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1 Introduction

Many approximation problems including the convergence of the Fourier series hinge
upon the local property of the functions as it is seen from the Dini criterion. We aim
to show that the function spaces with variable exponents are useful in this direction
of research. Studying function spaces with variable exponent is now an extensively
developed field after the advent of two books [6,8] on variable exponent Lebesgue
and Sobolev spaces. Nowadays many mathematicians solved many problems about
the boundedness of various operators of harmonic analysis in these spaces including
a number of weighted counterparts. Among others there are also various advances in
Morrey spaces with variable exponent, but to a less extent than in Lebesgue spaces
with variable exponent.

Morrey spaces emerged in close connection with the local behavior of the solutions
of elliptic differential equations and they describe local regularity more precisely
than Lebesgue spaces; see, for example [11-13,31]. Morrey spaces, introduced by
C. Morrey in 1938, have been studied intensively by various authors. For classical
Morrey spaces we refer to the books [12,18,27] and the recent survey papers [15,21];
in the last reference we can find information on various versions of variable exponent
Morrey spaces. Let X be a metric measure space. The Morrey space M?)-*()(X)
with variable exponents p(-) and A(-) on the Euclidean spaces or on metric measure
spaces was introduced and studied in [4,10,17,20].

Meanwhile, a considerable number of mathematicians has studied variable expo-
nent Lebesgue spaces during last three decades. In this direction, the authors [4]
introduced the Morrey space MP?):*()(Q) with variable exponents over an open set
2 C R”. In these spaces, the boundedness of the maximal, potential and singular
integral operators are obtained; see [14]. We aim to study approximation properties
of trigonometric polynomials in the Morrey space MP)-*()[0, 2] with variable
exponents. In the theory of approximation, variable exponent spaces are useful to
show that the approximation is essentially local. For example, the Fourier series of
f € L'0, 2] converges back to f(x) when x € (0, 277) satisfies the Dini condition

t
/ | f (D)l df = oo
[x—1,x+1]n[0,27] |X* — ]

We show that this idea is applicable to many practical approximations using variable
exponent spaces.

One of the main results of the paper is the boundedness of the Steklov operator s,
with 0 < h < 2m given by:

1 h
sp(fx) = Z/o f(x+1vdt (x €]0,2r]) (1.1)

within the framework of the Morrey space M?)-*()[0, 277] with variable exponents;
see Theorem 1.2. Here and below forany f € L 110, 271, we define f(x)=f(x—2m)
forx € 2m,4n]and f(x) = f(x+2x) forx € [—2m, 0), so that (1.1) makes sense.
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Before we recall the definition of MP-*0[0, 2771, we recall the definition of the
classical Morrey space M?+*[0, 2r]. Let0 < A < land 1 < p < co. We consistently
write

I =10,27], I(x,r)=(x—r,x+r)CR, i(x,r):l(x,r)ﬂlo

for intervals in this paper. The classical Morrey space MP?-*(Iy) is defined as the set
of all functions f € L”(ly) such that

_x
Il F I ppoargy = supfr P ||f||L,,(1~(x,r)) x€lp,0<r <2} < o0.

Under this definition we learn MP? ”\(10) is a Banach space; moreover, for A = 0 it
coincides with L? (Ip) and for & = 1 with L>(lp).If A < Oor A > 1, then itis easy to
see that MP*(Ip) = ®(Ip), where ®(Ip) denotes the set of all functions equivalent
to 0 on Ij.

Moreover, MP*2(Iy) € MP*1(Iy) for0 < A1 < Ay < 1. If f € MP*(Ip), then
f € LP(Ip) and hence f € L'(Iy).

Compared to Lebesgue spaces, Morrey spaces have the following remarkable fea-
tures: Let 1l < p <ocoand0 < A < 1.

(1) The function f(x) = x~U=2/P isin MP*(I).

(2) The Morrey space MP-*(Iy) is not reflexive; see [22, Example 5.2] and [30,
Theorem 1.3].

(3) Denote by C*°(Iy) the set of all functions that are realized as the restriction to I
of elements in C*°(R). The Morrey space MP-*(I) does not have C*(Ip) as a
dense closed subspace; see [29, Proposition 2.16].

(4) The Morrey space MP*(Ip) is not separable; see [29, Proposition 2.16].

If A = 0, all of these properties above fail to hold, since A/lp O(Iy) = LP(Iy) with
norm coincidence. Based on these properties, we define MP?+*(Iy) to be the closure
of C®(Iy) in MP*(Iy). Equipped with two parameters, Morrey spaces can describe
the local regularity and the global regularity more precisely than the Lebesgue spaces.
Our experience show that p describes the local regularity, while A describes the global
regularity. As it is hinted by the example of the Fourier series, we feel that p plays an
essential role. This fact is verified in this paper.

To express our idea clearly, we now define the Morrey space MP)*0)([y) with
variable exponents. Let p(-) : Iy — [1, 0o) be a continuous function such that

1< po=1pO) ey ™ < pr = POy < 00 (1.2)

and A() : Ip — [0, 1] be a measurable function. Following the convention, we add (-)
to indicate that the parameters are actually dependent on the position. Note that p(-) is
required to be continuous while A(-) is allowed to be merely measurable and bounded.
This implies that the local regularity is essential in the theory of approximation. We
remark that this fact is observed in [19, Theorem 4.4], [23, Theorem 4.1] and [24,
Theorem 3.3].
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We define the Morrey space MP)-*()([y) with variable exponents is the space of
measurable functions such that the modular

Iy (f) = sup r—*® / )If(y)l”(”dy (1.3)
I(x,r

xely
O<r<2m

is finite. The norm is defined by

. f
1 oo gy = ILf Il = inf {n ~0: Ip(.),x(.)(;) <1f.

In the setting of variable exponents, we adopt the following definition.

Definition 1.1 Let p(-) : Ip — [1, 00) be a continuous function satisfying (1.2), and
let A(-) : Ip — [0, 1] be a measurable function. Denote by M?” .20 (1) the closure
of the set of all trigonometric polynomials in MP*O) (1),

In addition of the above condition on p(-), we postulate

A 1
lp(x) —pW| < ———, O0<lx—y| <=, x,yel. (1.4)
—log|x — y] 2

Based on the definition above, we prove the uniform boundedness of the Steklov
operators in Morrey spaces with variable exponents under the log-condition on p(-).
In case of A(-) = 0, this result reduces to boundedness of the Steklov operators which
proved by L.I. Sharapudinov [25, Lemma 3.1].

Theorem 1.2 Let p(-) and L(-) be measurable functions suchthatQ) < A_ < Ay < 1.

Assume that p(-) satisfies conditions (1.2) and (1.4). Then the family of operators
{Sh}ne(0,271, defined by (1.1) is uniformly bounded in MPO2AO (1),

We organize this paper as follows: We shall recall necessary definitions and auxiliary
results on the boundedness of the Steklov operator in Sect. 2. We plan to compare the
boundedness of the Hardy-Littlewood maximal operator with the one of the Steklov
operator. Recall that the Hardy-Littlewood maximal function M f (x) on Iy is defined
as follows:

1
M(f)(x) = sup ——— [fldy (x € Ip). (1.5)

r>0 [ (x, 1) I(x,r)

In Sect. 3, we prove the boundedness of the Steklov operator given by (1.1) in
Morrey spaces with variable exponents under the log-continuity on p(-). Sections 4
and 5 contain the properties of the Jackson operators and the Bernstein type inequality
in Morrey spaces with variable exponents, respectively. Finally, the last section, Sect. 6,
is devoted to the direct and inverse approximation theorems in Morrey spaces with
variable exponents.
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2 Preliminaries
2.1 Morrey norms with variable exponents

There is another plausible definition of the norm: We may define the Morrey norm by:

_Ax)
[ fllo= sup r ?® ”in(x,r)”LP(-)([O),
xely
O<r<2m

However, Lemma 2.2 below shows that these norms are equivalent. The following
lemmas were proved in [4]:

Lemma 2.1 [4, Lemma 2] If p(-) be a measurable function on Iy with values in
[1, 00), and let A(-) be a measurable function on Iy with values in [0, 1), then for
every f € MPOXO) (o), the inequalities

LA < Loy (D) < UAIP™ i Ifli <1
IAI7™ < Loy (D) < UAIPE i Ifli =1

are valid fori =1, 2.
We also have
Lemma 2.2 [4, Lemma 3] For every f € MPOXO 00N, N flli = 11 flo.

By the coincidence of the norms we can put

I £ o201y = LI = 11f 12

2.2 Steklov function

Now, we introduce the Steklov function for a function f € L'[0, 27r]. One defines
f(x) = f(x —2m) forx € 2m,4n] and f(x) = f(x 4+ 2x) for x € [-2m,0). For
h>0and f € L0, 271, we define the Steklov operator by

1 [z hy 1 h
fie) == /_gf(xH)dt, s =hi(x+3) = [ farna @b

for x € [0, 27]. For f € MPO*O(Iy) and 8 < 27, we define

8

fi (x + %) ~fwld. @2

19 1
os(f) = 5/ Is: (f)(x) — f(x)|dt = 3/
0 0

We refer to the textbook [28] for this direction of research.
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Let WPOAO(1y) be the linear space of all f e MPO*O (L) such that
f e M? ():20) (o). Here the derivative is understood in the weak sense. If f e
WPOA0(1y), then we claim

llos (I arerr0 1) < CUL N aarer20 (1)

with constant C > 0independent of f, in other words o5 ( f) € MPO*O)([) provided
f € WPO2O([y). The proof of this assertion will be given in Lemma 3.4.

Let us compare the properties of the Steklov function and the Hardy-Littlewood
maximal function. So, we recall the corresponding boundedness of the Hardy-
Littlewood maximal operator in L?")(Iy) that was proved by Diening in 2002 in

[7]:

Theorem A [7, Lemma 2.9] Let p(-) be a measurable function on Iy assuming its
values in [1, 00), and suppose that p(-) satisfies conditions:

1 < p_ <py <o0, 2.3)

and (1.4). Then the Hardy-Littlewood maximal operator M is bounded on L?") ().

A. Almeida, J. Hasanov and S. Samko proved the counterpart to the above theorem
for Morrey spaces variable exponents proved [4]. Note that A.(-) need not be continuous.

Theorem B [4, Theorem 2] Let A(-) and p(-) satisfy 0 < A_ < A4 < 1, (1.4) and
(2.3). Then the Hardy-Littlewood maximal operator M is bounded on the Morrey
space MPO2O (1o) with variable exponents.

However for the problem of approximation of functions by the trigonometric poly-
nomials Sharapudinov in [26] proved that the Steklov operator in L?")(Iy) is bounded
and he used it to define modulus of continuity. We remark that we assume p(x) > 1
as in [26] instead of assumption 1 < p_; see [1-3, 16] for comparison.

Theorem C [26, Lemma 1] Let p(-) be a measurable function on Iy with 1 < p_ <

P+ < 0o. Assume that p(-) satisfies conditions (1.2) and (1.4). Then the family of the
Steklov operators {sp}o<n<1, defined by (1.1), is uniformly bounded on LPO ([0, 1]).

3 Uniform boundness of the Steklov operator

In this section, we prove Theorem 1.2.

Proof Let f € MPO20)(Iy). We need to show that

_Ax)
r PO sh () Lo ey < CIF Iaroo G-1)

forallr >0, h > 0 and x € Iy, where C is independent of f and x.
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If 0 < r < h, then for a nonnegative function 27 -periodic f on R, the following
trivial estimate holds:

3 min{x—r+2h,2m}
Isn ()@ = —f LfO)ldy

T h Jmaxix—r—h,0)
holds forall z € T (x, r). Thus by the fact that

1 — A(x)

o0 >0 (x €l

as well as the Holder inequality for variable Lebesgue spaces,

| f)ldy

_ M)
F P ||Sh(f)||LP(')(f(x,r)) < Cr r& — { h,0}
max\x—r—n,

1220 1 /min{x—r+2h,27r}

122w min{x—r+2h,27}
< Ch »r®

lf(»ldy

max{x—r—h,0}

= ClIf Il ampo20 (1)

and (3.1) is obtained.
If 0 < h < r, then we use Theorem C to obtain

_Ax) _Ax)
ropw ||Sh(f)||Lp(~)(i(x,r)) =r ||Sh(X[max{x7r,0},min{x+2r,2n}]f)”Lp(-)(i(x,r))

)
< Cr PO fll Lo ((max{x—r,0),min{x-+2r,27)])

= CIF I atr020 (19 -
Thus, we obtain the desired result. O
We give the following definition:
Definition 3.1 Maintain the same conditions as Theorem C on A(:) and p(-). Define

by o5 by (2.2). For any f € MPO*0)([p), the function ) 1) (f. ) : (0, 00] —
[0, 00), defined by

Qpoyae(fih) = sup llos (N atr020 (1) (3.2)
0<6<min(2m,h)

is called the modulus of smoothness of f in MPO-*0)(]p).

Lemma 3.2 Let p(-) and A(-) satisfy the same conditions as Theorem C.

(1) For fi, fr € MPOAO (1Y and h > 0,

Qpa0 U1+ 2, 8) < Qpoy e (1, 1) + Qpyae (f2, b). (3.3)
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(2) For f € MPOO (1),
lim 2p),1)(/: 8) = 0. (3.4)

Proof Inequality (3.3) is clear from the triangle inequality of M?” 20 (). For (3.4),
first we prove in the case of trigonometric polynomials, i.e. we assume that g is a
trigonometric polynomial and hence g is uniformly continuous. Let ¢ > 0 be fixed.
Let Cyp > 0, whose precise value will be made clear shortly. Writing out

0s5(g)
L= 1Tp0)00) <—1>
Co2r-¢

fully, we have

1 5 p(y)
I= sup r*® / ( 1 / |sf(g)(y>—g<y)|dr> dy
xely I(x,r) 2r=¢§ 0

O<r<2m

1 1)
= sup r 0 /; : /
xely I(x,r) \2p=g§ /0

O<r<2m

1 [t p(y)
;/0 gy +h) — g()’))dh‘dr> dy.

For any & > 0, there exists 8o = do(e) > 0 such that
lg(x) —glx +1)| <¢ (3.5)

for0 <t < §p and x € Iy. Hence for 0 < h < §p, using (3.5), we have

1 ~
I<- sup r*w‘)|l(x,r)| < sup PEACoR
2 xely xely
O<r<2m O<r<2m
If we let
Co= sup Pl
xely
O<r<2m
then we obtain 1
llos (@) I pgperie gy < Co2P- & (3.6)

forO < h < .
By the triangle inequality, we have

I1Lf = st (O agp0200 (1)
<If- g”/\/[p('M(‘)(]O) +llg — St(g)”/v(p(-),k(»)(lo)
+ lIs:(g) — St(f)”Mp(-)‘k(-)([O) 3.7
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forany f € /\A/lll’(')’”')(lo). Now for given ¢ > 0, we choose a trigonometric function
g such that

If = &l pmrorio gy < & (3.8)

By (3.6), for any trigonometric function g, we can find 8o = Jop(¢) such that
g = st prerio gy = &
for 0 <t < §. Finally, by Theorem 2.1 and (3.8) we have
st (&) = st (O agrornogy) < (p)e (3.9)
and by (3.7) and (3.9) we have
1f = se (Dl aposoy < cple, 0=t <do(e). (3.10)

Combining (3.1) and (3.2), we have (3.4) for any f € MPO-*0)([y). O
The following lemma is a generalization of Minkowski’s inequality:

Lemma 3.3 Let p(-) and A(-) be measurable functions on Iopwith1 < p_ < p4y < 00
and 0 < A_ < A4 < 1, and f be a measurable function defined on Iy x Iy. Then the
following inequality is valid:

Proof We have

= I fC.7) ”Mp(-))»(-)([o) dr.
MPOAO) () Iy

f(,dr
)

A(x)
[, t)dr = sup r P& f(,t)dr 3 (3.11)
’ Iy MPOXO([y) xely Io LPO I (x,r))
O<r<2m

by the definition of the Morrey norm || - ||Mp(.>,x<.)(10). Now by [15], we have

_ A _ A
sup r PW f(,drt ; < sup r P® fG, ) B dt
xely Io LPO(I (x,r)) xely Io LPO(I(x,r))
O<r<2m O<r<2m

(3.12)
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By combining (3.11) and (3.12), we have

fe o

A(x)
T dr” < su riW/ B dt
” ]Of( ) MPOXO (1) xei I LPO (x,r))

O<r<2m

_ M)
= sup r p(x)
Iy xe€ly

O<r<2m
/10

VACE Y H
Lemma 3.4 Let p(-) and L(-) be measurable functions on Iy satisfying 1 < p_ <
pr <ooand0 < A_ <Ay < 1, Letalso f € WPOPO (Iy). Assume in addition that
p(-) satisfies conditions (1.2) and (1.4). Then

VACKY)

. dt
LPO I (x,r))

dt
MPOAO ([y)

O

o5 () agrrr0g) < CPEIS I I agporr0 ) -

with the constant C(p(-)) > 0 independent of f.

Proof Let f € WPOXO(Jy). Then f € MPO-*O(]y). Inserting the related defini-
tions used to define o5( f), we obtain

Ua(f)H = sup 00 05(f))(~ (.)‘
b Amrosow  xely § Loy
<r<Zim
NIk </5 -+ f\dz) 0|
= sup r PO [ — =) - Feem G
xeg 2\ Jy V! 2 X1 oo o)
O<r<2m
-5 2 </8 l/t(f( +h) f)dh‘dt) ()]
= sup r @[ = - . — = .
xeg 82 \Jo It Jo X1 S oo )
O<r<2m
a1 Slv ot
= s B (L o) sl
xXe .
0<r<02n
(3.13)

Let y € Iy. By the Fubini theorem, we have

! y+h ! !
/ (f f(r)dr) dh = / (/ &+ r)x(o,h)(r)dr> dh
o \Jy o \Jo
t t
= /0 </0 X(o,h)(f)dh) f'&y+vydr

'
= / f'(y+ 1)t —1)dr. (3.14)
0
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By substituting (3.14) into (3.13) we obtain

os(f) H
s MPOAO([y)
EXE RIS B LN I L -
< sup r P® <_2/ /—f/('-l-f)d‘t dt) xf(x,)(-)‘
xely 8 Jo IJo 1 ’ LPO(Ip)
O<r<2m
s (lfsftlf% )| d d) ©
< sup r rw — -+ 1)|dtdt ) x5, ‘ .
en 82 Jo Jo T&n ™2 Leo )
O<r<2m
By the triangle inequality for integrals we have
Ga(f)H _ k) 1( /5 ,
RCAES < sup r 0| — tse(1f D de | x7
$ MPOLAO (1) xelp 82 0 ! IGx.r) LPO) (1p)
O<r<2m
ERISYE AT
< sup r W))—(/ Sz(lf/l)df)XT(xr)
xely 5 \Jo PO 1)
O<r<2m
gyl 8
< sup r rwW g/ (sl(|f/|)X7(x,r))dt‘ o .
xely 0 LP® (1o)
O<r<2m
(3.15)

Now, by Minkowski’s integral inequality for variable exponent Lebesgue space, we
have

os(f) ~ug 1
; < sup r P“’)g st (LED Xeem lLro (1)t
MPOXO (L) xely 0
O<r<2m

St(|f/|) XTx,r)

_ A0
< sup r r® sup
>0

xely t LPO (Ip)
O<r<2m
=sup |5 (| f/ H
sup 305D o
and, hence by applying Theorem 1.2, we complete the proof. O

We define
I pgroa0 ) = 1L I agp020 (1)

for a function as long as the definition of f " makes sense as an element in L' (/) and
MPOAO () is the set of all £ whose weak derivative f” satisfies 1A pgperaer gy <
0.



1276 V. S. Guliyev et al.

Let f € MPO20O (). The K-functional of MPO-*0) (o) is defined as follows:

K(f t = inf — te || agperac
(fs 1) pr©r20 (1) geWp(_w_)(lo){Hf 8l amroa6 gy + 118 I preri0 (1) }

for t > 0. We recall

Qpeyae) (fs 1) = sup llos ()l pper20 (1) -
|8|=<t
For h > 0, this K-functional K (f, h)Mp(A),x(.)(IO) and ,y,1() (f, h) are equivalent as
the following lemma shows:

Lemma 3.5 Let p(-) and A(-) be measurable functions on Iy. Assume that A(-) satisfies
condition 0 < A_ < Ay < 1 and that p(-) satisfies conditions (1.2) and (1.4). Then

€ Qpya() (s h) = K(f, ) ppor20 1) < CRpyar (fyh), h >0

for everyr € Nt and for all f € MPO*O (Iy) with constants ¢, C > 0 independent
of f and h.

Proof Let g € WPO2O (). If we write out the definition of o5(g)(x) out in full,
then we obtain

@@ =7 [ [uww —gla = [ [a(x+ 1) - scolar
2 2

Using Lemma 3.4, we have

Qp)) (g 1) < sup C(P(NS 1€ Il proraor 1) = CRENR NG | Apera0 (14 -
s<h

Hence, taking into account the definition K (f, 1) r4 POIO (fg)» by choosing g suitably,
we obtain

Qpoao(fih) < Qpoae(f —& h) + Qpoaen (g h)
< C(PO) (I = gl pmrorao gy + lE | ppor20 (1))
<2C(p)K (s h) pror 20 (1)

for any f € MPOAO([p).
In order to prove the converse inequality, we introduce a Steklov-type transform
for f € MPO O ([p) and h > 0:

Goneo =2 [ [ Naras= 2 " [ Naras
flhx—h/ga/éf,(x+2) —h(sfg/gf,(xsz) ,
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where
1 v
So(x) = —/ fx+w)ydw.
v Jo
Then

||(f1)h - f”/\/(p(-),x(‘)uo)

A(x)

= sup r PO ((fl)h—f>X7(x,r)

xely LPO(Iy)
O<r<2m
) 2 (2 8 t
= sup r PO (Z . 5 s f;<-+§)—f dtds ¢ X7ix.r)
03, z "2 L0 (lo)

Now, by Minkowski’s integral inequality for variable exponent Lebesgue space, we
get

IR = Fllproao 1)

—“(‘ith 2/8(f DY r)a ds
g 2L () )
el rJu | \e Js \PVTT2 Ter) o
O<r<2m 0
2 JEX;Z/h l/5<f +2) = f@) )d ds
<2 sup r P®= {— ( _)_ X f}X”
xely iy s Jo \"V T2 DN o0 o)
O<r<2m
1 (8 t
=2 sup |~ lft('—i‘—)—f}dt .
h<s<h 3 Jo 2 MPOXO (1)
By the triangle inequality,
1 [? t
ICfDn = fllppoaeo gy <2 sup 3 f, + 5 — fldr
0=<d=<h 0 MPORO (Ig)
=2 sup llos() pp020 1)
0<8<h
=2Qp0)a0 ). (3.16)

Meanwhile, by differentiating ( f1);(x) in x, we have

co 22 ) - f)
) = = / ; / LEADZI g1g5.
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Therefore

’ _% ,

(- B = S px ~
”(fl)h”M’()’A()(IO) xg}?) r ((fl)h)XI(x,r) LPO(Ip)
O<r<2m
_}»Ex)) 2 h 2 S 1
= 52}3 ror (E/ﬁ 5/@ ;(f('+f)_f)dfd5)x1(x,,)

9 2 2

O<r<2m

Now, by Minkowski’s integral inequality once again,

’ _Ax) 2
I DRl pmro a0y < sUp 7 PO —
xely h

O<r<2m

SN L)

From the definition of €, () (f, ), we have

ds
L0 (1)

||(fl)h||/\/[p(->,?\(-)(10) < 8h~! sup
%§8§h

1 8
(5 [ cern=par) s,

A(x)

X sup r P&

xely LPO(Ip)
O<r<2m
<8h™' sup  los(H)llproio g = 88 Lpy.ac) (f h).
0<d6<h

As a result, from (3.16) and (3.17), we deduce

K(f, t)Mp(-),A(-)(IO) =< ||f - (fl)h”,/\/[rf(-).k(-)(]())
F RN D pr004g) < € Lpeyay (f h).

Thus, we obtain the reverse inequality.

4 Jackson operators

LPO(Iy)

(3.17)

To prove the direct theorem, we need some properties of Jackson operator. The Jackson

kernel of order # is defined by:

1 .4 nt 4t
Ju(t) = —————sin” —cosec” —, n=1,2,3, ...
2n(2n? +1) 2 2

The kernel J,, satisfies
T
/ J.()dt =
—TT

“.1)
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and

b3
5
/ tJ,(H)dt < i 4.2)
0 21’1

for each n € NT; see [9, Page 144].
Let n € N. We consider the Jackson operator D,, defined by:

w

1
Dn(f)(X)=; fx+10)Jp(t)dt

-7

due to the first property of Jackson kernels, we have
1 T
fx) = Du(f)x) = P [f(x) = flx+D]Ja(0)dt.
—7T

Lemma 4.1 Forall f € WPO*O) (Ip),

Cp())

I/ = Da(O aror0 (1) = I N aape20 (1) -

Proof Since f € WPOAO (1), for x, t € Iy, we have
X+t ,
st se= [ fwan
X

Thus, we calculate

If = Da (O Apo20 (1)

Ax)
= sup r rW ( -D >~
xeg J = Pl )X LPO(Ip)
O<r<2m
JEx;(lfﬂ[f Fe+n] Jdr)
= sup r PO — _f(at 0dt )y
xeg T Jon " 16 | Lpe 1)
O<r<2m
SN L™ Favau) a0
= su rp(x){_/_ Muttt}~
ey <” —n b J. Fw ) O X Loy
O<r<2m
e (1/” O @) dr)
= sup r r@|— P VT (1) dt ) v+ '
xeg 7)o " AT.r LPO) (Ip)

O<r<2m
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Now, by Lemma 3.3 and (4.2), we obtain

tJ,(t) dt

S;(f)XT(x,r) LPO (Ip)

a0 1 [T
1f = DDl arosoy < sup 1770 —
—TT

xely
O<r<2m

5 _ M) /
<— su sup r P& |s 7
~ 2n 771§lp§7r xe};()) [(f ) Xl(x,r) LPO) (Iy)
O<r<2m
Now using Theorem 1.2, we have
5 , Clp(),
s - Dn(f)”MP(J‘M‘)(]O) < ——sup |ls;(f )”Mp('M(-)([O) = Il f ||MP<4).A(~>(1O),
21 teq, n
as was to be shown. O

5 Bernstein inequality for variable exponent Morrey spaces

Denote by P, the set of trigonometric polynomials having degree not exceeding n.
For f € MPOXO (o), p(-) € L®(Ip) and A(-) € L™®(p) satisfying conditions in
Theorem 1.2, we define

En(f)Mp(-),A(-)(IO) = inf{|| f — Tn||M1r(-).A(-)(10) 1 Ty € Puls
which is called the minimal error of approximation of f in the class P,,.
Thanks to Lemma 4.1 the following estimate holds:

Lemma 5.1 Let the exponents p(-) and A(-) satisfy 0 < A_ < Ay < 1, (1.2) and
(1.4). Then c
En(f)/\/l!’(‘)v’h(')(lo) = ;”f ||Mp<->,x(~)(10), neN*t

forall f € WPOAO (10) with the constant C = C(p(-)) independent of f.

To prove the inverse theorem in Morrey spaces with variable exponents, we need a
Bernstein type inequality in this space. To this end, we present the following lemma:

Lemma 5.2 Let A(-) be a measurable function on Iy suchthatQ < A_ < Ay < 1, and
let p(-) satisfy conditions (1.2) and (1.4). Then for every trigonometric polynomial Ty,
in P, and k € N*

||Tn||,/\/1p(->.?»(-)(10) =< An”Tn”MP(-)J»(-)(]O), ne N+,
where

A= sup sup £+ Dl agp0.20 1)
1€[0,27] FeMPOAO (1), HfHMp(‘),M-)UO):]

is independent of n.
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Proof 1f follows from [5, p. 99] that

/ 1 [7
T,(x) = —/ T,(x +t)F,_1(t) nsinntdt (x € Ip),
T J-xn
where F;(t) is Fejer’s kernel of order n. Then using Lemma 3.3 and
T
/ F,_1(t)dt =2m,
—TT

we have

T

, 1 .
||Tn||,/\/1p(-).k(~)(10) = ;/ 1T (- + t)||Mp(-)-)»(~)(]0)Fn—l(t) n|sinnt| dt,
-

1 T
= An||T, ||Mp(»>,x<~>(10)5/ Fu_1(0)dt,
-7
=An|T, ||,/vlp(-),k(-)([0)

and the proof is complete. O

6 Direct and inverse theorems

Now we shall present the direct and inverse theorems in the Morrey space
MPOAO (15 with variable exponents as follows:

Theorem 6.1 (Directtheorem) Letn € N¥. Let p(-) and A(-) be measurable functions
on ly. Assume that A(-) satisfies condition 0 < A_ < Ay < 1 and that p(-) satisfies
conditions (1.2) and (1.4). Then

1
En(F) pmroror gy = C Qp).ac) (f, ;)

forall f € MPOXO (1y) with the constant C > 0 independent of f and n.
Proof Let g € WPOA0 (15 be arbitrary. By Lemma 5.1 we have

En(F) pmroror gy = En(f — &) mporio (1) F En(8) ppor20 (1)

C
=If- g”/\/lp(-),/\(-)(jo) + ;“g/||/\/[1’(')~)~(')(]0)'

Since this inequality holds for every g € WP)-*)(Iy) thanks to the definition of the
K-functional and by Lemma 3.5, we get

1
En(f)Mp(-),k(»)(lo) <CK <f, —

1
< CQy. A (f, —> .
n)M”'W')(lo) PO n

Thus, the proof of Theorem 6.1 is complete. O
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Theorem 6.2 (Inverse theorem) Let | € MPOAO (1), andn € N. Suppose that \.(-)
is an exponent satisfying 0 < A_ < Ay < 1, and that the exponenent p(-) satisfies
conditions (1.2) and (1.4). Then

1\ _4C ¢
poraey | foo ) == D En(f) pro020 1)
m=0

with the constant C > 0 independent of f and n.

Proof Let T, = D, (f) € P, be the polynomial of the best approximation to f in
MPO2O(10) . For any integer j = 1,2, ...,

1

1
T\ - o {”f = 8llpmroao g + 18" arora00 }
( n )Mm-).x(-)(/()) geWPO20) ([g) Mp (o) ™, Mp (o)

1
< Wf = Thirtll pporaor gy + ;||T2_/+1 Il ArO 20 (1)

from the definition of K (f, n~"). Using Lemma 5.2, we get

j
172541 | pporo 1y = NT1 = To Ml pgrer20 gy + Z T2+ — Toi | a0 (1)
i=0
j .
= C L IT = Toll pporo ) + Zf I Toi+1 = Toi ll pgrer20 (1)
i=0
< CEL() pmproror gy T CEo(f) pror20 (1)

J

+ Z 2! {Epini () pmproaogg) + Eai () Mmr00 1)}
i=0

j
< C{Eo(H) prorrorayy + D 2 Eni () pooraor 1)
i=0
= C{Eo(f) pmrora0(19) + 2E1() pper120 (1) }

J
+C Z 2! E2i (f)Mp(-)J»(-)(]O)-
i=1

Since

21
2 Esi () ppraor ) < C Z En () pror20 (1) (6.1
m=2=1+41
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fori > 1, we have

1T I pror0 gy < € 3 Eo() ppor20 (1)

2J
+ E\(H) ooz + D Em(F) pr0ao 1)
m=2
2J
< C L Eo () prorroriayy + D Em(F) prorno o)
m=1

Selecting j € Z such that 2/ < n < 2/+1 from (6.1) we get

2UDE, 1 () e300 (1)
Ej+1 () pmporior1y) = SGD

20+1)

IA

Eyj+1 () pmpor20 (1)

PR
; Z Ep (f)/\/[p(-),M-)([O)‘

m=2/"141

IA

Now from Lemma 3.5, we deduce that

1

1
2p().10) (f, —) =CK (f, —)
n ) MpO2XO (1)

Cc.
< CEyi1 (f) pror20 (1) + - 17,00 1l pp 20 (1) -

Finally, we calculate

2J
1 C
§2p(),0.0) <f7 ;) = Z En () pror 20 (1)
m:2./—1+]

2]
C
+ Eo(f) mrorao 1) + Z En () pror20 (1)

m=1

C n
= {Eo(f)Mp<~w->(10) + Z En () prorro (1) ¢ -

m=1

Thus, the proof of Theorem 6.2 is complete.
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