will restrict our study
to those functions in lipa(C) which are analytic on U. Let Aq(U) = {f € lipx :

_ _ 1/0 0
df = 0OonU}, where 0f = 5 (—f +i—f>. For an arbitrary set E C C, let

ox ay
Ag(E) = U{Ax(U) : U open , E C U}.

While the functions in A, (U) are differentiable on the interior of U, they need not
be differentiable on the boundary of U'. In this paper, we consider the question of how
close the functions in A, (U) come to being differentiable at boundary points of U. To
answer this question we will make use of the concept of a bounded point derivation.
For xo € C, it is known that A, (U U {x¢}) is dense in A, (U). [4, Lemma 1.1] Thus
we say that A, (U) admits a bounded point derivation at x¢ if the map f — f'(xo)
extends from Ay (U U {xp}) to a bounded linear functional on A, (U). Equivalently,
Ay (U) admits a bounded point derivation at xq if and only if there exists a constant
C > 0 such that

L' (xo)| < ClI fllLipa(c), (2)

for all fin Ay (U U {x0}).

The existence of a bounded point derivation at xo shows that the functions in A, (U)
possess some semblance of analytic structure at xg. If, in addition, U has an interior
cone at xp, a more explicit description of this analytic structure can be obtained. We
say that U has an interior cone at x if there is a segment J ending at x¢ and a constant
k > 0 such that dist(x, dU) > k|x — xo| for all x in J. The segment J is called a
non-tangential ray to xg. It is a result of O’Farrell [5] that if U has an interior cone at a
boundary point xg, then a bounded point derivation on Ay (U) at x( can be evaluated
by taking the limit of the difference quotient over a non-tangential ray to xp. To be
precise, O’Farrell has proven the following theorem.

Theorem 1 Let 0 < o < 1, and let U be an open set with xo in 0U. Suppose that U
has an interior cone at xy and that J is a non-tangential ray to xo. If Ao (U) admits a
bounded point derivation D at xq, then for every f in Ay (U),

pf— fim IW=SG0)

x—x0,x€J X — X0
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Thus the difference quotient for boundary points that admit bounded point deriva-
tions for A, (U) converges when taken over a non-tangential ray to the point. This
illustrates the additional analytic structure of functions in A, (U) at these points.

O’Farrell comments that the methods used in his proof of Theorem 1 are noncon-
structive, involving abstract measures and duality arguments from functional analysis
as opposed to using the Cauchy integral formula directly, and suggests that it should
be possible to give a proof using constructive techniques. In this paper we present a
constructive proof of Theorem 1, which confirms O’Farrell’s conjecture. In Sect. 2
we review some key properties of A, (U) and in Sect. 3 we prove Theorem 1 using
constructive techniques.

2 Preliminary results

We begin by reviewing the Hausdorff content of a set, which is defined using measure
functions. A measure function is a monotone nondecreasing function 4 : [0, co) —
[0, 00). For example, rP is a measure function for 0 < B < oo. If h is a measure
function then the Hausdorff content M}, associated to & is defined by

Mjy(E) = inf ) " h(diam B),

where the infimum is taken over all countable coverings of E by balls and the sum is
taken over all the balls in the covering. If 7(r) = r# then we denote M}, by M?. The
lower 1 4 « dimensional Hausdorff content M) +%(E) is defined by

Mt(E) = sup My(E),

where the supremum is taken over all measurable functions % such that i (r) < plte
and r_l_“h(r) converges to 0 as r tends to 0. The lower 1 + « dimensional Hausdorff
content is a monotone set function; i.e. if E C F then MT¥(E) < M!*e(F).

In [4], Lord and O’Farrell gave necessary and sufficient conditions for the existence
of bounded point derivations on A, (U) in terms of Hausdorff contents. There are sim-
ilar conditions for bounded point derivations defined on other function spaces. ([2,3]).

Theorem 2 Let U be an open subset of the complex plane with xo on the boundary of
U.Let 0 < a < 1. Then A, (U) has a bounded point derivation at xq if and only if

D ATMIT (A, (x0)\U) < oo.

n=1

Another key lemma is the following Cauchy theorem for Lipschitz functions which
also appears in the paper of Lord and O’Farrell [4, pg.110].

Lemma 1 Let I” be a piecewise analytic curve bounding a region $2 € C, and suppose
that I is free of outward pointing cusps. Let 0 < a < 1 and suppose that f € lipa(C).
Then there exists a constant k > 0 such that
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‘ / F)dz

The constant k only depends on « and the equivalence class of I' under the action of
the conformal group of C. In particular this means that k is the same for any curve
obtained from I by rotation or scaling.

<k M2 0S8 A ipae)-

3 The proof of the main theorem

To prove Theorem 1, we first note that by translation invariance we may suppose
that xo = 0. Moreover by replacing f by f — f(0) if needed, we may suppose that
f(0) = 0. In addition, we may suppose that U is contained in the unit disk. Let J
be a non-tangential ray to x¢ and for each x in J, define a linear functional L, by

Lo(f) = 1

the O functional as x — 0O through J. We make the following claim.

— Df. Then to prove Theorem 1 it suffices to show that L, tends to

Lemma 2 The collection {L, : x € J} is a family of bounded linear functionals on
Ay (U); that is there exists a constant C > 0 that does not depend on x or f such that
[Lx (O =< CllfllLipacc) forall fin Aq(U) and all x € J.

Proof We will first prove Lemma 2 for the case when f belongs to Ay (U U {0})
and then extend to the general case. It follows from (2) that it is enough to show that

J )

=< Cll fllLipa(c) Where the constant C does not depend on f or x. If f belongs

to A(U U {0}), then there is a neighborhood £2 of 0 such that f is analytic on £2. We
can further suppose that U C §2. Let B, denote the ball centered at 0 with radius 27".
Then there exists an integer N > 0 such that £2 contains By and hence f is analytic
inside the ball By . In addition, there exists an integer M such that 2 C By,. Since J
is a non-tangential ray to xo, it follows that there is a sector in U with vertex at xq that
contains J. Let C denote this sector. It follows from the Cauchy integral formula that

fx) 1 /(@)

X a 2mi 3(CJ Bn) Z(Z—x)

where the boundary is oriented so that the interior of C | ] By lies always to the left
of the path of integration. (See Fig. 1.) Let D,, = A,\C. Then

Jx) 1 [ @) L/ f@)
x  2mi nZ /Dn z(z — x) ot 2wi Jigj=o-m z(z — x) dz.

Since x lies on J, which is a non-tangential ray to x, there exists a constant k > 0 such

that for z ¢ U, x| < k~!. Thus for z ¢ U, 2 <1+ ad <1+k

|z — x| |z —x| — lz — x|
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C
C Bn
Fig.1 The contour of integration
1 14+ k!
Hence < + 5 and therefore
2] - |z — x| |z
N -1
[feol _ 1 / f @) ‘ M1+ k)
— dz| + . 3
=3 2| o Wl @
. f(@)
Since ﬁ is analytic on D,\U for M < n < N, an application of Lemma 1
z2(z —
shows that
/
O el < eml* D, \0)- H = ' @
ap, 2(2 —x) @ = %) | Lipa(ny)

Recall that the constant « is the same for curves in the same equivalence class. Since
the regions D,, differ from each other by a scaling it follows that x doesn’t depend on
nin (4).

f@ | .
—_ can be bounded by a constant independent
2@ =) [ Lipa(D,)
of f and x. It follows from the definition of the Lipschitz seminorm that

‘We now show that

f@ fw)
f@ | _ sup 2(z—x) w(w—x)
z2(z —x) Lipa(D,)  z#w;z,weD, lz — w|®
_ sup lw(w — x) f(z) — z2(z — x) f(w)]

#wizweD, 12l 12— x| |w| - |w — x| |z — w|®’
Thus it follows from the triangle inequality that

f@

' - lw(w —x) f(z) —w(w — x) f(w)]
z(z — x)

sup
Lipa(D,)  z#w;z,weDy, |z <z — x| [w]- |w— x| |z —w[¥

lw(w —x) f(w) — z2(z — x) f(w)]
+  sup

7#w;z,weD, lz] - |z — x| - |w] - |lw — x| - |z — w|*

(&)




826 S. Deterding

We first bound the first term on the right of (5)

lww —x) f(2) —ww —x) f(w)]

Sup — — — p
ctwzwen, |21z —x] - wl - Jw—x] |z — wl
< sup ————— [/ ipacn,)-
e, 12| -1z — x| ipa(Dn)
1 14+ k7!

Since z ¢ U, , and therefore,

<
|z| - |z — x| |z|2

lw(w —x) f(z) —ww —x) f(w)]
sup o = C4n||f||/Lipa(Dn)~ (6)
stwizweD, 12l - 12— x[Jw| - [w—x| -]z —w]

We now bound the second term on the right side of (5). Since f(0) = 0 it follows that
|f(w)]

wl¥
z(z—x) = (w —2z)(z+ w — x). Hence

forw € C,

< | fl |/Lipoc((C)' Moreover, a computation shows that w(w — x) —

lww —x) f(w) —z(z —x) f(w)]

z#w;z,weD, |z| - |z — x| - |w| - Jw—x] |z — w|*

lw —z|!™ jw—z|'™ ,
= sup - — | -1z .
<z¢w;z,wwn 2=l fwl™= - Jw—x| |zl [z — ] w]'@ Lipa(©)
(7
. . . 1 1+k!
Since x lies on J, there exists a constant X > O such that | | < 2] and
—X Z
1 1+ k7!
< + . Hence
|w — x| |w]
l—«a n n\2—ua
w—7z 2. (2
sup b Y
z#w;z,weDy, |z — x| - |w]| “Jw — x| (2m)
and
1—« n nyl—a
w— 4" . (2
Sup | Z| — E ( lz =C4n (9)
z#w;z,wED, lz| - |z — x| - Jw['~¢ (2m)i—«

Then (7), (8), and (9) yield

w(w = x).f (W) = 2z = x).f ()|
sup =< C f ey (10)
ctwiewen, |2 12— x| Jwl - [w—x[ -]z — w]
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and it follows from (5), (6), and (10) that

/

f(@

z2(z — x)

< C4N 1 ipaccy- (11)
Lipa(Dy)

Thus (3), (4), and (11) together yield

|f )]

|x|

o0
<CY "M DN 1 i pacc)-

n=1

Since Hausdorff content is monotone, M!+%(D,\U) < M}+*(A,\U) and hence

Lf )]

|x|

o0
=C Z4nM>:+a(An\U) N fllLipa(c)s

n=1
and it follows from Theorem 2 that

|f ()]
|x|

where C does notdependon x or f. Thus L (f) < C|| fl|Lipa(c) for f € Ay (UU{0})
and since A, (U U {0}) is dense in A, (U), it follows that L, is a family of uniformly
bounded linear functionals on A, (U). O

< ClIfllLipauy

To complete the proof of Theorem 1, since A, (U U 0) is dense in A, (U), there
exists a sequence {f;} in Ay (U U 0) such that f; — f in the Lipschitz norm. Since
each f; is analytic in a neighborhood of 0 and since Df; = f!(0), it follows that for
each j, Ly(fj) — 0asx — 0. It follows from the claim that |L,(f) — Ly(fj)| <
CIlf — fillLipa(u)- By first choosing j sufficiently large, the right hand side can be
made arbitrarily small. Then by choosing x sufficiently close to 0, L, (f;) can be made
arbitrarily close to 0. Thus L, (f) — 0asx — 0 through J, which proves Theorem 1.
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