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Abstract
Pseudo-H -type groups Gr ,s form a class of step-two nilpotent Lie groups with a natu-
ral pseudo-Riemannian metric. In this paper the question of complete integrability in
the sense of Liouville is studied for the corresponding (pseudo-)Riemannian geodesic
flow. Via the isometry group ofGr ,s families of first integrals are constructed. Amodi-
fication of these functions gives a set of dimGr ,s functionally independent smooth first
integrals in involution. The existence of a lattice L inGr ,s is guaranteed by recent work
of K. Furutani and I. Markina. The complete integrability of the pseudo-Riemannian
geodesic flow of the compact nilmanifold L\Gr ,s is proved under additional assump-
tions on the group Gr ,s .
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1 Introduction

A classical aspect in the study of the geodesic flow of a complete smooth Riemannian
manifold (M, g) of dimension n is the question of the complete integrability in the
sense of Liouville. If one can find n smooth functions f1, . . . , fn (first integrals)
on the cotangent bundle T ∗M which are functionally independent and in involution
with respect to the natural Poisson structure, i.e. { fi , f j } = 0, then the level set
�−1(c) = Mc with a regular value c ∈ R

n of the map

� = ( f1 . . . , fn)
T : T ∗M → R

n

forms a Lagrangian submanifold of T ∗M . The geodesic flow preserves Mc and,
from a physical point of view, � represents a set of n conservation laws including the
Hamiltonian, or the kinetic energy. IfMc is compact and connected then by the famous
Liouville-Arnol’d Theorem it is known to be diffeomorphic to a torus T

n = R
n/Z

n .
In particular, the integrability of the geodesic flow of semi-simple Lie groups M =

G with a left-invariant metric has been studied intensively during the last decades
(see e.g. [8]). The corresponding problem in the case of nilpotent Lie groups G and
nilmanifolds (quotient of G by a lattice) seems to be less well understood, even if the
group is assumed to be of step-two. Besides the abstract proof [20] of the existence of
a maximal Poisson commuting ring of functions on general nilpotent Lie algebras, an
important source of information is [3] where the complete integrability for compact
nilmanifolds over step-two nilpotent Lie groups G with Lie algebra g of Heisenberg–
Reiter type (see Definition 5.1) is proved. On the other hand, the paper [4] gives
a negative result. Assume that g = v ⊕ z is decomposed into the center z and its
orthogonal complement v with respect to a non-degenerate scalar product 〈·, ·〉. Let
j(Z) : v → v for all Z ∈ z be defined through the relation:

〈[U , V ], Z 〉 = 〈
j(Z)U , V

〉
, for all U , V ∈ v.

If j(Z) is invertible for all 0 �= Z ∈ z, then g is called non-singular, cf [7, Lem. 1.8].
In [4] the notion of a step-two non-integrable Lie algebra g is defined. It is shown
that for any co-compact subgroup L of G and any left-invariant metric g on G the
geodesic flow of (L\G, g) is not completely integrable in the sense of Liouville. As
is known, a non-singular step-two nilpotent Lie algebra cannot be non-integrable. In
the present paper singular and non-singular Lie algebras are considered. In the former
cases complete integrability cannot be excluded by Butler’s result in [4].

More recently and in the case of the (2n+1)-dimensional Heisenberg groupH2n+1
a set of (2n + 1) Poisson commuting first integrals induced by the isometry group of
H2n+1 has been constructed explicitly in [14]. In the present paper the analysis in
[14] is further generalized and some of the results in [3] are extended. Instead of the
Heisenberg group one considers the wider class of pseudo-H -type Lie groups Gr ,s

which have been introduced and intensively studied in [5,9,10]. These groups form a
subclass of all step-twonilpotent Lie groups and are non-singular in the case s = 0. The
bracket relations of the correspondingLie algebra are linked to aCliffordmodule action
of the Clifford algebra C�r ,s with non-negative integers (signature) r , s, cf [5,16]. In
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the case s > 0 these groups are naturally equipped with a pseudo-Riemannian metric
which induces a pseudo-Riemannian geodesic flow on the cotangent bundle. In this
framework a set of first integrals is explicitly constructed and the complete integrability
is proved.

Examples of step-two nilpotent Lie groups without a lattice (co-compact discrete
subgroup) have been constructed by P. Eberlein, cf [6]. However, due to the results
in [9], the existence of a lattice L in any pseudo-H -type group is guaranteed. Under
additional assumptions on the Lie algebra Nr ,s of Gr ,s the complete integrability
is proved for the pseudo-Riemannian geodesic flow of the compact pseudo-H -type
nilmanifold L\Gr ,s (Theorem 5.6). There is presented an example of a Lie algebra
Nr ,s which is not of Heisenberg-Reiter type (which is assumed in [3]) and for which
the pseudo-Riemannian geodesic flowof the quotient L\Gr ,s remains to be completely
Liouville integrable.

Different aspects of the complete integrability for compact nilmanifolds have been
studied by various authors. As examples, one can point out the question whether the
complete integrability of the geodesic flow is determined by the Laplace spectrum
(a negative answer is given in [19]) or the examples in [17] on the non-integrable
sub-Riemannian geodesic flow on Carnot groups of step larger than two.

The paper is organized as follows. In Sect. 2 the notations are fixed and the geometric
setting is explained. In particular, the notion of a pseudo-H -type group is recalled.
Via the isometry group of a step-two nilpotent Lie group G a family of (in general
not Poisson commuting) first integrals is derived for the pseudo-Riemannian geodesic
flow in Sect. 3. In general, one cannot select dim G first integrals in involution from this
family of functions. Section 4 contains the proof of the main result on the complete
integrability of the pseudo-Riemannian geodesic flow. In Sect. 5, under additional
assumptions on Gr ,s , sufficiently many first integrals are shown to descend from
Gr ,s to the compact nilmanifold L\Gr ,s and the complete integrability is proved. In
particular, these assumptions imply that the Lie algebraNr ,s of Gr ,s is of Heisenberg-
Reiter type. In case of the Riemannian geodesic flow this problem has been solved in
a more general framework in the work by Butler, cf [3]. However, there is also given a
nilmanifold L\Gr ,s for whichNr ,s is not of Heisenberg-Reiter type but the complete
integrability of the geodesic flow can be verified directly.

2 Notation and definitions

In this section, we fix the notation and explain some basic definitions of the Hamil-
tonian formalism of the geodesic flow of Lie groups equipped with a left-invariant
metric. The problem of complete integrability in the sense of Liouville is explained
forHamiltonian systems on the tangent bundle of a Lie group. Then, we recall the basic
definition of the (pseudo-)H -type groups introduced by Kaplan [13] (and by Ciatti
[5]) as a generalization of Heisenberg groups. An explicit description of Hamilton’s
equations for the geodesic flow is given for the (pseudo-)H -type groups.

Let G = (G, ∗) be a Lie group with identity element eG and Lie algebra g. The
tangent and the cotangent bundle to G admit the left-actions by G through
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dLg : TG ⊃ TpG 
 X �→ (
dLg

)
p X ∈ Tg∗pG ⊂ TG,

(
Lg−1

)∗ : T ∗G ⊃ T ∗
p G 
 ξ �→ (

Lg−1
)∗
p
ξ ∈ T ∗

g∗pG ⊂ T ∗G,

where g ∈ G and Lg : G 
 p �→ g ∗ p ∈ G stands for the left-multiplication.
The tangent and the cotangent bundle of G are trivialized as TG ∼= G × g and
T ∗G ∼= G × g∗ through the left-trivializations

λ: TG ⊃ TpG 
 X �→
(
p,

(
dL p−1

)
p
X
)

∈ G × g,

λ∗: T ∗G ⊃ T ∗
p G 
 ξ �→

(
p,

(
L p

)∗
p ξ

)
∈ G × g∗.

Through these left-trivializations, left-invariant functions on TG and on T ∗G are
identifiedwith the functions defined on g and on g∗, respectively. Similarly, we identify
the elements Y ∈ g ≡ TeGG and η ∈ g∗ ≡ T ∗

eGG with the left-invariant vector field
G 
 p �→ (

dL p
)
eG

Y ∈ TpG ⊂ TG and with the left-invariant differential one-form

G 
 p �→ (
L p−1

)∗
eG

η ∈ T ∗
p G ⊂ T ∗G, respectively.

We now take a non-degenerate scalar product1 〈·, ·〉 on g. Through the left-
trivialization T ∗G ⊗ T ∗G ∼= G × (g∗ ⊗ g∗), the scalar product 〈·, ·〉 induces a
left-invariant (pseudo-)Riemannian metric on G which we denote by the same sym-
bol. We write the induced scalar product on TpG as 〈·, ·〉p and set 〈·, ·〉 = 〈·, ·〉eG
for simplicity. By means of the left-invariant (pseudo-)Riemannian metric 〈·, ·〉 on
G, the cotangent bundle T ∗G ∼= G × g∗ can be identified with the tangent bundle
TG ∼= G×g. This identification is compatible to the oneg 
 Y �→ 〈Y , ·〉 ∈ g∗ between
the Lie algebra and its dual. We further have the induced (pseudo-)Riemannian metric
on TG ∼= G × g described as

〈
(U , V ), (U ′, V ′)

〉 = 〈
U ,U ′〉 + 〈

V , V ′〉,

where (U , V ), (U ′, V ′) ∈ g×g ∼= TpG×g ∼= T(p,Y ) (TG). We will keep using these
identifications in the notation below.The gradient vector field gradF for F ∈ C∞ (TG)

is defined through

〈
grad(p,Y )F, (U ′, V ′)

〉 = (dF)(p,Y )

(
U ′, V ′) , (1)

where (U ′, V ′) ∈ g × g.
Through the identification of TG ∼= G × g and T ∗G ∼= G × g∗, we have the

canonical one-form � and the canonical symplectic form � on TG ∼= G×g, induced
by those on T ∗G. More precisely, we have at (p,Y ) ∈ G × g ∼= TG

�(p,Y ) ((U , V )) = 〈Y ,U 〉 ,

�(p,Y )

(
(U , V ), (U ′, V ′)

) = − 〈
V ,U ′〉 + 〈

V ′,U
〉 + 〈

Y ,
[
U ,U ′] 〉,

1 By a scalar product we mean a symmetric bilinear form on g which not necessarily needs to be positive-
definite.
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for (U , V ), (U ′, V ′) ∈ g× g. (These formulae can be deduced from [1, Prop. 4.4.1].)
The Hamiltonian vector field 	F for the Hamiltonian F ∈ C∞ (TG) is written as

(	F )(p,Y ) =
(
V , (adV )T Y −U

)
∈ g × g,

where grad(p,Y )F = (U , V ) ∈ g × g and (adV )T : g → g stands for the adjoint
operator of adV with respect to 〈·, ·〉:

〈
(adV )TU ′,U ′′〉 = 〈

U ′, adV
(
U ′′)〉 , U ′,U ′′ ∈ g.

The Poisson bracket for F, F ′ ∈ C∞ (TG) is expressed as

{
F, F ′} (p,Y ) = − 〈

V ,U ′〉 + 〈
V ′,U

〉 − 〈
Y ,

[
V , V ′]〉 ,

where grad(p,Y )F = (U , V ) , grad(p,Y )F
′ = (

U ′, V ′) ∈ g × g. If F is left-invariant,

we have (	F )(p,Y ) = (
V , (adV )T Y

) ∈ g × g. Hamilton’s equations are written as

⎧
⎨

⎩

dp
dt = (

dL p
)
eG

U ,

dY
dt = (adU )T Y .

Recall that the second equation is usually called Euler-Poincaré equation (cf [18,
Thm6.6]). A smooth function f on the cotangent bundle T ∗G ∼= G×g∗ is called a first
integral of the geodesic flow if it is constant along the integral curves of the geodesic
flow or, equivalently, if f Poisson commutes with the Hamiltonian. More generally, in
this paper we consider pseudo-H -type Lie groups G (cf Definition 2.2 below) which
are naturally equipped with a pseudo-Riemannian metric. In this setting we may form
the Hamiltonian and the induced (pseudo-Riemannian) geodesic flow with respect to
the pseudo-Riemannian metric, which is non-degenerate but not necessarily positive-
definite. In some of our results the notion of first integrals and complete integrability
is used in this more general framework. For completeness we mention the definition
of complete integrability in the sense of Liouville (cf [1, Def. 5.2.20]).

Definition 2.1 TheHamiltonian system (T ∗G ∼= TG ∼= G × g∗,�, F) is called com-
pletely integrable in the sense of Liouville if there exist n functions F1(= F),
F2, . . . , Fn in C∞ (TG) which are functionally independent, i.e.

(dF1)(p,Y ) , . . . , (dFn)(p,Y ) ∈ T(p,Y ) (TG)

are linearly independent for (p,Y ) in an open dense subset of TG, and Poisson
commute:

{
Fi , Fj

} = 0 for all i, j = 1, . . . , n, where n = dimG. �

Fromnowon,we assume thatG is a connected, simply connected step-two nilpotent
Lie group. In this case, the corresponding Lie algebra g satisfies [g, g] ⊂ z, where
z ⊂ g is the center of the Lie algebra. Recall that, under such assumptions, the
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exponentialmapping exp : g → G is a diffeomorphism.Wedenote byv the orthogonal
complement v = z⊥ ⊂ g to the center zwith respect to the scalar product 〈·, ·〉. Assume
that the restriction 〈·, ·〉z of 〈·, ·〉 to z is non-degenerate such that one has the orthogonal
direct sum decomposition g = v ⊕ z. In the following the restriction of 〈·, ·〉 to v is
denoted by 〈·, ·〉v. Given an element Y ∈ g = v ⊕ z, its two components are denoted
by Yv ∈ v and Yz ∈ z: Y = Yv + Yz.

In this case, one can associate a skew-symmetric linear operator j (Z) : v → v to
any element Z ∈ z through the formula

〈
[U , V ] , Z

〉 = 〈
j (Z)U , V

〉
, (2)

where U , V ∈ v are arbitrary. The skew-symmetry of the Lie bracket implies the
skew-symmetry of the linear operator j (Z) with respect to 〈·, ·〉v.

Using the operator j , the canonical symplectic form on G×g ∼= TG for a step-two
nilpotent Lie group G is written as

�(p,Y )

(
(U , V ) ,

(
U ′, V ′) ) = 〈

U , V ′〉 − 〈
V ,U ′〉 + 〈

j
(
Yz

)
Uv,U ′

v

〉
v
,

for (U , V ), (U ′, V ′) ∈ g × g ∼= TpG × g ∼= T(p,Y ) (TG), while the Hamiltonian
vector field and Poisson bracket are given as

(	F )(p,Y ) = (
V , j

(
Yz

)
Vv −U

) ∈ g × g,
{
F, F ′} (p,Y ) = 〈

V ′,U
〉 − 〈

V ,U ′〉 − 〈
j
(
Yz

)
Vv, V ′

v

〉
v

= 〈
V ′,U

〉 − 〈
V ,U ′〉 − 〈

Yz,
[
Vv, V ′

v

] 〉
z
, (3)

where grad(p,Y )F = (U , V ) , grad(p,Y )F
′ = (

U ′, V ′) ∈ g × g. In particular, for
left-invariant functions g, g′ ∈ C∞ (TG), we have

{
g, g′} (p,Y ) = − 〈

j
(
Yz

)
Vv, V ′

v

〉
v

= − 〈
Yz,

[
Vv, V ′

v

]〉
z
, (4)

where grad(p,Y )g = (0, V ) and grad(p,Y )g
′ = (

0, V ′). As an immediate result, if
g = g

(
Yz

)
depends only on the component Yz ∈ z in the center z, then it Poisson

commutes with all left-invariant differentiable functions g′ = g′ (Y ):

{
g, g′} = −〈

Yz,
[
0, V ′

v

] 〉 = 0. (5)

The Hamiltonian for the geodesic flow with respect to the left-invariant pseudo-
Riemannian metric 〈·, ·〉 is given as

H (p,Y ) = 1

2
〈Y ,Y 〉 where (p,Y ) ∈ G × g ∼= TG.

The associated Hamiltonian vector field 	H is calculated at (p,Y ) ∈ G × g ∼= TG
as

(	H )(p,Y ) = (
Y , j

(
Yz

)
Yv

)
.
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We recall the notion of a pseudo-H -type nilpotent Lie algebra (group), cf [2,5,9].

Definition 2.2 The step-two nilpotent Lie algebra g equipped with the non-degenerate
scalar product 〈·, ·〉 is called pseudo-H-type (nilpotent) Lie algebra, if the operator
j : z → so (v, 〈·, ·〉v) satisfies the orthogonality condition

〈
j(Z)V , j(Z)V ′〉

v
= 〈Z , Z〉z · 〈V , V ′〉v, (6)

for all V , V ′ ∈ v, Z ∈ z. The corresponding connected, simply connected step-two
nilpotent Lie group G is called pseudo-H -type (nilpotent) Lie group. ��
Here g = v ⊕ z may be singular or non-singular and the Clifford relations

j(Z) j(Z ′) + j(Z ′) j(Z) = −2〈Z , Z ′〉zidv (7)

hold, where Z , Z ′ ∈ z. Hence the map j extends to the Clifford algebra C�(z, 〈·, ·〉z)
of z with respect to the inner product 〈·, ·〉z. It defines a Clifford representation

j : C�(z, 〈·, ·〉z) → End(v),

which, for simplicity, we assume to be minimal admissible, i.e. a module, which
attains the minimal dimension, among the C�(z, 〈·, ·〉z)-modules satisfying the skew-
symmetry condition

〈
j (Z) V , V ′〉

v
= − 〈

V , j (Z) V ′〉
v
(cf [9, p.980]). It is known

that a minimal admissible C�(z, 〈·, ·〉z)-module is either irreducible or double of an
irreducible module (cf [5]). The dimension of v is even and we denote it by dim v =
2m. With (r , s) being the signature of 〈·, ·〉z, the Clifford algebra C�

(
z, 〈·, ·〉z

)
is

isomorphic to C�r ,s generated by R
r ,s = (

R
r+s,

〈·, ·〉r ,s
)
, where

〈z, z〉r ,s =
r∑

i=1

z2i −
s∑

j=1

z2j+r

for z = (z1, . . . , zr+s) ∈ R
r+s , as a consequence of the universality of Clifford

algebras (cf [16, Prop. 1.1]). We use the following notation (cf [10, §§2.3, Def. 1]).

Definition 2.3 For an admissible C�r ,s-module v with the representation

j : C�r ,s → End (v) ,

the pseudo-H -type Lie algebra v ⊕ R
r ,s whose Lie bracket [·, ·] : v × v → R

r ,s is
defined through (2) where Z ∈ R

r ,s ,U , V ∈ v, is denoted byNr ,s (v). If v is minimal
admissible, wewriteNr ,s .We denote the connected, simply connected pseudo-H -type
Lie group corresponding to Nr ,s by Gr ,s .

Note thatNr ,s andGr ,s are unique up to isomorphisms (see [10, §6] for the details).
If 〈·, ·〉z is positive-definite, i.e. if s = 0, then the Lie algebra g = v ⊕ z is called of
H -type. Such Lie algebras were first considered in [11,12].
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3 Construction of first integrals

In the present sectionwe construct a familyF of first integrals on step-twonilpotent Lie
groupsG with a left-invariant Riemannian metric and induced byKilling vector fields.
More precisely, F is obtained as the range of an injective Lie algebra homomorphism
on the semi-direct product k �τ g where k is the Lie algebra of the isotropy group
of G. A priori, the elements in F do not Poisson commute and it may not even be
possible to choose a subset S ⊂ F of |S| = dimG Poisson commuting first integrals
in F . However, under further assumptions on G and by modifying the construction
below we prove the complete integrability of the geodesic flow in Sect. 4. We remark
that the functions constructed in this section define first integrals even if the scalar
product on G is not positive-definite. In particular, we obtain first integrals of the
pseudo-Riemannian geodesic flow for pseudo-H -type groups Gr ,s .

Recall that a vector field X∗ on G is called Killing vector field if it induces a flow of
continuous isometries on G. Shortly, LX∗g = 0 where g is the (pseudo-Riemannian)
metric on G and LX∗ the Lie derivative of X∗. Lemma 3.1 serves as a source of first
integrals:

Lemma 3.1 Let X∗ be a Killing vector field on G. Then the function

FX∗(p,Y ) := 〈
X∗,Y

〉
p, where Y ∈ TpG

is a first integral of the geodesic flow. Here we write 〈·, ·〉g := gp(·, ·).
Proof We fix a geodesic γ (t) on G and by ∇ we denote the Levi-Civita connection.
Then

d

dt

〈
X∗ ◦ γ (t), γ ′(t)

〉
γ (t) = 〈∇γ ′(t)X

∗ ◦ γ (t), γ ′(t)
〉
γ (t) + 〈

X∗ ◦ γ (t),∇γ ′(t)γ
′(t)

︸ ︷︷ ︸
=0

〉
γ (t)

= 〈∇γ ′(t)X
∗ ◦ γ (t), γ ′(t)

〉
γ (t).

From LX∗g = 0 we have 〈∇Y X∗ ◦ γ (t), Z〉γ (t) = −〈Y ,∇Z X∗ ◦ γ (t)〉γ (t) for all
Y , Z ∈ Tγ (t)G. In particular, choosing Y = Z = γ ′(t) in the above equation gives:

d

dt

〈
X∗ ◦ γ (t), γ ′(t)

〉
γ (t) = 0.

Therefore FX∗ is constant along the integral curves of the geodesic flow. ��
Lemma 3.1 serves a motivation for the derivation of the explicit first integrals below.
We will not explicitly make use of it since all Poisson brackets between the functions
constructed below via Killing vector fields are collected in Proposition 3.8 and follow
by a direct calculation. Let g = v ⊕ z be the decomposition of g from Sect. 2. For
the moment we do not assume that the non-degenerate scalar product 〈·, ·〉 on g is
positive-definite. Choose bases [X1, . . . , X2m] of v and [Z1, . . . , Zd ] of z with

〈Xi , Xi ′ 〉v = ±δi,i ′ and 〈Z�, Z�′ 〉z = ±δ�,�′ . (8)



On the complete integrability of the geodesic flow of… 501

If these conditions are satisfied, we call [X1, . . . , X2m] and [Z1, . . . , Zd ] orthonormal
for brevity. Expanding elements Y ∈ g with respect to the above basis

Y =
2m∑

i=1

xi Xi +
d∑

�=1

z�Z�, (xi , z� ∈ R),

defines coordinates (x1, . . . , x2m) ∈ R
2m ∼= v and (z1, . . . , zd) ∈ R

d ∼= z and gives
an identification g ∼= R

2m+d .
Throughout this section we assume that j(Z�) is invertible on v for � = 1, . . . , d.

Recall that the latter condition is fulfilled for a non-singular nilpotent Lie algebra in
the sense of [7, Def. 1.4]. Even in the case of a pseudo-H -type Lie algebraNr ,s where
s > 0 (and therefore Nr ,s is not non-singular) the invertibility of j(Z�) follows from
the relations (8) and (7).

The left-multiplication on G by exp(−t Xi ) and exp(−t Z�) induces flows on
G. Hence we obtain vector fields X (r)

i on G which—being defined by a left-
multiplication—are right-invariant. In the case where 〈·, ·〉 is positive-definite we can
interpret X (r)

i as Killing vector fields. Since G is of step-two, the Baker–Campbell–
Hausdorff formula implies for given p = exp(W ) ∈ G:

exp
( − t Xi

) ∗ p = exp

(
−t Xi + W − t

2

[
Xi ,W

])
.

Let f ∈ C∞(G), then X (r)
i acts as:

[
X (r)
i f

]
(p) := d

dt

∣∣∣∣
t=0

f
(
exp

( − t Xi
) ∗ p

)

= d
dt

∣∣∣∣
t=0

f

(
exp

( − t Xi + W − t

2
[Xi ,W ])

)
. (9)

Expanding the Lie bracket [Xi ,W ] ∈ z with respect to the basis [Z1, . . . , Zd ] gives:

[Xi ,W ] =
d∑

�=1

〈[Xi ,W ], Z�

〉

〈Z�, Z�〉 Z� =
d∑

�=1

〈
j(Z�)Xi ,Wv

〉

〈Z�, Z�〉 Z�.

Moreover, Z (r)
� = ∂

∂z�
and (9) leads to the following differential expressions of X (r)

i :

X (r)
i = − ∂

∂xi
− 1

2

d∑

�=1

〈
j(Z�)Xi ,Wv

〉

〈Z�, Z�〉
∂

∂z�
, (i = 1, . . . , 2m). (10)

We replace the left-multiplication by exp(−t Xi ) in (9) by a right-multiplication with
the element exp(t Xi ). Similarly one obtains left-invariant vector fields Xi and Z�
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which in the standardway are identifiedwith the basis elements of v and z, respectively.
We do not change the notation and simply write:

Xi = ∂

∂xi
− 1

2

d∑

�=1

〈
j(Z�)Xi ,Wv

〉

〈Z�, Z�〉
∂

∂z�
. (11)

Comparing (10) and (11) and using Lemma 3.1 implies:

Proposition 3.2 In terms of the left-invariant vector fields Xi and Z� the Killing vector
fields X (r)

i at p = exp(W ) ∈ G can be expressed as:

X (r)
i (p) = − (

dL p
)
eG

(

Xi +
d∑

�=1

〈
j(Z�)Xi ,Wv

〉

〈Z�, Z�〉 Z�

)

. (12)

Let (p,Y ) ∈ TG ∼= G × g. A set of dimG = 2m + d first integrals is obtained by

F
X (r)
i

(p,Y ) = 〈
X (r)
i (p),

(
dL p

)
eG

Y
〉
p = 〈

Xi , j(Yz)Wv − Y
〉
, i = 1, . . . , 2m,

FZ�
(p,Y ) = 〈

Z�,Y
〉
, � = 1, . . . , d.

Proof F
X (r)
i

is obtained by inserting (12) into 〈X (r)
i (p),

(
dL p

)
eG

Y 〉p. ��

For the moment let us assume that G carries a Riemannian metric, i.e. the scalar
product 〈·, ·〉 on g is positive-definite.We can extend the construction in Proposition 3.2
by replacing the left-translation on G by the full isometry group I (G) of G. Then
Lemma 3.1 can be applied and induces an enlarged class of first integrals. As is well-
known I (G) is obtained as a semi-direct product of G (acting by left-multiplication)
with the isotropy subgroup K of I (G) which is identified with

K =
{
(�, T ) ∈ O(z, 〈·, ·〉z) × O(v, 〈·, ·〉v) : T j(Z)T−1 = j (�(Z)) , Z ∈ z

}
,

(see [15,21] for details). Here O(z, 〈·, ·〉z) and O(v, 〈·, ·〉v) denote the isometries of z
and v, respectively.

Lemma 3.3 Let U , V ∈ g and (�, T ) ∈ K. Then, we have the following relations:

(a) T−1 j(Z)T = j
(
�−1(Z)

)
for all Z ∈ z,

(b) [TUv, T Vv] = �
[
U , V ].

Proof We only show (b). For any Z ∈ z we have

〈
Z ,�[U , V ]〉 = 〈

�−1Z , [U , V ]〉 = 〈
�−1Z , [Uv, Vv]〉 = 〈

j(�−1Z)Uv, Vv
〉
,

〈
Z , [TUv, T Vv]〉 = 〈

j(Z)TUv, T Vv
〉 = 〈

T−1 j(Z)TUv, Vv
〉
.

Since Z was chosen arbitrarily and 〈·, ·〉z is non-degenerate on z, (a) implies (b). ��
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We summarize the above statements in the next proposition.

Proposition 3.4 (see [15,21])The isometry group I (G) of G is given by the semi-direct
product I (G) = K � G. The Lie algebra k of K is identified with

k =
{
(A, B) ∈ so(z, 〈·, ·〉z) × so(v, 〈·, ·〉v) : Bj(Z) − j(Z)B = j(AZ), Z ∈ z

}
.

(13)

Here so(E) denotes the skew-symmetric operators on a scalar product space E.

In the following we write expK : k → K and expG : g → G for the exponential
maps of k and g, respectively. Let πz : K → O(z, 〈·, ·〉z) and πv : K → O(v, 〈·, ·〉v)

denote the projections onto the first and second component of K . Fix k = (A, B) ∈ k
and define a family of maps ρk,s : G → G depending on a real parameter s ∈ R by

ρk,s
(
expG(U )

) := expG
((

πz ◦ expK (sk)
)
Uz + (

πv ◦ expK (sk)
)
Uv

)
, (14)

where U ∈ g (recall that expG is a diffeomorphism). Then:

Proposition 3.5 For each k ∈ k the map s → ρk,s is a one-parameter group of
isometries of G. In other words: it is the flow of a Killing vector field on G.

Proof We show that ρk,s : G → G defines a homomorphism. LetU , V ∈ g and recall
that expG(U ) ∗ expG(V ) = expG(U + V + [U , V ]/2). Note that:

ρk,s
(
expG(U )

) ∗ ρk,s
(
expG(V )

) = expG
((

πz ◦ expK (sk)
)
(Uz + Vz)

+(
πv ◦ expK (sk)

)
(Uv + Vv) + 1

2

[(
πv ◦ expK (sk)

)
Uv,

(
πv ◦ expK (sk)

)
Vv

])

= I .

We compare this expression with

ρk,s
(
expG(U ) ∗ expG(V )

) = expG
((

πz ◦ expK (sk)
)
(Uz + Vz)

+(
πv ◦ expK (sk)

)
(Uv + Vv) + 1

2

(
πz ◦ expK (sk)

)[U , V ]
)

= I I .

Now Lemma 3.3, (b) shows that I = I I .
We show that ρ := ρk,s is an isometry of G, which means that for each p ∈ G the

map

d
(
Lρ(p)−1 ◦ ρ ◦ L p

)

eG
: g −→ g

is isometric on g. Since ρ is a homomorphism, we have with p, p′ ∈ G:

Lρ(p)−1 ◦ ρ ◦ L p(p
′) = Lρ(p)−1 ◦ ρ(p ∗ p′) = Lρ(p)−1

(
ρ(p) ∗ ρ(p′)

)
= ρ(p′).
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From the definition of ρ, note that

(dρ)eG =
(

πz ◦ expK (sk) 0
0 πv ◦ expK (sk)

)
.

Since the matrices on the diagonal are isometries of z and v, respectively, it follows
that (dρ)eG is an isometry of g. A direct calculation show that s �→ ρk,s defines a
homomorphism on (R,+). In particular, ρk,s is bijective since ρk,0 = Id. ��
Let k = (A, B) ∈ k. Proposition 3.5 allows to calculate a corresponding Killing vector
field X∗

k which induces the flow (ρk,s)s on G. From the Baker–Campbell–Hausdorff
formula we have:

expG(U + V ) = expG(U ) expG
(
V − 1

2
[U , V ]

)
, for all U , V ∈ g

and therefore
(
d expG

)
Uv

(V ) = dLexpG (Uv)

(
V − 1

2

[
Uv, V

])
.

Let p = expG(W ) ∈ G, then:

X∗
k (p) := d

ds

∣∣∣∣
s=0

ρk,s(p)

= d
ds

∣∣∣∣
s=0

expG
((

πz ◦ expK (sk)
)
Wz

)
expG

((
πv ◦ expK (sk)

)
Wv

)

= dLexpG (Wz)dLexpG (Wv)

(
BWv − 1

2

[
Wv, BWv

])

+ dLexpG (Wv)dLexpG (Wz)

(
AWz

)

= dL p

(
BWv − 1

2

[
Wv, BWv

] + AWz

)
.

This calculation leads to another family of first integral of the geodesic flow.

Proposition 3.6 The Killing vector field on G corresponding to k = (A, B) ∈ k
evaluated at the point p = expG(W ) ∈ G is given by:

X∗
k (p) = dL p

(
BWv − 1

2

[
Wv, BWv

] + AWz

)
. (15)

According to Lemma 3.1, X∗
k induces a first integral FX∗

k
: TG ∼= G × g → R:

FX∗
k
(p,Y ) = 〈

X∗
k (p),

(
dL p

)
eG

Y
〉
p =

〈
BW − 1

2
[W , BW ] + AW ,Y

〉
, (16)

where we have extended A and B from z and v to g = v ⊕ z by zero, respectively.



On the complete integrability of the geodesic flow of… 505

Next we present the Poisson brackets between two first integrals FX∗
k
and FX∗

k′ in
Proposition 3.6. According to the identifications in Sect. 2 we need to determine the
gradient of FX∗

k
, which is defined through (1).With p = expG(W ) ∈ G the differential

of FX∗
k
applied to (U , V ) ∈ g × g ∼= T(p,Y )(TG) has the form:

dFX∗
k
(p,Y ) · (U , V )

= d
dε

∣∣∣∣
ε=0

FX∗
k

(
p ∗ expG(εU ),Y + εV

)

= d
dε

∣∣∣∣
ε=0

FX∗
k

(
expG

(
W + εU + ε

2
[W ,U ]),Y + εV

)

=
〈
BW − 1

2

[
W , BW

] + AW , V
〉

+
〈
BU + AU + 1

2
A[W ,U ] − 1

2

[
Wv, BUv

] − 1

2

[
Uv, BWv

]
,Y

〉
.

Using 〈[W ,U ], Z〉 = 〈 j(Zz)Wv,U 〉 for all W ,U , Z ∈ g and comparing with (1)
shows:

grad(p,W )FX∗
k

=
(

− BY − AY − 1

2
j(AYz)W + 1

2

(
Bj(Yz)W + j(Yz)BW

)
,

BW − 1

2

[
W , BW

] + AW
)
.

Since (A, B) ∈ kwe can use Bj
(
Yz

) = j(Yz)B + j
(
AYz

)
to simplify the expression.

Lemma 3.7 Let k = (A, B) ∈ k, (p,Y ) ∈ TG ∼= G × g, and expG W = p. Then:

grad(p,Y )FX∗
k

=
(

−BYv + j(Yz)BWv − AYz, BWv − 1

2

[
Wv, BWv

] + AWz

)
.

(17)
For i = 1, . . . , 2m, we have

grad(p,Y )FX (r)
i

=
(

− j
(
Yz

)
Xi ,−Xi + [W , Xi ]

)
. (18)

Formula (18) can be proved by similar calculations applying (1) andProposition 3.2.
Based on Lemma 3.7 and (3) we obtain the Poisson brackets between the above first
integrals. Let k = (A, B) , k′ = (

A′, B ′) ∈ k and by
[
k, k′] = ([

A, A′] ,
[
B, B ′])

denote the Lie bracket in k.

Proposition 3.8 By F
X (r)
i

and FZ�
for i = 1, . . . , 2m, � = 1, . . . , d, we denote the

first integrals in Proposition 3.2. Let

g : TG ∼= G × g → R

be a left-invariant differentiable function with grad g(p,Y ) = (0, V ′). With p =
expG(W ) we have:
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(a) {FX∗
k
, FX∗

k′ } = FX∗
[k,k′]

,

(b)
{
FX∗

k
, F

X (r)
i

}
(p,Y ) = 〈

BXi , j(Yz)Wv − Yv
〉 = F(BXi )

(r) (p,Y ),

(c)
{
F
X (r)
i

, F
X (r)
i ′

}
(p,Y ) = 〈[Xi , Xi ′ ],Y

〉 = F[Xi ,Xi ′ ](p,Y ),

(d)
{
FX∗

k
, g

}
(p,Y ) = 〈

Yv, BV ′
v

〉 + 〈
Yz, AV ′

z

〉
,

(e)
{
FX∗

k
, FZ�

}
(p,Y ) = 〈

Yz, AZ�

〉 = F(AZ�)(p,Y ),

(f)
{
F
X (r)
i

, g
}
(p,Y ) = 0.

In particular, the Hamiltonian H of the geodesic flow Poisson commutes with FX∗
k

as well as with F
X (r)
i

where i = 1, . . . , 2m and FZ�
, � = 1, . . . , d.

Proof The formulae in (a)–(f) follow by a direct calculation. We only show the
short proof of the last statement which directly follows from Lemma 3.1. Recall that
grad H(p,Y ) = (0,Y ) and therefore (d) implies:

{FX∗
k
, H} = 〈Yv, BYv〉 + 〈Yz, AYz〉.

Since A and B are skew-symmetric the Poisson bracket vanishes. ��

Combining the statements in Propositions 3.2 and 3.6 we assign first integrals of the
geodesic flow to arbitrary elements of the semi-direct product k �τ g.

Denote byDer(g) the Lie algebra of derivations on g. A Lie algebra homomorphism
is obtained by:

τ : k → Der(g) : (A, B) �→
[
g 
 U = Uz +Uv �→ AUz + BUv ∈ g

]
, (19)

i.e. by a direct calculation using j(AZ) = Bj(Z) − j(Z)B for all Z ∈ z one finds:

τ(A, B)
[
U ,W

] = [
U , τ (A, B)W

] + [
τ(A, B)U ,W

]
, U ,W ∈ g.

Recall that via the map τ we can form the semi-direct product k �τ g retaining the
brackets in k and g and satisfying:

[
(A, B),U

] = τ(A, B)(U ) where (A, B) ∈ k, U ∈ g. (20)

We use the notation in Proposition 3.2. Consider � : k ⊕ g → C∞(TG) defined by

�
(
k,U ) := FX∗

k
+

2m∑

i=1

ai FX (r)
i

+
d∑

�=1

b�FZ�
, k = (A, B) ∈ k, (21)

with U = ∑2m
i=1 ai Xi + ∑d

�=1 b�Z�. Theorem 3.9 below extends Theorem 3.6. in
[14].
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Theorem 3.9 The map � in (21) defines an injective Lie algebra homomorphism

� : k �τ g →
(
C∞(TG),

{·, ·}
)
. (22)

Moreover, functions in the range of � are first integrals of the geodesic flow.

Proof To prove the first statement we apply Proposition 3.8. For i, i ′ = 1, . . . , 2m
and � = 1, . . . , d and k, k′ ∈ k we have:

�
([

(k, 0), (0, Xi )
]) = �

(
τ(k)(Xi )

) = �(BXi ) = F(BXi )
(r) = {

FX∗
k
, F

X (r)
i

}
,

�
([

(k, 0), (0, Z�)
]) = �

(
τ(k)(Z�)

) = �(AZ�) = FAZ�
= {

FX∗
k
, FZ�

}
,

�
([k, k′]) = FX∗

[k,k′] = {
FX∗

k
, FX∗

k′
}
,

�
(
[Xi , Xi ′ ]

)
= F[Xi ,Xi ′ ] = {

F
X (r)
i

, F
X (r)
i ′

}
.

Hence (22) defines a Lie algebra homomorphism. It remains to prove the injectivity
of �. Assume that for all (p,Y ) ∈ G × g:

�(k,U )(p,Y ) = FX∗
k
(p,Y ) +

2m∑

i=1

ai FX (r)
i

(p,Y ) +
d∑

�=1

b�FZ�
(p,Y ) = 0. (23)

Choose p = exp(Z�) and Y = Z� with � ∈ {1, . . . , d}. Proposition 3.2 shows:

FZ�′ (p, Z�) = 〈Z�′ , Z�〉 = δ�′,� and F
X (r)
i

(p, Z�) = −〈
Xi , Z�

〉 = 0.

Proposition 3.6 implies that FX∗
k
(p, Z�) = 〈AZ�, Z�〉z = 0, since A is skew-

symmetric. Therefore all the coefficients b� in (23) must vanish.
Nowwe consider (23) at points (p, Z�)where � ∈ {1, . . . , d} and p = exp(W ) ∈ G

is arbitrary. Using again Propositions 3.2 and 3.6 shows:

0 =
〈
−1

2
[Wv, BWv] + AWz, Z�

〉

z

+
2m∑

i=1

ai
〈
Xi , j(Z�)Wv

〉
. (24)

Choosing W = Zr for r = 1, . . . , d gives 〈AZr , Z�〉z = 0 and therefore A = 0. In
particular, it follows for all Z ∈ z:

0 = j(AZ) = Bj(Z) − j(Z)B. (25)

If we replace Wv by tWv with t ∈ R, then the first term on the right of (24) is of
quadratic order in t whereas the second summand is of linear order. Therefore:

0 =
〈

2m∑

i=1

ai Xi , j(Z�)Wv

〉

for all Wv ∈ v, (26)
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0 =
〈[
Wv, BWv

]
, Z�

〉
= 〈

j(Z�)Wv, BWv

〉 = −〈
Bj(Z�)Wv,Wv

〉
. (27)

First we use (26). Since j(Z�) is assumed to be invertible on vwe have
∑2m

i=1 ai Xi = 0
showing that ai = 0 for i = 1, . . . , 2m and therefore U = 0.

From (25) together with the skew-symmetry of B and j(Z) we see that Bj(Z)

is symmetric with respect to 〈·, ·〉. Now (27), the polarization identity, and the non-
degeneracy of 〈·, ·〉 show that Bj(Z�) = 0 which (by invertibility of j(Z�)) implies
that B = 0. We conclude that k = (A, B) = 0 showing the injectivity of �. ��

Remark 3.10 In calculating the functions FX∗
k
in Proposition 3.6 we have assumed that

the metric 〈·, ·〉 on g is positive-definite. In this case k is defined as the Lie algebra
of the isotropy group K of I (G). However, in the more general setting where 〈·, ·〉 is
only assumed to be a non-degenerate bilinear form (e.g. g = Nr ,s the Lie algebra of
a pseudo-H -type group G = Gr ,s with s > 0) we can use the right hand side of (13)
as the definition of k. The functions FX∗

k
are then defined by the expression (16). A

direct calculation shows that the Poisson bracket relations in Proposition 3.8 remain
true and also Theorem 3.9 holds in this more general setting.

4 Statement and proof of themain result

In this section, we prove the complete integrability of the (pseudo-)Riemannian
geodesic flow of G for the left-invariant (pseudo-)Riemannian metric 〈·, ·〉. Moti-
vated by the first integrals F

X (r)
i
, i = 1, . . . , 2m, constructed in Sect. 3, we introduce

the function Fα ∈ C∞ (TG) defined through

Fα(p,Y ) :=
2m∑

i=1

αi
(
Yz

)
F
X (r)
i

(p,Y ), (p,Y ) ∈ G × g ∼= TG,

associated with an arbitrary differentiable mapping α : z → v. Here, αi ∈ C∞ (z)

is the coefficients of the linear combination α
(
Yz

) =
2m∑

i=1

αi
(
Yz

)
Xi in the basis

[X1, . . . , X2m] of v. Then, Fα Poisson commutes with any left-invariant function
g ∈ C∞ (TG), i. e. {Fα, g} = 0, and hence with the Hamiltonian H . This can be
proved easily by Leibniz rule of Poisson bracket, (5), and Proposition 3.8.

Proposition 4.1 If α, β : z → v are differentiable mappings, we have

{
Fα, Fβ

}
(p, Y ) = 〈

j
(
Yz

)
α
(
Yz

)
, β

(
Yz

)〉 = 〈
Yz,

[
α
(
Yz

)
, β

(
Yz

)]〉
. (28)
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Proof In view of the linear combinations α =
2m∑

i=1

αi Xi , β =
2m∑

i ′=1

βi ′ Xi ′ , we have

{
Fα, Fβ

}
(p,Y ) =

2m∑

i,i ′=1

αi
(
Yz

)
βi ′

(
Yz

) {
F
X (r)
i

, F
X (r)
i ′

}
(p,Y )

=
2m∑

i,i ′=1

αi
(
Yz

)
βi ′

(
Yz

) 〈
j
(
Yz

)
Xi , Xi ′

〉 = 〈
j
(
Yz

)
α
(
Yz

)
, β

(
Yz

) 〉
,

by Proposition 3.8. ��
Now, we construct the first integrals for the geodesic flow concretely, choosing an

appropriate set of first integrals Fα . The key idea in the construction of a sufficient
number of first integrals is based on the normalization of the operator j(Z), Z ∈ z.
We consider the case of pseudo-H -type Lie groups, where we assume that the scalar
product 〈·, ·〉 is not positive-definite. Then, we address the case of H -type Lie groups.

Complete integrability of pseudo-H -type Lie groups. We consider the complete
integrability of the geodesic flow of pseudo-H -type nilpotent Lie groups. Assuming
that the scalar product 〈·, ·〉z is not positive-definite, we see that 〈·, ·〉v is neutral in the
sense that the signature of 〈·, ·〉v is (m,m) (cf [9, Prop. 2.1, p. 984]). Thus, we can take
an orthonormal basis (according to the notation in (8)) [X1, . . . , X2m] of v such that

〈Xi , Xi ′ 〉v =

⎧
⎪⎨

⎪⎩

δi,i ′ , if i, i ′ = 1, . . . ,m,

−δi,i ′ , if i, i ′ = m + 1, . . . , 2m,

0, otherwise.

(29)

Now, we fix Z ∈ z and suppose that 〈Z , Z〉z �= 0. We show that m is even and that,
for Z in an open dense subset of z, we can construct a suitable basis [w1, . . . , w2m] of
v, such that

〈
wq , wq ′

〉
v

= 0 if q �= q ′,
⎧
⎨

⎩

j (Z) w2i−1 =
√∣∣〈Z , Z〉z

∣∣w2i ,

j (Z) w2i = − 〈Z ,Z〉z√|〈Z ,Z〉z|w2i−1,

〈w2i−1, w2i−1〉v =
{
1 if i = 1, . . . ,m/2,

−1 if i = 1 + m/2, . . . ,m,
(30)

〈w2i , w2i 〉v = 〈Z , Z〉z∣∣〈Z , Z〉z
∣∣ 〈w2i−1, w2i−1〉v ,

for i = 1, . . . ,m.
If 〈Z , Z〉z > 0, the matrix representation of j (Z) with respect to the basis

[w1, . . . , w2m], which satisfies (30), is

√
〈Z , Z〉zdiag (S2, . . . , S2) , where S2 =

(
0 −1
1 0

)
,
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and if 〈Z , Z〉z < 0, the one with respect to the basis

[
w1, w3, . . . , wm−1, wm+2, wm+4, . . . , w2m, w2, w4,

. . . , wm, wm+1, wm+3, . . . , w2m−1
]
,

which satisfies (30), is

√
−〈Z , Z〉z

(
0 Em

Em 0

)
,

where Em is the m × m unit matrix.
The existence of the basis [w1, . . . , w2m] of v satisfying (30) can be verified by

direct calculations as follows:

We fix Z ∈ z such that 〈Z , Z〉z �= 0. We set w1 := X1 and w2 := j (Z) X1√∣∣〈Z , Z〉z
∣∣
.

Then, (30) is satisfied for i = 1. Reordering X2, . . . , X2m if necessary, we can assume
that [w1, w2, X3, . . . , X2m] is a basis of v.

Next, we assume that we have constructed orthogonal vectors w1, . . . , w2i ′ ∈ v
such that (30) is satisfied for i = 1, . . . , i ′ and that

[
w1, . . . , w2i ′ , X2i ′+1, . . . , X2m

]

is a basis of v. If we set

X ′
2i ′+1 := X2i ′+1 −

2i ′∑

q=1

〈
X2i ′+1, wq

〉
v〈

wq , wq
〉
v

wq ,

then
〈
X ′
2i ′+1, wq

〉

v
= 0, q = 1, . . . , 2i ′. Note that

〈
X ′
2i ′+1, X

′
2i ′+1

〉
v

= 〈
X2i ′+1, X2i ′+1

〉
v

−
2i ′∑

q=1

〈
X2i ′+1, wq

〉2
v〈

wq , wq
〉
v

is a rational polynomial in the components of Z and we denote it by Pi ′ (Z). We
assume that Pi ′ (Z) �= 0 and set

w2i ′+1 := X ′
2i ′+1√∣∣∣

〈
X ′
2i ′+1, X

′
2i ′+1

〉

v

∣∣∣
and w2i ′+2 := j (Z) w2i ′+1√∣∣〈Z , Z〉z

∣∣
.

It is easy to check that (30) is satisfied for i = 1, . . . , i ′ + 1. Reordering
X2i ′+2, . . . , X2m if necessary, we see that

[
w1, . . . , w2i ′+2, X2i ′+3, . . . , X2m

]
is a

basis of v. Inductively, we obtain a basis [w1, . . . , w2m] of vwith the desired property
(30). Note that, by (6), we see that m must be even.
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Wewrite Y = Yz +Yv, Yv =
2m∑

q=1

yqwq
(
Yz

)
, Yz =

d∑

�=1

yz� Z�, wherewq = wq
(
Yz

)

is regarded as a v-valued function of Yz. Note that each vector wq , q = 1, . . . , 2m, is
a rational polynomial in yz1, . . . , y

z
d and

〈
Yz,Yz

〉
z
which have no pole unless

〈
Yz,Yz

〉
z
· P (

Yz
) = 0, where P

(
Yz

) =
m−1∏

i=1

Pi
(
Yz

)
,

and hence Fw2i−1 , i = 1, . . . ,m, is differentiable if
〈
Yz,Yz

〉 · P (
Yz

) �= 0, while it
may be singular if

〈
Yz,Yz

〉 · P (
Yz

) = 0. To construct globally defined differentiable
functions from Fu2i−1 , i = 1, . . . ,m, we define ψ ∈ C∞(R) by

ψ (x) =
{
exp

(− 1
x

)
if x > 0,

0 if x ≤ 0

and consider the differentiable functions

F̃w2i−1(p,Y ) := ψ
(〈
Yz,Yz

〉2
z
· P (

Yz
)2)

Fw2i−1(p,Y )

on G ×g ∼= TG. We easily see that F̃w2i−1 , i = 1, . . . ,m, mutually Poisson commute
by (28), (30), and Proposition 3.8.

We suppose that
〈
Yz,Yz

〉
z

> 0 and consider the left-invariant functions g+
i (p,Y ) :=

y22i−1+y22i , i = 1, . . . ,m. Then,wehave grad(p,Y )g
+
i =(0, 2 (y2i−1w2i−1 + y2iw2i )).

Multiplication by ψ gives m differentiable functions

g̃+
i (p,Y ) := ψ

(〈
Yz,Yz

〉
z
· P (

Yz
)2)

g+
i (p,Y ),

globally defined on G × g ∼= TG. Note that g̃+
i (p,Y ) = 0 if

〈
Yz,Yz

〉
z

≤ 0. We

then have
{
g̃+
i , g̃+

i ′
} = 0 for all i, i ′ = 1, . . . ,m by (4), (5), and (30). Note that the

Hamiltonian for the geodesic flow can be written as

H(p,Y ) = 1

2
〈Y ,Y 〉 = 1

2

⎛

⎝
m/2∑

i=1

(
g+
i (p,Y ) − g+

i+m/2(p,Y )
)

+ 〈
Yz,Yz

〉
z

⎞

⎠ ,

from which we see that it Poisson commutes with g̃+
i , i = 1, . . . ,m.

If
〈
Yz,Yz

〉
z

< 0, we think of the left-invariant functions g−
i (p,Y ) := y22i−1 −

y22i , i = 1, . . . ,m. We have grad(p,Y )g
−
i = (0, 2 (y2i−1w2i−1 − y2iw2i )). Using the

function ψ , we have the differentiable function

g̃−
i (p,Y ) := ψ

(
− 〈

Yz,Yz
〉
z
· P (

Yz
)2)

g−
i (p,Y ),
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globally defined on G × g ∼= TG. Note that g̃−
i (p,Y ) = 0 if

〈
Yz,Yz

〉
z

≥ 0. We have
{
g̃−
i , g̃−

i ′
} = 0 for all i, i ′ = 1, . . . ,m by (4), (5), and (30). The Hamiltonian is written

in this case as

H(p,Y ) = 1

2
〈Y ,Y 〉 = 1

2

⎛

⎝
m/2∑

i=1

(
g−
i (p,Y ) − g−

i+m/2(p,Y )
)

+ 〈
Yz,Yz

〉
z

⎞

⎠ .

We can see that H Poisson commutes with g̃−
i , i =, 1 . . . ,m.

To construct functionally independent first integrals on TG, we further consider
the function

g̃i (p,Y ) := g̃+
i (p,Y ) + g̃−

i (p,Y ),

where i = 1, . . . ,m. In addition,we take the first integrals h�

(
Yz

) = yz� , � = 1, . . . , d,

where Yz =
d∑

�=1

yz� Z� ∈ z.

Theorem 4.2 The functions F̃w2i−1 , g̃i , i = 1, . . . ,m, h�, � = 1, . . . , d, in C∞ (TG)

are functionally independent and Poisson commuting first integrals for the pseudo-
Riemannian geodesic flow of the pseudo-H-type Lie group G = Gr ,s where s > 0.

Complete integrability on H -type Lie groups. In the case of H -type groups, the
scalar product 〈·, ·〉, as well as 〈·, ·〉z and 〈·, ·〉v, is positive-definite. Starting with an
orthonormal basis [X1, . . . , X2m] of v, we can normalize the operator j(Z), Z ∈ z.
with respect to a suitable orthonormal basis w1, . . . , w2m exactly as in the case of
pseudo-H -type groups under the condition 〈Z , Z〉z > 0. The existence of such an
orthonormal basis of v is guaranteed by the normal form of skew-symmetric matrices,
for which an equivalent but sophisticated description is given in [3, Lem. 2.3, p.777].
Note that m not necessarily is even in the case of H -type groups.

The first integrals F̃w2i−1 , g̃
+
i , i = 1, . . . ,m, and hz�, � = 1, . . . , d, are globally

defined differentiable functions on TG and, in particular, they are functionally inde-
pendent on TG. The Hamiltonian of the geodesic flow for the H -type groups is given
as

H(p,Y ) = 1

2
〈Y ,Y 〉 = 1

2

(
m∑

i=1

g+
i (p,Y ) + 〈

Yz,Yz
〉
z

)

,

from which we can conclude the following theorem.

Theorem 4.3 The functions F̃w2i−1 , g̃
+
i , i = 1, . . . ,m, and h�, � = 1, . . . , d on TG,

are functionally independent and Poisson commuting first integrals for the geodesic
flow of the H-type nilpotent Lie group G = Gr ,0.
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5 Complete integrability on nilmanifolds

It has been shown in [9] that each pseudo-H -type Lie group Gr ,s contains a lattice L
(co-compact discrete subgroup). In the present section we explicitly construct com-
muting first integrals on the compact pseudo-H -type nilmanifold M = L \ Gr ,s with
respect to the pseudo-Riemannian metric descended from Gr ,s . In cases where the Lie
algebra Nr ,s of Gr ,s is of Heisenberg-Reiter type (HR-type) we descend sufficiently
many first integrals toM to prove the complete integrability of the pseudo-Riemannian
geodesic flow of M . We may as well assume that Gr ,s is equipped with a left-invariant
Riemannian metric g andNr ,s is of HR-type. In [3] Butler has shown that under these
assumptions the geodesic flow of g is smoothly Liouville integrable on T ∗(L \ Gr ,s)

(see also [14] for the case of the Heisenberg group). However, it seems that a complete
classification of pseudo-H -type Lie algebras of HR-type is not known and we leave
this problem for a future investigation.

Definition 5.1 A step-two nilpotent Lie algebra g is called a Heisenberg-Reiter Lie
algebra, if g admits a decomposition

g = r ⊕ n ⊕ z (31)

such that [g, g] ⊂ z, [z, g] = 0, [r, r] = 0, and [n, n] = 0. The decomposition (31) is
called a presentation of g.

Example 5.2 Let r = 0 and considerG0,s with Lie algebraN0,s = v⊕R
0,s and center

z = R
0,s . As is shown in [5],v has a positive-definite subspacev+ and negative-definite

subspace v− of the same dimension, i.e. 〈·, ·〉v is positive-definite on v+ and negative-
definite on v−. We can choose v+ and v− orthogonal to each other. Hence we have
the decomposition:

N0,s = v+ ⊕⊥ v− ⊕⊥ R
0,s .

Since each 0 �= Z ∈ R
0,s = z is negative it can be shown that j(Z) : v → vmaps v+

to v− and vice versa. In fact, let X ∈ v+, then (6) implies:

〈
j(Z)X , j(Z)X

〉
v

= 〈
Z , Z

〉
z
· 〈X , X

〉
v

< 0.

If we put r = v+ and n = v− in (31), then [N0,s,N0,s] ⊂ R
0,s = z and [z,N0,s] = 0.

Moreover, with X1, X2 ∈ v+ and Y1,Y2 ∈ v− we have for all Z ∈ R
0,s :

〈[X1, X2], Z
〉 = 〈

j(Z)X1, X2
〉 = 0,

〈[Y1,Y2], Z
〉 = 〈

j(Z)Y1,Y2
〉 = 0,

showing that [v+, v+] = 0 = [v−, v−]. Hence N0,s is of Heisenberg-Reiter type.

The next example shows that the condition r = 0 is sufficient but not necessary for
Nr ,s, being of HR-type.
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Example 5.3 Consider the pseudo-H -type Lie algebra N1,1 = v ⊕ R
1,1 and choose a

basis {Z1, Z2} of R
1,1 = z such that

〈Z1, Z1〉z = 1, 〈Z2, Z2〉z = −1, and 〈Z1, Z2〉z = 0.

An admissible C�1,1-module v has dimension 4. Let v ∈ v with 〈v, v〉v = 1 and
choose an integral basis (cf [2,9,10]) [X1, . . . , X4] of v as follows:

X1 = v, X2 = j(Z1) j(Z2)v, X3 = j(Z1)v and X4 = j(Z2)v.

Note that X1, X3 are positive and X2, X4 are negative. Moreover, from (2) we obtain
the following table of commutation relations:

X1 X2 X3 X4

X1 0 0 Z1 Z2
X2 0 0 Z2 Z1
X3 −Z1 −Z2 0 0
X4 −Z2 −Z1 0 0

If we define r = span{X1, X2} and n = span{X3, X4}, then we obtain a decompo-
sition of g in the form (31) which shows that N1,1 is of HR-type.

We pass from the pseudo-H -type Lie groupGr ,s to the compact quotient L\Gr ,s by
a standard lattice (co-compact discrete subgroup) L in Gr ,s . Recall that by Malćev’s
Theorem the existence of L is guaranteed if the pseudo-H -type Lie algebraNr ,s admits
a basis with rational structure coefficients. This fact is proved in [9]:

Theorem 5.4 ([9]) Let Nr ,s = v ⊕⊥ R
r ,s be a pseudo-H-type Lie algebra. For each

orthonormal basis {Z�} in the center z ∼= R
r ,s , there exists an orthonormal basis {Xi }

in v with respect to which the structure constants c�
i i ′ in

[Xi , Xi ′ ] =
∑

�

c�
i i ′ Z�

only take the values {0,±1}. Moreover, if [Xi , Xi ′ ] does not vanish, then there is a
unique element Zk(i,i ′) such that

[Xi , Xi ′ ] = εk(i,i ′)Zk(i,i ′), where εk(i,i ′) ∈ {−1, 1}. (32)

Let [X1, . . . , X2m, Z1, . . . , Zr+s] denote an (integral) orthonormal basis of Nr ,s as
described in Theorem 5.4 above. Then the lattice in Gr ,s generated by the group
elements {exp(Xi ), exp(Z�) : i = 1, . . . , 2m, � = 1, . . . , r + s} is given by:

L = exp
{ 2m∑

i=1

γi Xi + 1

2

r+s∑

�=1

β�Z� : γi , β� ∈ Z

}
. (33)
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With i = 1, . . . , 2m we consider the set of first integrals F
X (r)
i

in Proposition 3.2

induced from Killing vector fields of right-invariant vector fields

F
X (r)
i

(p,Y ) = 〈
X (r)
i (p),

(
dL p

)
eG

Y
〉
p = 〈

Xi , j(Yz)Wv−Y
〉
with p = exp(W ) ∈ G.

Fix an element g = exp(V ) ∈ L in the lattice with V ∈ Nr ,s and Vv = ∑2m
i=1 γi Xi

where γi ∈ Z. A direct calculation using (log(g ∗ p))v = Vv + Wv implies

F
X (r)
i

(g ∗ p,Y ) = F
X (r)
i

(p,Y ) + 〈
Xi , j(Yz)Vv

〉 = F
X (r)
i

(p,Y ) + Gi,g(Yz), (34)

where we use the notation

Gi,g(Yz) := 〈
Xi , j(Yz)Vv

〉 =
2m∑

i ′=1

γi ′
〈
Xi , j(Yz)Xi ′

〉
with i = 1, . . . , 2m.

Consider the matrix-valued function M(Yz) := (〈Xi , j(Yz)Xi ′ 〉)2mi,i ′=1. We may write
(34) in the more compact form:

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ (g ∗ p,Y ) =

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ (p,Y ) + M(Yz)

⎛

⎜
⎝

γ1
...

γ2m

⎞

⎟
⎠ . (35)

In the following let

Nz := {
z ∈ z : 〈z, z〉z = 0

} ⊂ z

denote the set of all null-vectors in the center z. If Yz /∈ Nz, then M(Yz) is invertible
since j(Yz)2 = −〈Yz,Yz〉zidv. Multiplying both sides of (35) with M(Yz)−1 gives

M(Yz)
−1

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ (g ∗ p,Y ) = M(Yz)

−1

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ (p,Y ) +

⎛

⎜
⎝

γ1
...

γ2m

⎞

⎟
⎠ .

From the latter relation we construct 2m functions on Gr ,s × (Nr ,s \Nz) which are
invariant under multiplication from the left by elements g ∈ L in theGr ,s-component.

Proposition 5.5 Define an R
2m-valued function F̃(p,Y ) on Gr ,s × (Nr ,s \ Nz) by:

F̃(p,Y ) := M(Yz)
−1

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ (p,Y ) =

⎛

⎜
⎝

F̃1
...

F̃2m

⎞

⎟
⎠ (p,Y ).
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Then for i = 1, . . . , 2m the functions fi on Gr ,s × Nr ,s defined as

fi (p,Y ) :=
⎧
⎨

⎩
e
− 1

〈Yz,Yz〉2z · sin
(
2π F̃i (p,Y )

)
, if Yz /∈ Nz,

0, if Yz ∈ Nz

are invariant under the left-action of L, i.e. fi (g ∗ p,Y ) = fi (p,Y ) for all g ∈ L.
Moreover, if in the above construction the functions

{
F
X (r)
i1

, . . . , F
X (r)
i j

}
⊂ C∞(TGr ,s), i� ∈ {1, . . . , 2m},

pairwise Poisson commute, then { fi1 , . . . , fi j } pairwise Poisson commute, as well.

Proof We only prove the last statement. For each ε > 0 consider a cut-off function
χε ∈ C∞(R) with 0 ≤ χε ≤ 1 and

χε(x) =
{
0, if |x | ≤ ε

2 ,

1, if |x | ≥ ε.

Assume that {F
X (r)
i

, F
X (r)
i ′

} = 0 where i, i ′ ∈ {1, . . . , 2m}. Since the Poisson bracket

is a local expression, it is sufficient to prove that for all ε > 0:

{
e

−1
〈Yz,Yz〉2 sin

(
2π F̃i (p,Y )χε(〈Yz,Yz〉)

)
, e

−1
〈Yz,Yz〉2 sin

(
2π F̃i ′(p,Y )χε(〈Yz,Yz〉)

)}

= 0.

According to the Leibniz rule this equality follows if for each ε > 0 we can show that

0 =
{
e

−1
〈Yz,Yz〉2 , sin

(
2π F̃i ′(p,Y )χε(〈Yz,Yz〉)

)}
=: K1,

0 =
{
sin

(
2π F̃i (p,Y )χε(〈Yz,Yz〉)

)
, sin

(
2π F̃i ′(p,Y )χε(〈Yz,Yz〉)

)}
=: K2.

We now use the standard relation

{
�(F1),�(F2)

} = �′(F1)� ′(F2)
{
F1, F2

}
, (36)

where �,� : R → R are smooth functions and F1, F2 ∈ C∞(T ∗Gr ,s). Below we
choose �(t) = t and �(t) = sin(2π t). By definition we have in the case of Yz /∈ Nz:
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F̃i ′(p,Y ) = eTi ′ · M(Yz)
−1

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠

= − 1

〈Yz,Yz〉z e
T
i ′ · M(Yz)

⎛

⎜⎜
⎝

F
X (r)
1
...

F
X (r)
2m

⎞

⎟⎟
⎠ = − 1

〈Yz,Yz〉z
2m∑

q=1

Mi ′,q(Yz)FX (r)
q

,

where we write ei ′ = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
2m and the non-zero entry appears

at position i ′. Hence

K1 = − cos
(
2π F̃i ′(p,Y )χε(〈Yz,Yz〉)

)2πχε(〈Yz,Yz〉)
〈Yz,Yz〉

2m∑

q=1

M(Yz)i ′,q

×
{
e

−1
〈Yz,Yz〉2 , F

X (r)
q

}
= 0.

In the last equationwehave usedProposition 3.8,which implies that forq = 1, . . . , 2m

the Poisson brackets {e
−1

〈Yz,Yz〉2 , F
X (r)
q

} vanish. In order to prove that K2 = 0 it suffices

[because of (36)] to show that

K̃2 :=
{
F̃i (p,Y )χε(〈Yz,Yz〉), F̃i ′(p,Y )χε(〈Yz,Yz〉)

}
= 0.

We insert the definition of F̃i , F̃� and again use M(Yz)−1 = −〈Yz,Yz〉−1
z M(Yz) for

Yz /∈ Nz. Applying Proposition 3.8, (c) again gives:

K̃2 = χε

(〈Yz,Yz〉z
)2

〈Yz,Yz〉2z
2m∑

q1,q2=1

M(Yz)i,q1M(Yz)i ′,q2

{
F
X (r)
q1

, F
X (r)
q2

}
.

Recall that
{
F
X (r)
q1

, F
X (r)
q2

}
= 〈[Xq1, Xq2 ],Y

〉 = 〈
j(Yz)Xq1, Xq2

〉 = −M(Yz)q1,q2 . (37)

Applying the relation M(Yz)2 = −〈Yz,Yz〉z we have:

K̃2 = χε

(〈Yz,Yz〉z
)2

〈Yz,Yz〉2z
(
M(Yz)

3
)

i,i ′

= −χε

(〈Yz,Yz〉z
)2

〈Yz,Yz〉z M(Yz)i,i ′ = χε

(〈Yz,Yz〉z
)2

〈Yz,Yz〉z
{
F
X (r)
i

, F
X (r)
i ′

}

︸ ︷︷ ︸
=0

= 0.

This proves the assertion. ��
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Since the functions ( fi )2mi=1 in Proposition 5.5 are invariant under left-multiplication
by elements in the lattice L we can descend them to functions (Fi )

2m
i=1 on T (L\Gr ,s).

This tangent bundle is identified with (L\Gr ,s) × Nr ,s . More precisely, put:

Fi (Lp,Y ) := fi (p,Y ) where (Lp,Y ) ∈ (L\Gr ,s) × Nr ,s .

In addition, all left-invariant functions g on T (Gr ,s) ∼= Gr ,s ×Nr ,s do not depend on
the Gr ,s-coordinate and therefore they descend to functions on T (L\Gr ,s), as well,
which we denote by g. Let

π : T (Gr ,s) ∼= Gr ,s × Nr ,s → T (L\Gr ,s) ∼= (L\Gr ,s) × Nr ,s

be the projection which is a Poisson map, i.e. for all f , g ∈ C∞(T (L\Gr ,s)) we have:

{
f ◦ π, g ◦ π

} = {
f , g

} ◦ π.

Let [X1, . . . , X2m, Z1, . . . , Zr+s] denote an (integral) orthonormal basis of Nr ,s as
described in Theorem 5.4 and let L ⊂ Gr ,s be the corresponding lattice in (33). Now
we can state and prove the main result of the present section.

Theorem 5.6 Assume that the matrix of commutation relations has the form

C := ([Xi , Xi ′ ]
)2m
i,i ′=1 =

(
0m Am

−Am 0m

)
∈ R

2m×2m, where 0m, Am ∈ R
m×m

(38)
and 0m denotes the matrix with zero-entries. Then the geodesic flow on T ∗(L\Gr ,s)

is completely integrable in the sense of Liouville with smooth first integrals.

Proof From the form of the matrix C in (38) and Proposition 3.8, (c) it is clear that
the functions [F

X (r)
1

, . . . , F
X (r)
m

] pairwise Poisson commute. According to Proposi-

tion 5.5 they descend to Poisson commuting function [F1, . . . , Fm] on T (L\Gr ,s) ∼=
T ∗(L\Gr ,s). In addition, the mutually Poisson commuting first integrals g̃1, . . . , g̃m ,
yz1, . . . , y

z
r+s constructed in Theorem 4.2 descend to T (L\Gr ,s) as well and Poisson

commute with the former ones. In total we have found 2m + (r + s) = dimGr ,s

Poisson commuting smooth first integrals of T ∗(L\Gr ,s). ��

The result in Theorem 5.6 is not sharp. We present an example of an integral basis
in N1,2 that does not induce commutation relations as in (38) However, we can still
prove complete integrability of the geodesic flow on T (L\G1,2):

Example 5.7 Consider the pseudo-H -type algebra N1,2 = R
2,2 ⊕⊥ R

1,2 which can
be shown to be not of HR-type. We can take basis elements X1, . . . , X4 ∈ R

2,2 and
Z1, Z2, Z3 ∈ R

1,2 such that 〈X1, X1〉 = 〈X2, X2〉 = 1, 〈X3, X3〉 = 〈X4, X4〉 = −1,
〈Z1, Z1〉 = 1, 〈Z2, Z2〉 = 〈Z3, Z3〉 = −1. The matrix of commutation relations can
be computed from [2, Table 6, p.570]:
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([
Xi , Xi ′

])4
i,i ′=1 =

⎛

⎜⎜
⎝

0 Z1 Z2 Z3
−Z1 0 Z3 −Z2
−Z2 −Z3 0 −Z1
−Z3 Z2 Z1 0

⎞

⎟⎟
⎠ , (39)

showing that it is not of the form (38). From (37) and (39) we observe that:

{
F
X (r)
1

, F
X (r)
2

}
+

{
F
X (r)
3

, F
X (r)
4

}
= 0 =

{
F
X (r)
1

, F
X (r)
4

}
−

{
F
X (r)
2

, F
X (r)
3

}
. (40)

Consider the new functions S1 := F
X (r)
1

+ F
X (r)
3

and S2 := F
X (r)
2

+ F
X (r)
4
. By using

(40) one finds that {S1, S2} = 0. As in Proposition 5.5 (and with the notation there) we
construct Poisson commuting smooth functions f j ∈ C∞(TG1,2) for j = 1, . . . , 4
which are invariant under the left-multiplication by L in the G1,2-component. Put

s1 := f1 + f3 and s2 := f2 + f4.

As in the proof of Proposition 5.5 one finds that s1 and s2 Poisson commute.Moreover,
s1 and s2 descend to T (L\G1,2) and as inTheorem5.6we can complement thembyfive
first integrals descended from left-invariant functions on T (G1,2) ∼= T ∗(G1,2) to prove
the complete integrability of the pseudo-Riemannian geodesic flow. on T ∗(L\G1,2).

Problem: Finally, we would like to mention two open problems related to the analysis
in this paper:

(1) Give a complete classification of pseudo-H -type Lie groupsNr ,s of Heisenberg-
Reiter type.

(2) Completely characterize the class of pseudo-H -type nilmanifolds L\Gr ,s with
completely Liouville integrable pseudo-Riemannian geodesic flow.

Acknowledgements We thank the referee for many useful hints that improved the presentation of the paper.
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