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1 Introduction

Many approximation problems including the convergence of the Fourier series hinge
upon the local property of the functions as it is seen from the Dini criterion. We aim
to show that the function spaces with variable exponents are useful in this direction
of research. Studying function spaces with variable exponent is now an extensively
developed field after the advent of two books [6,8] on variable exponent Lebesgue
and Sobolev spaces. Nowadays many mathematicians solved many problems about
the boundedness of various operators of harmonic analysis in these spaces including
a number of weighted counterparts. Among others there are also various advances in
Morrey spaces with variable exponent, but to a less extent than in Lebesgue spaces
with variable exponent.

Morrey spaces emerged in close connection with the local behavior of the solutions
of elliptic differential equations and they describe local regularity more precisely
than Lebesgue spaces; see, for example [11–13,31]. Morrey spaces, introduced by
C. Morrey in 1938, have been studied intensively by various authors. For classical
Morrey spaces we refer to the books [12,18,27] and the recent survey papers [15,21];
in the last reference we can find information on various versions of variable exponent
Morrey spaces. Let X be a metric measure space. The Morrey space Mp(·),λ(·)(X)

with variable exponents p(·) and λ(·) on the Euclidean spaces or on metric measure
spaces was introduced and studied in [4,10,17,20].

Meanwhile, a considerable number of mathematicians has studied variable expo-
nent Lebesgue spaces during last three decades. In this direction, the authors [4]
introduced the Morrey space Mp(·),λ(·)(�) with variable exponents over an open set
� ⊂ R

n . In these spaces, the boundedness of the maximal, potential and singular
integral operators are obtained; see [14]. We aim to study approximation properties
of trigonometric polynomials in the Morrey space Mp(·),λ(·)[0, 2π ] with variable
exponents. In the theory of approximation, variable exponent spaces are useful to
show that the approximation is essentially local. For example, the Fourier series of
f ∈ L1[0, 2π ] converges back to f (x) when x ∈ (0, 2π) satisfies the Dini condition

∫
[x−1,x+1]∩[0,2π ]

| f (t)|
|x − t | dt < ∞.

We show that this idea is applicable to many practical approximations using variable
exponent spaces.

One of the main results of the paper is the boundedness of the Steklov operator sh
with 0 < h ≤ 2π given by:

sh( f )(x) = 1

h

∫ h

0
f (x + t)dt (x ∈ [0, 2π ]) (1.1)

within the framework of the Morrey spaceMp(·),λ(·)[0, 2π ] with variable exponents;
see Theorem1.2. Here and below for any f ∈ L1[0, 2π ],we define f (x) = f (x−2π)

for x ∈ (2π, 4π ] and f (x) = f (x + 2π) for x ∈ [−2π, 0), so that (1.1) makes sense.
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Before we recall the definition of Mp(·),λ(·)[0, 2π ], we recall the definition of the
classicalMorrey spaceMp,λ[0, 2π ].Let 0 ≤ λ ≤ 1 and 1 ≤ p < ∞.We consistently
write

I0 = [0, 2π ], I (x, r) = (x − r, x + r) ⊂ R, Ĩ (x, r) = I (x, r) ∩ I0

for intervals in this paper. The classical Morrey space Mp,λ(I0) is defined as the set
of all functions f ∈ L p(I0) such that

‖ f ‖Mp,λ(I0) = sup{r− λ
p ‖ f ‖L p( Ĩ (x,r)) : x ∈ I0, 0 < r < 2π} < ∞.

Under this definition we learn Mp,λ(I0) is a Banach space; moreover, for λ = 0 it
coincides with L p(I0) and for λ = 1 with L∞(I0). If λ < 0 or λ > 1, then it is easy to
see that Mp,λ(I0) = �(I0), where �(I0) denotes the set of all functions equivalent
to 0 on I0.

Moreover, Mp,λ2(I0) ⊂ Mp,λ1(I0) for 0 ≤ λ1 ≤ λ2 ≤ 1. If f ∈ Mp,λ(I0), then
f ∈ L p(I0) and hence f ∈ L1(I0).
Compared to Lebesgue spaces, Morrey spaces have the following remarkable fea-

tures: Let 1 < p < ∞ and 0 < λ ≤ 1.

(1) The function f (x) = x−(1−λ)/p is inMp,λ(I0).
(2) The Morrey space Mp,λ(I0) is not reflexive; see [22, Example 5.2] and [30,

Theorem 1.3].
(3) Denote by C∞(I0) the set of all functions that are realized as the restriction to I0

of elements in C∞(R). The Morrey space Mp,λ(I0) does not have C∞(I0) as a
dense closed subspace; see [29, Proposition 2.16].

(4) The Morrey space Mp,λ(I0) is not separable; see [29, Proposition 2.16].

If λ = 0, all of these properties above fail to hold, since Mp,0(I0) = L p(I0) with
norm coincidence. Based on these properties, we define M̃p,λ(I0) to be the closure
of C∞(I0) inMp,λ(I0). Equipped with two parameters, Morrey spaces can describe
the local regularity and the global regularity more precisely than the Lebesgue spaces.
Our experience show that p describes the local regularity, while λ describes the global
regularity. As it is hinted by the example of the Fourier series, we feel that p plays an
essential role. This fact is verified in this paper.

To express our idea clearly, we now define the Morrey space Mp(·),λ(·)(I0) with
variable exponents. Let p(·) : I0 → [1,∞) be a continuous function such that

1 ≤ p− = ‖p(·)−1‖L∞(I0)
−1 ≤ p+ = ‖p(·)‖L∞(I0) < ∞ (1.2)

and λ(·) : I0 → [0, 1] be a measurable function. Following the convention, we add (·)
to indicate that the parameters are actually dependent on the position. Note that p(·) is
required to be continuous while λ(·) is allowed to be merely measurable and bounded.
This implies that the local regularity is essential in the theory of approximation. We
remark that this fact is observed in [19, Theorem 4.4], [23, Theorem 4.1] and [24,
Theorem 3.3].
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We define the Morrey space Mp(·),λ(·)(I0) with variable exponents is the space of
measurable functions such that the modular

Ip(·),λ(·)( f ) = sup
x∈I0

0<r<2π

r−λ(x)
∫
Ĩ (x,r)

| f (y)|p(y)dy (1.3)

is finite. The norm is defined by

‖ f ‖Mp(·),λ(·)(I0) = ‖ f ‖1 = inf

{
η > 0 : Ip(·),λ(·)

( f

η

)
< 1

}
.

In the setting of variable exponents, we adopt the following definition.

Definition 1.1 Let p(·) : I0 → [1,∞) be a continuous function satisfying (1.2), and
let λ(·) : I0 → [0, 1] be a measurable function. Denote by M̃p(·),λ(·)(I0) the closure
of the set of all trigonometric polynomials in Mp(·),λ(·)(I0).

In addition of the above condition on p(·), we postulate

|p(x) − p(y)| ≤ A

− log |x − y| , 0 < |x − y| ≤ 1

2
, x, y ∈ I0. (1.4)

Based on the definition above, we prove the uniform boundedness of the Steklov
operators in Morrey spaces with variable exponents under the log-condition on p(·).
In case of λ(·) = 0, this result reduces to boundedness of the Steklov operators which
proved by I.I. Sharapudinov [25, Lemma 3.1].

Theorem 1.2 Let p(·) and λ(·) be measurable functions such that 0 ≤ λ− ≤ λ+ < 1.
Assume that p(·) satisfies conditions (1.2) and (1.4). Then the family of operators
{sh}h∈(0,2π ], defined by (1.1) is uniformly bounded inMp(·),λ(·)(I0).

Weorganize this paper as follows:We shall recall necessary definitions and auxiliary
results on the boundedness of the Steklov operator in Sect. 2. We plan to compare the
boundedness of the Hardy-Littlewood maximal operator with the one of the Steklov
operator. Recall that the Hardy-Littlewood maximal function M f (x) on I0 is defined
as follows:

M( f )(x) = sup
r>0

1

|I (x, r)|
∫
Ĩ (x,r)

| f (y)|dy (x ∈ I0). (1.5)

In Sect. 3, we prove the boundedness of the Steklov operator given by (1.1) in
Morrey spaces with variable exponents under the log-continuity on p(·). Sections 4
and 5 contain the properties of the Jackson operators and the Bernstein type inequality
inMorrey spaceswith variable exponents, respectively. Finally, the last section, Sect. 6,
is devoted to the direct and inverse approximation theorems in Morrey spaces with
variable exponents.
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2 Preliminaries

2.1 Morrey norms with variable exponents

There is another plausible definition of the norm: We may define the Morrey norm by:

‖ f ‖2 = sup
x∈I0

0<r<2π

r− λ(x)
p(x) ‖ f χ Ĩ (x,r)‖L p(·)(I0),

However, Lemma 2.2 below shows that these norms are equivalent. The following
lemmas were proved in [4]:

Lemma 2.1 [4, Lemma 2] If p(·) be a measurable function on I0 with values in
[1,∞), and let λ(·) be a measurable function on I0 with values in [0, 1), then for
every f ∈ Mp(·),λ(·)(I0), the inequalities

‖ f ‖p+
i ≤ Ip(·),λ(·)( f ) ≤ ‖ f ‖p−

i if ‖ f ‖i ≤ 1

‖ f ‖p−
i ≤ Ip(·),λ(·)( f ) ≤ ‖ f ‖p+

i if ‖ f ‖i ≥ 1

are valid for i = 1, 2.

We also have

Lemma 2.2 [4, Lemma 3] For every f ∈ Mp(·),λ(·)(I0), ‖ f ‖1 = ‖ f ‖2.
By the coincidence of the norms we can put

‖ f ‖Mp(·),λ(·)(I0) = ‖ f ‖1 = ‖ f ‖2.

2.2 Steklov function

Now, we introduce the Steklov function for a function f ∈ L1[0, 2π ]. One defines
f (x) = f (x − 2π) for x ∈ (2π, 4π ] and f (x) = f (x + 2π) for x ∈ [−2π, 0). For
h > 0 and f ∈ L1[0, 2π ], we define the Steklov operator by

fh(x) = 1

h

∫ h
2

− h
2

f (x + t)dt, sh( f )(x) = fh
(
x + h

2

)
= 1

h

∫ h

0
f (x + t)dt (2.1)

for x ∈ [0, 2π ]. For f ∈ Mp(·),λ(·)(I0) and δ < 2π, we define

σδ( f ) = 1

δ

∫ δ

0
|st ( f )(x) − f (x)|dt = 1

δ

∫ δ

0

∣∣∣∣ ft
(
x + t

2

)
− f (x)

∣∣∣∣ dt. (2.2)

We refer to the textbook [28] for this direction of research.
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Let W p(·),λ(·)(I0) be the linear space of all f ∈ Mp(·),λ(·)(I0) such that
f

′ ∈ Mp(·),λ(·)(I0). Here the derivative is understood in the weak sense. If f ∈
W p(·),λ(·)(I0), then we claim

‖σδ( f )‖Mp(·),λ(·)(I0) ≤ C‖ f
′ ‖Mp(·),λ(·)(I0)

with constantC > 0 independent of f, in otherwordsσδ( f ) ∈ Mp(·),λ(·)(I0) provided
f ∈ W p(·),λ(·)(I0). The proof of this assertion will be given in Lemma 3.4.
Let us compare the properties of the Steklov function and the Hardy-Littlewood

maximal function. So, we recall the corresponding boundedness of the Hardy-
Littlewood maximal operator in L p(·)(I0) that was proved by Diening in 2002 in
[7]:

Theorem A [7, Lemma 2.9] Let p(·) be a measurable function on I0 assuming its
values in [1,∞), and suppose that p(·) satisfies conditions:

1 < p− ≤ p+ < ∞, (2.3)

and (1.4). Then the Hardy-Littlewood maximal operator M is bounded on L p(·)(I0).

A. Almeida, J. Hasanov and S. Samko proved the counterpart to the above theorem
forMorrey spaces variable exponents proved [4].Note thatλ(·)need not be continuous.
Theorem B [4, Theorem 2] Let λ(·) and p(·) satisfy 0 ≤ λ− ≤ λ+ < 1, (1.4) and
(2.3). Then the Hardy-Littlewood maximal operator M is bounded on the Morrey
space Mp(·),λ(·)(I0) with variable exponents.

However for the problem of approximation of functions by the trigonometric poly-
nomials Sharapudinov in [26] proved that the Steklov operator in L p(·)(I0) is bounded
and he used it to define modulus of continuity. We remark that we assume p(x) ≥ 1
as in [26] instead of assumption 1 < p−; see [1–3,16] for comparison.

Theorem C [26, Lemma 1] Let p(·) be a measurable function on I0 with 1 ≤ p− ≤
p+ < ∞. Assume that p(·) satisfies conditions (1.2) and (1.4). Then the family of the
Steklov operators {sh}0<h≤1, defined by (1.1), is uniformly bounded on L p(·)([0, 1]).

3 Uniform boundness of the Steklov operator

In this section, we prove Theorem 1.2.

Proof Let f ∈ Mp(·),λ(·)(I0). We need to show that

r− λ(x)
p(x) ‖sh( f )‖L p(·)( Ĩ (x,r)) ≤ C‖ f ‖Mp(·),λ(·)(I0) (3.1)

for all r > 0, h > 0 and x ∈ I0, where C is independent of f and x .
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If 0 < r ≤ h, then for a nonnegative function 2π -periodic f on R, the following
trivial estimate holds:

|sh( f )(z)| ≤ 3

h

∫ min{x−r+2h,2π}

max{x−r−h,0}
| f (y)| dy

holds for all z ∈ Ĩ (x, r). Thus by the fact that

1 − λ(x)

p(x)
≥ 0 (x ∈ I0)

as well as the Hölder inequality for variable Lebesgue spaces,

r− λ(x)
p(x) ‖sh( f )‖L p(·)( Ĩ (x,r)) ≤ Cr

1−λ(x)
p(x)

1

h

∫ min{x−r+2h,2π}

max{x−r−h,0}
| f (y)| dy

≤ Ch
1−λ(x)
p(x) −1

∫ min{x−r+2h,2π}

max{x−r−h,0}
| f (y)| dy

≤ C‖ f ‖Mp(·),λ(·)(I0)

and (3.1) is obtained.
If 0 < h ≤ r, then we use Theorem C to obtain

r− λ(x)
p(x) ‖sh( f )‖L p(·)( Ĩ (x,r)) = r− λ(x)

p(x) ‖sh(χ[max{x−r,0},min{x+2r,2π}] f )‖L p(·)( Ĩ (x,r))

≤ Cr− λ(x)
p(x) ‖ f ‖L p(·)([max{x−r,0},min{x+2r,2π}])

≤ C‖ f ‖Mp(·),λ(·)(I0).

Thus, we obtain the desired result. ��
We give the following definition:

Definition 3.1 Maintain the same conditions as Theorem C on λ(·) and p(·). Define
by σδ by (2.2). For any f ∈ Mp(·),λ(·)(I0), the function �p(·),λ(·)( f, ·) : (0,∞] →
[0,∞), defined by

�p(·),λ(·)( f, h) = sup
0<δ≤min(2π,h)

‖σδ( f )‖Mp(·),λ(·)(I0), (3.2)

is called the modulus of smoothness of f inMp(·),λ(·)(I0).

Lemma 3.2 Let p(·) and λ(·) satisfy the same conditions as Theorem C.

(1) For f1, f2 ∈ Mp(·),λ(·)(I0) and h > 0,

�p(·),λ(·)( f1 + f2, h) ≤ �p(·),λ(·)( f1, h) + �p(·),λ(·)( f2, h). (3.3)
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(2) For f ∈ M̃p(·),λ(·)(I0),
lim
δ↓0 �p(·),λ(·)( f, δ) = 0. (3.4)

Proof Inequality (3.3) is clear from the triangle inequality ofMp(·),λ(·)(I0). For (3.4),
first we prove in the case of trigonometric polynomials, i.e. we assume that g is a
trigonometric polynomial and hence g is uniformly continuous. Let ε > 0 be fixed.
Let C0 > 0, whose precise value will be made clear shortly. Writing out

I = Ip(·),λ(·)

(
σδ(g)

C02
1
p− ε

)

fully, we have

I = sup
x∈I0

0<r<2π

r−λ(x)
∫
Ĩ (x,r)

(
1

2
1
p− εδ

∫ δ

0
|sτ (g)(y) − g(y)|dτ

)p(y)

dy

= sup
x∈I0

0<r<2π

r−λ(x)
∫
Ĩ (x,r)

(
1

2
1
p− εδ

∫ δ

0

∣∣∣∣1τ
∫ τ

0
(g(y + h) − g(y))dh

∣∣∣∣ dτ

)p(y)

dy.

For any ε > 0, there exists δ0 = δ0(ε) > 0 such that

|g(x) − g(x + t)| < ε (3.5)

for 0 ≤ t ≤ δ0 and x ∈ I0. Hence for 0 ≤ h ≤ δ0, using (3.5), we have

I ≤ 1

2
sup
x∈I0

0<r<2π

r−λ(x)
∣∣ Ĩ (x, r)∣∣ ≤ sup

x∈I0
0<r<2π

r1−λ(x).

If we let

C0 = sup
x∈I0

0<r<2π

r1−λ(x),

then we obtain
‖σδ(g)‖Mp(·),λ(·)(I0) < C02

1
p− ε (3.6)

for 0 ≤ h < δ0.

By the triangle inequality, we have

‖ f − st ( f )‖Mp(·),λ(·)(I0)
≤ ‖ f − g‖Mp(·),λ(·)(I0) + ‖g − st (g)‖Mp(·),λ(·)(I0)

+ ‖st (g) − st ( f )‖Mp(·),λ(·)(I0) (3.7)
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for any f ∈ M̃p(·),λ(·)(I0). Now for given ε > 0, we choose a trigonometric function
g such that

‖ f − g‖Mp(·),λ(·)(I0) ≤ ε. (3.8)

By (3.6), for any trigonometric function g, we can find δ0 = δ0(ε) such that

‖g − st (g)‖Mp(·),λ(·)(I0) ≤ ε,

for 0 ≤ t ≤ δ0. Finally, by Theorem 2.1 and (3.8) we have

‖st (g) − st ( f )‖Mp(·),λ(·)(I0) ≤ c(p)ε (3.9)

and by (3.7) and (3.9) we have

‖ f − st ( f )‖Mp(·),λ(·)(I0) ≤ c(p)ε, 0 ≤ t ≤ δ0(ε). (3.10)

Combining (3.1) and (3.2), we have (3.4) for any f ∈ M̃p(·),λ(·)(I0). ��

The following lemma is a generalization of Minkowski’s inequality:

Lemma 3.3 Let p(·) and λ(·) bemeasurable functions on I0 with 1 ≤ p− ≤ p+ < ∞
and 0 ≤ λ− ≤ λ+ < 1, and f be a measurable function defined on I0 × I0. Then the
following inequality is valid:

∥∥∥∥
∫
I0

f (·, τ )dτ

∥∥∥∥
Mp(·),λ(·)(I0)

≤
∫
I0

‖ f (·, τ )‖Mp(·),λ(·)(I0) dτ.

Proof We have

∥∥∥∥
∫
I0

f (·, τ )dτ

∥∥∥∥
Mp(·),λ(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
∫
I0

f (·, τ )dτ

∥∥∥
L p(·)( Ĩ (x,r))

(3.11)

by the definition of the Morrey norm ‖ · ‖Mp(·),λ(·)(I0). Now by [15], we have

sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
∫
I0

f (·, τ )dτ

∥∥∥
L p(·)( Ĩ (x,r))

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∫
I0

∥∥∥ f (·, τ )

∥∥∥
L p(·)( Ĩ (x,r))

dτ.

(3.12)
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By combining (3.11) and (3.12), we have

∥∥∥
∫
I0

f (·, τ )dτ

∥∥∥Mp(·),λ(·)(I0)
≤ sup

x∈I0
0<r<2π

r− λ(x)
p(x)

∫
I0

∥∥∥ f (·, τ )

∥∥∥
L p(·)( Ĩ (x,r))

dτ

=
∫
I0

sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥ f (·, τ )

∥∥∥
L p(·)( Ĩ (x,r))

dτ

=
∫
I0

∥∥∥ f (·, τ )

∥∥∥Mp(·),λ(·)(I0)
dτ.

��
Lemma 3.4 Let p(·) and λ(·) be measurable functions on I0 satisfying 1 ≤ p− ≤
p+ < ∞ and 0 ≤ λ− ≤ λ+ < 1, Let also f ∈ W p(·),λ(·)(I0). Assume in addition that
p(·) satisfies conditions (1.2) and (1.4). Then

‖σδ( f )‖Mp(·),λ(·)(I0) ≤ C(p(·))δ ‖ f
′ ‖Mp(·),λ(·)(I0).

with the constant C(p(·)) > 0 independent of f.

Proof Let f ∈ W p(·),λ(·)(I0). Then f
′ ∈ Mp(·),λ(·)(I0). Inserting the related defini-

tions used to define σδ( f ), we obtain

∥∥∥∥σδ( f )

δ

∥∥∥∥Mp(·),λ(·)(I0)
= sup

x∈I0
0<r<2π

r− λ(x)
p(x)

∥∥∥σδ( f )

δ
χ Ĩ (x,r)(·)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥ 1

δ2

(∫ δ

0

∣∣∣ ft
(

· + t

2

)
− f

∣∣∣dt
)

χ Ĩ (x,r)(·)
∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥ 1

δ2

(∫ δ

0

∣∣∣∣1t
∫ t

0
( f (· + h) − f )dh

∣∣∣∣ dt
)

χ Ĩ (x,r)(·)
∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥ 1

δ2

(∫ δ

0

∣∣∣∣1t
∫ t

0

∫ ·+h

·
f ′(τ )dτdh

∣∣∣∣ dt
)

χ Ĩ (x,r)(·)
∥∥∥
L p(·)(I0)

.

(3.13)

Let y ∈ I0. By the Fubini theorem, we have

∫ t

0

(∫ y+h

y
f ′(τ )dτ

)
dh =

∫ t

0

(∫ t

0
f ′(y + τ)χ(0,h)(τ )dτ

)
dh

=
∫ t

0

(∫ t

0
χ(0,h)(τ )dh

)
f ′(y + τ)dτ

=
∫ t

0
f ′(y + τ)(t − τ)dτ. (3.14)
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By substituting (3.14) into (3.13) we obtain

∥∥∥∥σδ( f )

δ

∥∥∥∥Mp(·),λ(·)(I0)

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(
1

δ2

∫ δ

0

∣∣∣∣
∫ t

0

t − τ

t
f ′(· + τ)dτ

∣∣∣∣ dt
)

χ Ĩ (x,r)(·)
∥∥∥
L p(·)(I0)

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(
1

δ2

∫ δ

0

∫ t

0

∣∣ f ′(· + τ)
∣∣ dτdt

)
χ Ĩ (x,r)(·)

∥∥∥
L p(·)(I0)

.

By the triangle inequality for integrals we have

∥∥∥∥σδ( f )

δ

∥∥∥∥Mp(·),λ(·)(I0)
≤ sup

x∈I0
0<r<2π

r− λ(x)
p(x)

∥∥∥ 1

δ2

(∫ δ

0
t st (| f ′|) dt

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥1
δ

(∫ δ

0
st (| f ′|) dt

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥1
δ

∫ δ

0

(
st (| f ′|) χ Ĩ (x,r)

)
dt
∥∥∥
L p(·)(I0)

.

(3.15)

Now, byMinkowski’s integral inequality for variable exponent Lebesgue space, we
have

∥∥∥∥σδ( f )

δ

∥∥∥∥Mp(·),λ(·)(I0)
≤ sup

x∈I0
0<r<2π

r− λ(x)
p(x)

1

δ

∫ δ

0
‖st (| f ′|) χ Ĩ (x,r)‖L p(·)(I0)dt

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x) sup

t>0

∥∥∥st (| f ′|) χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
t>0

∥∥∥st (| f ′|)
∥∥∥Mp(·),λ(·)(I0)

and, hence by applying Theorem 1.2, we complete the proof. ��
We define

‖ f ‖Ṁp(·),λ(·)(I0) = ‖ f ′‖Mp(·),λ(·)(I0)

for a function as long as the definition of f ′ makes sense as an element in L1(I0) and
Ṁp(·),λ(·)(I0) is the set of all f whose weak derivative f ′ satisfies ‖ f ‖Ṁp(·),λ(·)(I0) <

∞.
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Let f ∈ Mp(·),λ(·)(I0). The K-functional of Ṁp(·),λ(·)(I0) is defined as follows:

K ( f, t)Mp(·),λ(·)(I0) = inf
g∈W p(·),λ(·)(I0)

{‖ f − g‖Mp(·),λ(·)(I0) + t‖g′‖Mp(·),λ(·)(I0)
}

for t > 0. We recall

�p(·),λ(·)( f, t) = sup
|δ|≤t

‖σδ( f )‖Mp(·),λ(·)(I0).

For h > 0, this K-functional K ( f, h)Mp(·),λ(·)(I0) and �p(·),λ(·)( f, h) are equivalent as
the following lemma shows:

Lemma 3.5 Let p(·) andλ(·) bemeasurable functions on I0.Assume thatλ(·) satisfies
condition 0 ≤ λ− ≤ λ+ < 1 and that p(·) satisfies conditions (1.2) and (1.4). Then

c �p(·),λ(·)( f, h) ≤ K ( f, h)Mp(·),λ(·)(I0) ≤ C�p(·),λ(·)( f, h), h > 0

for every r ∈ N
+ and for all f ∈ Mp(·),λ(·)(I0) with constants c, C > 0 independent

of f and h.

Proof Let g ∈ W p(·),λ(·)(I0). If we write out the definition of σδ(g)(x) out in full,
then we obtain

σδ(g)(x) = 2

δ

∫ δ

δ
2

∣∣∣st (g)(x) − g(x)
∣∣∣dt = 2

δ

∫ δ

δ
2

∣∣∣gt
(
x + t

2

)
− g(x)

∣∣∣dt.

Using Lemma 3.4, we have

�p(·),λ(·)(g, h) ≤ sup
δ≤h

C(p(·))δ ‖g′‖Mp(·),λ(·)(I0) = C(p(·))h ‖g′‖Mp(·),λ(·)(I0).

Hence, taking into account the definition K ( f, t)Mp(·),λ(·)(I0), by choosing g suitably,
we obtain

�p(·),λ(·)( f, h) ≤ �p(·),λ(·)( f − g, h) + �p(·),λ(·)(g, h)

≤ C(p(·)) (‖ f − g‖Mp(·),λ(·)(I0) + h‖g′‖Mp(·),λ(·)(I0)
)

≤ 2C(p(·))K ( f, h)Mp(·),λ(·)(I0)

for any f ∈ Mp(·),λ(·)(I0).
In order to prove the converse inequality, we introduce a Steklov-type transform

for f ∈ Mp(·),λ(·)(I0) and h > 0:

( f1)h(x) = 2

h

∫ h

h
2

2

δ

∫ δ

δ
2

ft
(
x + t

2

)
dtdδ = 4

hδ

∫ h

h
2

∫ δ

δ
2

ft
(
x + t

2

)
dtdδ,
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where

fv(x) = 1

v

∫ v

0
f (x + w)dw.

Then

‖( f1)h − f ‖Mp(·),λ(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(
( f1)h − f

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥∥∥
{(2

h

∫ h

h
2

2

δ

∫ δ

δ
2

(
ft
(

· + t

2

)
− f

)
dtdδ

}
χ Ĩ (x,r)

∥∥∥∥∥
L p(·)(I0)

.

Now, byMinkowski’s integral inequality for variable exponent Lebesgue space, we
get

‖( f1)h − f ‖Mp(·),λ(·)(I0)

≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

2

h

∫ h

h
2

∥∥∥∥∥
(2

δ

∫ δ

δ
2

(
ft
(

· + t

2

)
− f

)
dt
)
χ Ĩ (x,r)

∥∥∥∥∥
L p(·)(I0)

dδ

≤ 2 sup
x∈I0

0<r<2π

r− λ(x)
p(x)

2

h

∫ h

h
2

∥∥∥∥
{1

δ

∫ δ

0

(
ft
(

· + t

2

)
− f (x)

)
dt
}
χ Ĩ (x,r)

∥∥∥∥
L p(·)(I0)

dδ

= 2 sup
h
2 ≤δ≤h

∥∥∥∥1δ
∫ δ

0

{
ft
(

· + t

2

)
− f

}
dt

∥∥∥∥Mp(·),λ(·)(I0)
.

By the triangle inequality,

‖( f1)h − f ‖Mp(·),λ(·)(I0) ≤ 2 sup
0≤δ≤h

∥∥∥∥1δ
∫ δ

0

∣∣∣∣ ft
(

· + t

2

)
− f

∣∣∣∣ dt
∥∥∥∥Mp(·),λ(·)(I0)

= 2 sup
0≤δ≤h

‖σδ( f )‖Mp(·),λ(·)(I0)

= 2 �p(·),λ(·)( f, h). (3.16)

Meanwhile, by differentiating ( f1)h(x) in x, we have

( f1)
′
h(x) = 2

h

∫ h

h
2

2

δ

∫ δ

δ
2

f (x + t) − f (x)

t
dtdδ.
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Therefore

‖( f1)′
h‖Mp(·),λ(·)(I0) = sup

x∈I0
0<r<2π

r− λ(x)
p(x)

∥∥∥
(
( f1)

′
h

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(2
h

∫ h

h
2

2

δ

∫ δ

δ
2

1

t
( f (· + t) − f ) dt dδ

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

.

Now, by Minkowski’s integral inequality once again,

‖( f1)′
h‖Mp(·),λ(·)(I0) ≤ sup

x∈I0
0<r<2π

r− λ(x)
p(x)

2

h

×
∫ h

h
2

∥∥∥
(2

δ

∫ δ

δ
2

f (· + t) − f

t
dt
)

χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

dδ

From the definition of �p(·),λ(·)( f, h), we have

‖( f1)′
h‖Mp(·),λ(·)(I0) ≤ 8h−1 sup

h
2 ≤δ≤h

× sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(1

δ

∫ δ

0
( f (· + t) − f ) dt

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

≤ 8h−1 sup
0≤δ≤h

‖σδ( f )‖Mp(·),λ(·)(I0) = 8h−1�p(·),λ(·)( f, h). (3.17)

As a result, from (3.16) and (3.17), we deduce

K ( f, t)Mp(·),λ(·)(I0) ≤ ‖ f − ( f1)h‖Mp(·),λ(·)(I0)

+ h‖( f1)′
h‖Mp(·),λ(·)(I0) ≤ C �p(·),λ(·)( f, h).

Thus, we obtain the reverse inequality. ��

4 Jackson operators

To prove the direct theorem,we need some properties of Jackson operator. The Jackson
kernel of order n is defined by:

Jn(t) = 1

2n(2n2 + 1)
sin4

nt

2
cosec4

t

2
, n = 1, 2, 3, ... .

The kernel Jn satisfies ∫ π

−π

Jn(t)dt = π (4.1)
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and ∫ π

0
t Jn(t)dt ≤ 5π

2n
(4.2)

for each n ∈ N
+; see [9, Page 144].

Let n ∈ N. We consider the Jackson operator Dn defined by:

Dn( f )(x) = 1

π

∫ π

−π

f (x + t)Jn(t)dt

due to the first property of Jackson kernels, we have

f (x) − Dn( f )(x) = 1

π

∫ π

−π

[ f (x) − f (x + t)]Jn(t)dt.

Lemma 4.1 For all f ∈ W p(·),λ(·)(I0),

‖ f − Dn( f )‖Mp(·),λ(·)(I0) ≤ C(p(·))
n

‖ f
′ ‖Mp(·),λ(·)(I0).

Proof Since f ∈ W p(·),λ(·)(I0), for x, t ∈ I0, we have

f (x + t) − f (x) =
∫ x+t

x
f

′
(u)du.

Thus, we calculate

‖ f − Dn( f )‖Mp(·),λ(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
(
f − Dn( f )

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
( 1
π

∫ π

−π

[
f − f (· + t)

]
Jn(t)dt

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
{( 1

π

∫ π

−π

1

t

∫ ·+t

·
f

′
(u)du

)
t Jn(t)dt

}
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

= sup
x∈I0

0<r<2π

r− λ(x)
p(x)

∥∥∥
( 1
π

∫ π

−π

st ( f
′
)(·)t Jn(t) dt

)
χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

.
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Now, by Lemma 3.3 and (4.2), we obtain

‖ f − Dn( f )‖Mp(·),λ(·)(I0) ≤ sup
x∈I0

0<r<2π

r− λ(x)
p(x)

1

π

∫ π

−π

∥∥∥st ( f ′
) χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

t Jn(t) dt

≤ 5

2n
sup

−π≤t≤π

⎛
⎜⎝ sup

x∈I0
0<r<2π

r− λ(x)
p(x)

∥∥∥st ( f ′
) χ Ĩ (x,r)

∥∥∥
L p(·)(I0)

⎞
⎟⎠ .

Now using Theorem 1.2, we have

‖ f − Dn( f )‖Mp(·),λ(·)(I0) ≤ 5

2n
sup
t∈I0

‖st ( f ′
)‖Mp(·),λ(·)(I0) ≤ C(p(·))

n
‖ f

′ ‖Mp(·),λ(·)(I0),

as was to be shown. ��

5 Bernstein inequality for variable exponent Morrey spaces

Denote by Pn the set of trigonometric polynomials having degree not exceeding n.

For f ∈ Mp(·),λ(·)(I0), p(·) ∈ L∞(I0) and λ(·) ∈ L∞(I0) satisfying conditions in
Theorem 1.2, we define

En( f )Mp(·),λ(·)(I0) = inf{‖ f − Tn‖Mp(·),λ(·)(I0) : Tn ∈ Pn},

which is called the minimal error of approximation of f in the class Pn .

Thanks to Lemma 4.1 the following estimate holds:

Lemma 5.1 Let the exponents p(·) and λ(·) satisfy 0 ≤ λ− ≤ λ+ < 1, (1.2) and
(1.4). Then

En( f )Mp(·),λ(·)(I0) ≤ C

n
‖ f

′ ‖Mp(·),λ(·)(I0), n ∈ N
+

for all f ∈ W p(·),λ(·)(I0) with the constant C = C(p(·)) independent of f.
To prove the inverse theorem in Morrey spaces with variable exponents, we need a

Bernstein type inequality in this space. To this end, we present the following lemma:

Lemma 5.2 Let λ(·) be ameasurable function on I0 such that 0 ≤ λ− ≤ λ+ < 1, and
let p(·) satisfy conditions (1.2) and (1.4). Then for every trigonometric polynomial Tn
in Pn and k ∈ N

+

‖T ′
n‖Mp(·),λ(·)(I0) ≤ An‖Tn‖Mp(·),λ(·)(I0), n ∈ N

+,

where

A = sup
t∈[0,2π ]

sup
f ∈Mp(·),λ(·)(I0),‖ f ‖Mp(·),λ(·)(I0)

=1
‖ f (· + t)‖Mp(·),λ(·)(I0)

is independent of n.
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Proof If follows from [5, p. 99] that

T
′
n(x) = 1

π

∫ π

−π

Tn(x + t)Fn−1(t) n sin ntdt (x ∈ I0),

where Fn(t) is Fejer’s kernel of order n. Then using Lemma 3.3 and

∫ π

−π

Fn−1(t) dt = 2π,

we have

‖T ′
n‖Mp(·),λ(·)(I0) ≤ 1

π

∫ π

−π

‖Tn(· + t)‖Mp(·),λ(·)(I0)Fn−1(t) n| sin nt | dt,

≤ A n‖Tn‖Mp(·),λ(·)(I0)
1

2π

∫ π

−π

Fn−1(t)dt,

= A n ‖Tn‖Mp(·),λ(·)(I0)

and the proof is complete. ��

6 Direct and inverse theorems

Now we shall present the direct and inverse theorems in the Morrey space
Mp(·),λ(·)(I0) with variable exponents as follows:
Theorem 6.1 (Direct theorem)Let n ∈ N

+.Let p(·) andλ(·) bemeasurable functions
on I0. Assume that λ(·) satisfies condition 0 ≤ λ− ≤ λ+ < 1 and that p(·) satisfies
conditions (1.2) and (1.4). Then

En( f )Mp(·),λ(·)(I0) ≤ C �p(·),λ(·)
(
f,
1

n

)

for all f ∈ Mp(·),λ(·)(I0) with the constant C > 0 independent of f and n.

Proof Let g ∈ W p(·),λ(·)(I0) be arbitrary. By Lemma 5.1 we have

En( f )Mp(·),λ(·)(I0) ≤ En( f − g)Mp(·),λ(·)(I0) + En(g)Mp(·),λ(·)(I0)

≤ ‖ f − g‖Mp(·),λ(·)(I0) + C

n
‖g′‖Mp(·),λ(·)(I0).

Since this inequality holds for every g ∈ W p(·),λ(·)(I0) thanks to the definition of the
K-functional and by Lemma 3.5, we get

En( f )Mp(·),λ(·)(I0) ≤ CK

(
f,
1

n

)
Mp(·),λ(·)(I0)

≤ C�p(·),λ(·)
(
f,
1

n

)
.

Thus, the proof of Theorem 6.1 is complete. ��
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Theorem 6.2 (Inverse theorem) Let f ∈ Mp(·),λ(·)(I0), and n ∈ N. Suppose that λ(·)
is an exponent satisfying 0 ≤ λ− ≤ λ+ < 1, and that the exponenent p(·) satisfies
conditions (1.2) and (1.4). Then

�p(·),λ(·)
(
f,
1

n

)
≤ 4C

n

n∑
m=0

Em( f )Mp(·),λ(·)(I0)

with the constant C > 0 independent of f and n.

Proof Let Tn = Dn( f ) ∈ Pn be the polynomial of the best approximation to f in
Mp(·),λ(·)(I0). For any integer j = 1, 2, . . . ,

K

(
f,
1

n

)
Mp(·),λ(·)(I0)

= inf
g∈W p(·),λ(·)(I0)

{
‖ f − g‖Mp(·),λ(·)(I0) + 1

n
‖g′‖Mp(·),λ(·)(I0)

}

≤ ‖ f − T2 j+1‖Mp(·),λ(·)(I0) + 1

n
‖T ′

2 j+1‖Mp(·),λ(·)(I0)

from the definition of K ( f, n−1). Using Lemma 5.2, we get

‖T2 j+1
′ ‖Mp(·),λ(·)(I0) ≤ ‖T1 ′ − T0

′ ‖Mp(·),λ(·)(I0) +
j∑

i=0

‖T2 j+1
′ − T2i

′ ‖Mp(·),λ(·)(I0)

≤ C

⎧⎨
⎩‖T1 − T0‖Mp(·),λ(·)(I0) +

j∑
i=0

2i‖T2i+1 − T2i ‖Mp(·),λ(·)(I0)

⎫⎬
⎭

≤ CE1( f )Mp(·),λ(·)(I0) + CE0( f )Mp(·),λ(·)(I0)

+
j∑

i=0

2i
{
E2i+1( f )Mp(·),λ(·)(I0) + E2i ( f )Mp(·),λ(·)(I0)

}

≤ C

⎧⎨
⎩E0( f )Mp(·),λ(·)(I0) +

j∑
i=0

2i E2i ( f )Mp(·),λ(·)(I0)

⎫⎬
⎭

= C
{
E0( f )Mp(·),λ(·)(I0) + 2E1( f )Mp(·),λ(·)(I0)

}

+ C
j∑

i=1

2i E2i ( f )Mp(·),λ(·)(I0).

Since

2i E2i ( f )Mp(·),λ(·)(I0) ≤ C
2i∑

m=2i−1+1

Em( f )Mp(·),λ(·)(I0) (6.1)
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for i ≥ 1, we have

‖T2 j+1
′ ‖Mp(·),λ(·)(I0) ≤ C

⎧⎨
⎩E0( f )Mp(·),λ(·)(I0)

+ E1( f )Mp(·),λ(·)(I0) +
2 j∑

m=2

Em( f )Mp(·),λ(·)(I0)

⎫⎬
⎭

≤ C

⎧⎨
⎩E0( f )Mp(·),λ(·)(I0) +

2 j∑
m=1

Em( f )Mp(·),λ(·)(I0)

⎫⎬
⎭ .

Selecting j ∈ Z such that 2 j ≤ n < 2 j+1, from (6.1) we get

E2 j+1( f )Mp(·),λ(·)(I0) = 2( j+1)E2 j+1( f )Mp(·),λ(·)(I0)
2( j+1)

≤ 2( j+1)

n
E2 j+1( f )Mp(·),λ(·)(I0)

≤ 4

n

2 j∑
m=2 j−1+1

Em( f )Mp(·),λ(·)(I0).

Now from Lemma 3.5, we deduce that

�p(·),λ(·)
(
f,
1

n

)
≤ CK

(
f,
1

n

)
Mp(·),λ(·)(I0)

≤ CE2 j+1( f )Mp(·),λ(·)(I0) + C

n
‖T ′

2 j+1‖Mp(·),λ(·)(I0).

Finally, we calculate

�p(·),λ(·)
(
f,
1

n

)
≤ C

n

2 j∑
m=2 j−1+1

Em( f )Mp(·),λ(·)(I0)

+ C

n

⎧⎨
⎩E0( f )Mp(·),λ(·)(I0) +

2 j∑
m=1

Em( f )Mp(·),λ(·)(I0)

⎫⎬
⎭

≤ C

n

{
E0( f )Mp(·),λ(·)(I0) +

n∑
m=1

Em( f )Mp(·),λ(·)(I0)

}
.

Thus, the proof of Theorem 6.2 is complete. ��
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