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Abstract In this paper, we study the Fourier transforms for two equations arising in
the kinetic theory. The first equation is the spatially homogeneous Boltzmann equa-
tion. The Fourier transform of the spatially homogeneous Boltzmann equation has
been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111–233, 1988) in the
Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327–355, 2000)
investigated the Fourier transform of the gain operator for the Boltzmann operator in
the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended
to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483–
492, 2007). We shall first establish the relation between the results in Alexandre et
al. (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann
operator in the cut-off case. Then we give the Fourier transform of the spatially homo-
geneous Boltzmann equation in the non cut-off case. It is shown that our results cover
previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is
the spatially homogeneous Landau equation, which can be obtained as a limit of the
Boltzmann equation when grazing collisions prevail. Following the method in Kirsch
and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.
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1 Introduction

This paper is concerned with the Fourier transforms of the spatially homogeneous
Boltzmann equation and Landau equation. Before we state our main results in more
details, let us introduce the problem in a precise way.

The spatially homogeneous Boltzmann equation describes the evolution (in time)
of a rarefied gas, in which the velocity distribution of particles is assumed to be
independent of the position x , it reads

∂ f

∂t
= QB( f, f ), v ∈ R3, t � 0,

where the unknown nonnegative function f (t, v) stands for the density distributions
of particles with velocity v ∈ R3 at time t . QB( f, f ) is a quadratic non-local operator
describing the collisions within the gas, which is defined as follows:

QB( f, f ) =
∫∫

R3×S2
B(|v − v∗|, cos θ)( f ′ f ′∗ − f f∗)dσdv∗.

Here we have used the shorthands f ′ = f (v′), f∗ = f (v∗), and f ′∗ = f (v′∗), where

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ

are the post-collisional velocities of particles which have velocities v and v∗ before
collision. In particular, they satisfy the conservations of mass, momentum and energy,

v′ + v′∗ = v + v∗,
v′2 + v′2∗ = v2 + v2∗.

θ ∈ [0, π ] is the deviation angle between v′ − v′∗ and v − v∗, and the collision kernel
B(|v − v∗|, cos θ) is given by physics and is related to the microscopic interactions
between particles. In this paper, we shall make two different assumptions on the
collision kernel B:

A1 B(|v − v∗|, cos θ) = Cλ|v − v∗|λ with −3 < λ ≤ 1 and constant Cλ.
A2 B(|v − v∗|, cos θ) = |v − v∗|λb(cos θ) with −3 < λ ≤ 1, and where b(cos θ) has

a singularity of the form

b(cos θ) ∼ θ−(2+ν) as θ → 0, 0 < ν < 2.

In our first assumption, the collision kernel B is called variable hard spheres. Under
this assumption, the collision operator QB( f, f ) can be split into the gain operator
Q+

B ( f, f ) and the loss operator Q−
B ( f, f ) as follows:
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QB( f, f ) = Q+
B ( f, f ) − Q−

B ( f, f ),

where

Q+
B ( f, f ) = Cλ

∫∫
R3×S2

|v − v∗|λ f ′ f ′∗dσdv∗,

and

Q−
B ( f, f ) = Cλ

∫∫
R3×S2

|v − v∗|λ f f∗dσdv∗ = 4πCλ f · f ∗ |v|λ.

Here ∗ denotes the convolution. It is obvious that the Assumption A1 covers the most
important case ( hard sphere collision kernel, B(|v−v∗|, cos θ) = |v−v∗|).We usually
call hard potentials when λ > 0,Maxwell molecules when λ = 0, soft potentials when
λ < 0,

In the second Assumption A2, the splitting of QB( f, f ) is impossible because
of the singularity of b(cos θ) in θ = 0. The Assumption A2 covers collision kernels
deriving from interaction potentials behaving like inverse-power laws.More precisely,
for an interaction potential V (r)=cst 1rs , the kernel B satisfies the second Assumption
A2 with λ = s−5

s−1 and ν = 2
s−1 .

The spatially homogeneous Landau equation [11] (also called Fokker-Planck-
Landau) is another common model in kinetic theory. In the case of long- distance
interactions, collisions occur mostly for very small θ . When all collisions become
concentrated on θ = 0, one obtains the spatially homogeneous Landau equation by
the so-called grazing collision limit asymptotic (see for instance ([3,5,13,25]). It reads

∂ f

∂t
= QL( f, f ),

where f (t, v) is the density of particles which has the velocity v at time t . The Landau
collision operator QL( f, f ) on the right-hand represents the effect of the (grazing)
collisions between particles. It is given by the formula:

QL( f, f ) = ∂

∂vi

(∫
R3

ai j (v − v∗)
(

∂ f

∂v j
(v) f (v∗) − ∂ f

∂v j
(v∗) f (v)

)
dv∗

)
,

where ai j (z) = |z|2+γ P(z), P(z) is the orthogonal projection on to z⊥, i.e.,

Pi j (z) =
(

δi j − zi z j
|z|2

)
.

To our purpose, we also give a weak form of the Landau collision operator QL( f, f ),
which shall be used in the sequel. Let ϕ = ϕ(v) be a regular test function, multiply the
operator QL( f, f ) by ϕ(v) and integrate over R3, thanks to the change of variables
with unit Jacobian,

(v, v∗) → (v∗, v),
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we have,

∫
R3

QL( f, f )(v)ϕ(v)dv = 1

2

∫∫
R3×R3

f (v) f (v∗)ai j (v − v∗)(∂i jϕ(v)

+ ∂i jϕ(v∗))dvdv∗

+
∫∫

R3×R3
f (v) f (v∗)bi (v − v∗)(∂iϕ(v)

− ∂iϕ(v∗))dvdv∗,

where bi = ∂ j ai j (z).
Up to our knowledge, there are a lot of various results about the Boltzmann equa-

tion and Landau equation in theories and numerics. However, in this paper, we only
focus our attention on the results concerning the Fourier transform technique. The
Fourier transform for the homogeneous Boltzmann equation has first been discovered
by Bobylev [6] in the Maxwellian case. Alexandre et al. [1] studied the Fourier trans-
form of the gain operator for arbitrary potential. In Kirsch and Rjasanow [16] found
the Fourier transform of the Boltzmann equation for hard and soft potential with cut
off by a technical method. On the other hand, as far as we know, there are no existing
results of the Fourier transform for the homogeneous Landau equation.

The Fourier transform techniques for the Boltzmann equation have proven to be
useful to obtain theoretical and numerical results. We refer the reader to [10] for a
survey on the matter. Now we state the main works related to the Fourier transform
technique for the Boltzmann equation.

For theoretical studies, Tanka [23] proved the existence and uniqueness of the
measure valued solution with finite energy in the Maxwellian case, this result was
simplified and generalized in [22,24]. Recently, measure valued solution with infinite
energy was constructed in [8] for Maxwellian potential, and the smoothing effect was
studied by Morimoto and Yang [17]. All these results listed above rely on the Fourier
transform of the Boltzmann equation. The Fourier distance also has been successfully
used to study the long time behavior for the solution in the Maxwellian case, see
[9,12]. As for the numerics, a direct of use Fourier transformed Boltzmann equation
was given in [7]. AFourierGalerkin spectralmethodwas introduced in [18] and further
developments of this approach were given in [19–21].

Our goal in this work is to complete the theory of the Fourier transform for the
spatially homogeneous Boltzmann equation and present the Fourier transform for the
spatially homogeneous Landau equation.

The rest of this paper is organized as follows. In Sect. 2, we first collect previous
works about Fourier transform on the Boltzmann equation, then we present our main
results in this paper.

InSect. 3, for theFourier transformof theBoltzmannoperator under theAssumption
A1 (cut-off case), since the Fourier transform of the gain operator has been studied in
[1,16] with different methods, so that we first prove the two expressions in previous
works are equal, then we give a new representation for the Fourier transform of the
loss operator. The approach is elementary and based on change of variables. However,
one should be more careful since the computations are complicated. We next turn to
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study the Fourier transform to the Boltzmann equation under the AssumptionA2 (non
cut-off case). The method developed in [16] allows us to deal with such case, the main
difficulty here is how to compute the kernel (3.5) in Sect. 3. The particular structure
of the kernel (3.5) reminds us the Taylor expansion method, which has been used
in [4,13,25] to prove the existence of weak solutions. Together with the Bobylev’s
equality (3.6), we arrive at our goal. It should be mentioned that our result covers
previous results [6,16] by direct computation, thus our result can be considered as a
general version for different kernels (including cut-off case and non cut-off case).

Finally, Sect. 4 is devoted to the Fourier transform of the spatially homogeneous
Landau equation. We follow the spirit in [16], the main idea used here is based on the
weak form of Landau equation with the shifted test function.

2 Preliminaries and main results

In this section, we shall recall previous works concerning transform of the Boltzmann
collision operator in [1,6,16] and give the main results of this paper. We denote

f̂ (ξ) =
∫
R3

f (v)e−i(v,ξ)dv

the Fourier transform of f . The inverse Fourier transform of f̂ (ξ) is

f (v) = F−1( f̂ (ξ)) = 1

(2π)3

∫
R3

f̂ (ξ)ei(v,ξ)dξ.

Let us first present a lemma which will be used systematically in our paper.

Lemma 2.1 For any ξ∗ ∈ R3, it holds that:

∫
S2
e−i(re·ξ∗)de = 4π

sin r |ξ∗|
r |ξ∗| , (2.1)

∫ +∞

0
rλ+1 sin r |ξ∗|dr = −�(λ + 1) sin(πλ

2 )(λ + 1)

|ξ∗|λ+2 . (2.2)

The next three Lemmas are concerned with the Fourier transform of the spatially
homogeneous Boltzmann equation. These results can be found in [1,6] and [16].

Lemma 2.2 [6]

(i) If the kernel B satisfies Assumption A1 with λ = 0, then the Fourier transform of
the spatially homogeneous Boltzmann equation is

∂ f̂

∂t
= Q̂( f, f ) = C0

∫
S2

( f̂ (ξ−) f̂ (ξ+) − f̂ (ξ) f̂ (0))dσ.
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(ii) If the kernel B satisfies Assumption A2 with λ = 0, then the Fourier transform of
the spatially homogeneous Boltzmann equation is

∂ f̂

∂t
= Q̂( f, f ) =

∫
S2

( f̂ (ξ−) f̂ (ξ+) − f̂ (ξ) f̂ (0))b

(
ξ

|ξ |
)

· σ)dσ,

where

ξ+ = ξ + |ξ |σ
2

, ξ− = ξ − |ξ |σ
2

.

Lemma 2.3 [1] If the kernel B satisfies Assumption A1, then the Fourier transform
of the gain operator Q+

B ( f, f ) is given as follows:

Q̂+
B ( f, f )(ξ) = 1

(2π)3

∫∫
R3×S2

f̂ (ξ− + ξ∗) f̂ (ξ+ − ξ∗)B̂
(

|ξ∗|, ξ

|ξ | · σ

)
dξ∗dσ.

where

B̂

(
|ξ∗|, ξ

|ξ | · σ

)
=

∫
R3

B

(
|q|, ξ

|ξ | · σ

)
e−iq·ξdq

denotes the Fourier transform of B in the relative velocity variable, and ξ+, ξ− are
defined in Lemma 2.2.

Lemma 2.4 [16] If the kernel B satisfies Assumption A1, then

(i) the Fourier transform of the gain operator is

Q̂+
B ( f, f ) = 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
T+(ξ, η)dη,

where

T+(ξ, η) = −16π2Cλ�(λ + 1) sin

(
πλ

2

) ||ξ | − |η||−λ−1 − ||ξ | + |η||−λ−1

|ξ ||η| .

(ii) the Fourier transform of the loss operator is

Q̂−
B ( f, f ) = 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
T−(ξ, η)dη,

where

T−(ξ, η) = −16π2Cλ�(λ + 1)(λ + 1) sin

(
πλ

2

) (
1

|ξ − η|λ+3 + 1

|ξ + η|λ+3

)
.

Remark 2.5 Indeed, Kirsch and Rjasanow [16] gave the Fourier transform for the
whole operator QB( f, f ), it is also easy to check the Fourier transforms of the gain
operator and the loss operator by means of their proof.
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We are ready to present our main results in this paper. The first result is about the
Fourier transform of the Boltzmann operator satisfying Assumption A1. In view of
Lemmas 2.3 and 2.4, there are two different representations for the Fourier transform
of Q+

B ( f, f ). It is natural to ask weather these two representations are equal. We
can give positive answer to this question. In addition, we can also establish another
representation for the Fourier transform of the loss operator Q−

B ( f, f ).

Theorem 2.6 If the kernel B satisfies Assumption A1, then

(i) two representations of Q̂+
B ( f, f ) in Lemmas 2.3 and 2.4 are equal, i.e.,

Q̂+
B ( f, f )(ξ) = 1

(2π)3

∫∫
R3×S2

f̂ (ξ− + ξ∗) f̂ (ξ+ − ξ∗)B̂
(

|ξ∗|, ξ

|ξ | · σ

)
dξ∗dσ

= 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
T+(ξ, η)dη,

where T+(ξ, η) is defined in Lemma 2.4.
(ii) the Fourier transform of Q−

B ( f, f ) is given as follows:

Q̂−
B ( f, f ) = − 2

π
Cλ�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗

= 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
T−(ξ, η)dη,

where T−(ξ, η) is defined in Lemma 2.4.

Actually, in the case of non cut-off, the theory of the Fourier transform of the
spatially homogeneous Boltzmann equation is unknown except for the Maxwellian
case, see Lemma 2.2. Our next result is concerned with the Fourier transform of the
spatially homogeneous Boltzmann equation in the general non cut-off cases.

Theorem 2.7 If the kernel B satisfying Assumption A2, then the Fourier transform of
the spatially homogeneous Boltzmann equation is given as follows:

∂ f̂

∂t
= Q̂( f, f ) = 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
TB(ξ, η)dη.

where

TB(ξ, η) = −4π�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
S2
b

(
ξ

|ξ | · σ

) (
1

|η − |ξ |σ |λ+3

+ 1

|η + |ξ |σ |λ+3 − 1

|ξ − η|λ+3 − 1

|ξ + η|λ+3

)
dσ.
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Corollary 2.8 If the kernel B satisfying Assumption A2 with λ = 0, our result can be
reduced to the Bobylev’s classical result in Lemma 2.2, i.e.,

∂ f̂

∂t
= Q̂( f, f ) =

∫
S2

(
f̂

(
ξ + |ξ |σ

2

)
f̂

(
ξ − |ξ |σ

2

)

− f̂ (ξ) f̂ (0)
)
b

(
ξ

|ξ | · σ

)
dσ.

Remark 2.9 Indeed, from the proof in Sect. 3, Theorem 2.7 holds in more general
cut-off cases when B(|v − v∗|, cos θ) = |v − v∗|λb(cos θ) with

∫
S2 b(cos θ)dσ < ∞.

It also covers the result in [16] if we set b(cos θ) = 1.

Remark 2.10 Theorem 2.7 shows that the Fourier transform does not reduce mul-
tiplicity of the integration in the Boltzmann collision operator for general collision
kernel (from five to five) except for two special cases: (i) Maxwell molecules, i.e.,
λ = 0, see Lemma 2.2. (ii) the angular part of the collision kernel is a constant, i.e.,
b(cos θ) = C , see Lemma 2.4.

We last state the result on the Fourier transform for the spatially homogeneous
Landau equation.

Theorem 2.11 The Fourier transform of the spatially homogeneous Landau equation
is given as follows:

∂ f̂

∂t
= Q̂L( f, f ) = 1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
· TL(ξ, η)dη,

where

TL(ξ, η) = −1

2

∫
R3

ai j (2y)e
−i(y,η)ξiξ j

(
ei(y,ξ) + e−i(y,ξ)

)
dy

+ i
∫
R3

bi (2y)e
−i(y,η)ξi

[
ei(y,ξ) − e−i(y,ξ)

]
dy.

Remark 2.12 It is believed that the kernel TL(ξ, η) can be computed explicitly, but
the calculation is more complicate, so that we shall not to do so.

3 Fourier transform for the spatially homogeneous Boltzmann equation

In this section, we study the Fourier transform for the spatially homogeneous
Boltzmann equation under Assumption A1. We prove Theorem 2.6 by elementary
calculation and change of variables. However, the computations in the proof are com-
plicate.

Proof of Theorem 2.6 We start by proving the first part of this Theorem, i.e., the
Fourier transform of the gain operator.
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When B takes the form B = Cλ|v−v∗|λ, B̂(|ξ∗|, ξ
|ξ | ·σ) can be computed explicitly

as follows, passing to the spherical coordinates and using (2.1) and (2.2), we find

B̂(|ξ∗|) = Cλ

∫ +∞

0
rλ+2dr

∫
S2
e−i(re·ξ∗)de

= 4πCλ

|ξ∗|
∫ +∞

0
rλ+1 sin r |ξ∗|dr

= −4πCλ�(λ + 1) sin
(

πλ
2

)
(λ + 1)

|ξ∗|λ+3 .

Inserting B̂(|ξ∗|) into Q̂+( f, f ), it yields

Q̂+( f, f )(ξ) = −4πCλ�(λ + 1) sin
(

πλ
2

)
(λ + 1)

(2π)3

×
∫∫

R3×S2
f̂
(
ξ− + ξ∗

)
f̂ (ξ+ − ξ∗)

1

|ξ∗|λ+3 dξ∗dσ. (3.1)

In order to complete the first part of the proof, it remains to compute the integral

∫∫
R3×S2

f̂
(
ξ− + ξ∗

)
f̂ (ξ+ − ξ∗)

1

|ξ∗|λ+3 dξ∗dσ.

For each fixed ξ and σ , we perform the change of the variables ξ∗ → η,

ξ∗ = |ξ |σ + η

2
,

whose Jacobian of the transformation is 1
8 . In view of

ξ+ = ξ + |ξ |σ
2

, ξ− = ξ − |ξ |σ
2

,

it follows that,

ξ− + ξ∗ = ξ + η

2
, ξ+ − ξ∗ = ξ − η

2
.

Applying this change of variables, we obtain

∫∫
R3×S2

f̂ (ξ− + ξ∗) f̂ (ξ+ − ξ∗)
1

|ξ∗|λ+3 dξ∗dσ

=
∫∫

R3×S2
f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

| |ξ |σ+η
2 |λ+3

1

8
dηdσ

= 2λ

∫∫
R3×S2

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

|η + |ξ |σ |λ+3 dσdη. (3.2)
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For our purpose, we finally need to compute

∫
S2

1

|η + |ξ |σ |λ+3 dσ.

Let θ be the angle between η and σ , using spherical coordinates system and changing
the variable t = cos θ , we have

∫
S2

1

|η + |ξ |σ |λ+3 dσ =
∫ 2π

0
dϕ

∫ π

0

sin θ(|η|2 + |ξ |2 + 2|ξ ||η| cos θ
) λ+3

2

dθ

= 2π
∫ 1

−1

dt(|η|2 + |ξ |2 + 2|ξ ||η|t) λ+3
2

= 2π

(2|ξ ||η|) λ+3
2

∫ 1

−1

dt(
t + |η|2+|ξ |2

2|ξ ||η|
) λ+3

2

= 2π

(2|ξ ||η|) λ+3
2

·
(

− 2

λ + 1

) (
t + |η|2 + |ξ |2

2|ξ ||η|
)− 1

2 (λ+1)

|1−1

= 4π

(λ + 1)2|ξ ||η|
[
||ξ | − |η||−λ−1 − ||ξ | + |η||−λ−1

]
.

Gathering above equality, (3.1) and (3.2), this completes the first part of Theorem 2.6.
We next turn to the Fourier transform of the loss operator Q−

B ( f, f ). Our method
is different from the approach in [16], we will work on Q−

B ( f, f ) directly. With the
help of some properties of the Fourier transform, it is possible to obtain the desired
result. Recall that

Q−
B ( f, f ) = 4πCλ f · f ∗ (|v|λ).

We perform the Fourier transform for Q−
B ( f, f ),

Q̂−
B ( f, f ) = 4πCλ

(2π)3
f̂ ∗ ̂( f ∗ |v|λ).

Thanks to the computation for B̂(|ξ∗|) in the first part,

̂|v|λ = −4π�(λ + 1) sin
(

πλ
2

)
(λ + 1)

|ξ |λ+3 .

It follows that

̂( f ∗ |v|λ) = f̂ ·̂|v|λ = −4π f̂ (ξ)�(λ + 1) sin
(

πλ
2

)
(λ + 1)

|ξ |λ+3 .
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Therefore, we obtain

f̂ ∗ ̂( f ∗ |v|λ) = −
∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
4π�(λ + 1) sin

(
πλ
2

)
(λ + 1)

|ξ∗|λ+3 dξ∗.

Then, inserting above expression into Q̂−
B ( f, f ), we get

Q̂−
B ( f, f ) = − 2

π
Cλ�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗. (3.3)

It remains to show the Fourier transform of the loss operator is equal to the expression
in Lemma 2.3. To this end, for fixed ξ , we first do the change of variables ξ∗ = ξ+η

2 ,
then

ξ − ξ∗ = ξ − η

2
, dξ∗ = 1

8
dη.

It yields that,

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗ = 2λ

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

|ξ + η|λ+3 dη.

We also do another change of variables ξ∗ = ξ−η
2 for fixed ξ , then

ξ − ξ∗ = ξ + η

2
, dξ∗ = 1

8
dη.

One has,

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗ = 2λ

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

|ξ − η|λ+3 dη.

Combining above equalities and inserting into (3.3),

Q̂−
B ( f, f ) = − 2

π
Cλ�(λ + 1) sin

(
πλ

2

)
(λ + 1)

(
1

2

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗

+ 1

2

∫
R3

f̂ (ξ − ξ∗) f̂ (ξ∗)
|ξ∗|λ+3 dξ∗

)

= − 2

π
Cλ�(λ + 1) sin

(
πλ

2

)
(λ + 1)

(
2λ−1

×
∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

|ξ + η|λ+3 dη

+ 2λ−1
∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
1

|ξ − η|λ+3 dη

)
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= 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
T−(ξ, η)dη,

where

T−(ξ, η) = −16π2Cλ�(λ + 1)(λ + 1) sin

(
πλ

2

) (
1

|ξ − η|λ+3 + 1

|ξ + η|λ+3

)
.

This finishes the proof. 
�
We now derive the Fourier transform for the Boltzmann collision operator under

Assumption A2.

Proof of Theorem 2.7 It should be mentioned that we can follow the main path in [16]
to derive the Fourier transform for the Boltzmann collision operator under Assumption
A2. The first part of the proof is the same as the one in [16], so that we omit it. We are
able to obtain

Q̂( f, f )(ξ) = 2λ−1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
TB(ξ, η)dη, (3.4)

with the kernel

TB(ξ, η) =
∫
R3

|y|λei(y,η)

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ)

− e−i(y,ξ) − ei(y,ξ)
]
b

(
y

|y| · σ

)
dσdy. (3.5)

We emphasize that the main difference between the cut-off case [16] and non cut-off
case is that the singular angular part b( y

|y| ·σ) appears in the kernel TB(ξ, η), therefore
we need first to show that the kernel TB(ξ, η) is well defined for the non cut-off case.
In order to cancel the singularity of b( y

|y| · σ) in the kernel TB(ξ, η), we expand the
term

e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ) − ei(y,ξ)

to first order by Taylor formula. Such an idea is not new, it has been used to prove the
existence of weak solutions for the spatially homogeneous Boltzmann equation in the
non cut-off case, see [4,13,25]. Since

f (x) − f (x0) = f ′(x0)(x − x0) + f ′′(ζ )

2! (x − x0)
2,

where ζ lies between x and x0, it holds

e−i(|y|σ.ξ) − e−i(y,ξ) = e−i(y,ξ)(y − |y|σ, ξ) + C1(y − |y|σ, ξ)2

and
ei(|y|σ.ξ) − ei(y,ξ) = ei(y,ξ)(y − |y|σ, ξ) + C2(y − |y|σ, ξ)2,
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where C1 and C2 are constants.
Collecting above estimates, we get

e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ) − ei(y,ξ) = O((y − |y|σ, ξ)).

It is expected that the term (y−|y|σ, ξ) can help us to cancel the singularity of b( y
|y| ·σ).

To this end, we introduce a local sphere coordinate system (
y

|y| , i, j) attached t . Let θ
and ϕ be the azimuthal and longitudinal angles of σ , as a consequence,

σ = y

|y| cos θ + i sin θ cosϕ + j sin θ sin ϕ.

Let α be the azimuthal angle of ξ , then

ξ = |ξ |
(

y

|y| cosα + y⊥
)

,

where y⊥ is orthogonal to y.
We compute the term (y − |y|σ, ξ),

(y − |y|σ, ξ) =
(
y − |y|

(
y

|y| cos θ + i sin θ cosϕ

+ j sin θ sin ϕ) , |ξ |
(

y

|y| cosα + y⊥
))

= |ξ ||y|(1 − cos θ) cosα − |y||ξ |
(
i sin θ cosϕ + j sin θ sin ϕ, y⊥)

.

We see that the second term above on the right hand side is a linear combination of
cosϕ and sin ϕ, so that when we integrate over ϕ, the contributions vanishes, there
only remains ∫ 2π

0
(y − |y|σ, ξ)dϕ = |ξ ||y|(1 − cos θ) cosα.

Hence, it follows that

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ) − ei(y,ξ)

]
b

(
y

|y| · σ

)
dσ

= O(|ξ ||y| cosα)

∫ π

0
b(cos θ)(1 − cos θ) sin θdθ.

Let us recall the singular order of b(cos θ) in Assumption A2, hence the term

∫
S2

[
e−i(|y|e.ξ ) + ei(|y|e.ξ ) − e−i(y,ξ) − ei(y,ξ)

]
b

(
y

|y| · σ

)
dσ

is meaningful. This fact implies the kernel TB(ξ, η) is well defined.
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In the sequel, we shall compute the kernel explicitly under Assumption A2. We
shall do the calculation if B is integrable, and apply a limiting procedure to conclude
the proof for non cut-off case. Indeed, the kernel

TB(ξ, η) =
∫
R3

|y|λei(y,η)

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ)

−e−i(y,ξ) − ei(y,ξ)
]
b

(
y

|y| · σ

)
dσdy.

is well defined as showed above. We split the kernel into four terms as follows,

TB(ξ, η) =
∫
R3

|y|λei(y,η)

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ)

− ei(y,ξ)
]
b

(
y

|y| · σ

)
dσdy

= I + I I + I I I + I V,

where

I =
∫
R3

|y|λei(y,η)

∫
S2
e−i(|y|σ.ξ)b

(
y

|y| · σ

)
dσdy,

I I =
∫
R3

|y|λei(y,η)

∫
S2
ei(|y|σ.ξ)b

(
y

|y| · σ

)
dσdy,

I I I =
∫
R3

|y|λei(y,η)

∫
S2
e−i(y,ξ)b

(
y

|y| · σ

)
dσdy,

I V =
∫
R3

|y|λei(y,η)

∫
S2
ei(y,ξ)b

(
y

|y| · σ

)
dσdy.

We next shall compute every term separately. A key remark observed by Bobylev is
that ∫

S2
e−i(|y|σ.ξ)b

(
y

|y| · σ

)
dσ =

∫
S2
e−i(|ξ |σ.y)b

(
ξ

|ξ | · σ

)
dσ. (3.6)

This equality will play an important role in our proof.
For the first term, using Bobylev’s equality (3.6), letting y = rey and applying

(2.1), (2.2), we get

I =
∫
R3

|y|λei(y,η)

∫
S2
e−i(|ξ |σ.y)b

(
ξ

|ξ | · σ

)
dσdy

=
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫ ∞

0
rλ+2

∫
S2
ei(rey ,η−|ξ |σ)deydr

=
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫ ∞

0
rλ+24π

sin r |η − |ξ |σ |
r |η − |ξ |σ | dr

= −4π�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
S2
b

(
ξ

|ξ | · σ

)
1

|η − |ξ |σ |λ+3 dσ.
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The second term can be treated similarly,

I I = −4π�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
S2
b

(
ξ

|ξ | · σ

)
1

|η + |ξ |σ |λ+3 dσ.

For the third term, let y = rey , and use (2.1), (2.2) and (3.6) again,

I I I =
∫
S2
b

(
y

|y| · σ

)
dσ

∫
R3

|y|λei(y,η)−i(y,ξ)dy

=
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫
R3

|y|λei(rey ,η−ξ)dy

= 4π
∫ ∞

0
rλ+2 sin

r |ξ − η|
r |ξ − η|dr

∫
S2
b

(
ξ

|ξ | · σ

)
dσ

= 4π

|ξ − η|
∫ ∞

0
rλ+1 sin r |ξ − η|dr

∫
S2
b

(
ξ

|ξ | · σ

)
dσ

= −4π�(λ + 1) sin
(

πλ
2

)
(λ + 1)

|ξ − η|λ+3

∫
S2
b

(
ξ

|ξ | · σ

)
dσ.

The forth term can be calculated as the third term,

I V = −4π�(λ + 1) sin
(

πλ
2

)
(λ + 1)

|ξ + η|λ+3

∫
S2
b

(
ξ

|ξ | · σ

)
dσ.

Collecting the above estimates for I , I I , I I I and I V , we obtain

TB(ξ, η) =
∫
R3

|y|λei(y,η)

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ)

− ei(y,ξ)
]
b

(
y

|y| · σ

)
dσdy

= −4π�(λ + 1) sin

(
πλ

2

)
(λ + 1)

∫
S2
b

(
ξ

|ξ | · σ

)(
1

|η − |ξ |e|λ+3

+ 1

|η + |ξ |e|λ+3 − 1

|ξ − η|λ+3 − 1

|ξ + η|λ+3

)
dσ, (3.7)

which concludes the proof of Theorem 2.7. 
�

Proof of Corollary 2.8 In the case of λ = 0, we do not let λ = 0 in (3.7). Instead we
compute the kernel (3.5) with λ = 0, noticing that

∫
R3

ei(y,ξ)dy = (2π)3δ(ξ),
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and applying Bobylev’s equality (3.6), we have

∫
R3

ei(y,η)

∫
S2

[
e−i(|y|σ.ξ) + ei(|y|σ.ξ) − e−i(y,ξ) − ei(y,ξ)

]
b

(
y

|y| · σ

)
dσdy

=
∫
S2
b(

ξ

|ξ | · σ)dσ

∫
R3

ei(y,η−|ξ |σ)dy +
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫
R3

ei(y,η+|ξ |σ)dy

−
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫
R3

ei(y,η−ξ)dy −
∫
S2
b

(
ξ

|ξ | · σ

)
dσ

∫
R3

ei(y,η+ξ)dy

= (2π)3
[∫

S2
δ(η − |ξ |σ)b

(
ξ

|ξ | · σ

)
dσ +

∫
S2

δ(η + |ξ |σ)b

(
ξ

|ξ | · σ

)
dσ

−
∫
S2

δ(η − ξ)b

(
ξ

|ξ | · σ

)
dσ −

∫
S2

δ(η + ξ)b

(
ξ

|ξ | · σ

)
dσ

]

= (2π)3 [δ(η − |ξ |σ) + δ(η + |ξ |σ) − δ(η − ξ) − δ(η + ξ)] .

Inserting above expression into (3.4), one easily obtains the Bobylev’s result in the
Maxwellian case. 
�

4 Fourier transform for the spatially homogeneous Landau equation

This section is devoted to the Fourier transform of the spatially homogeneous Landau
equation. It is remarkable the relation between the spatially homogeneous Boltzmann
equation without cut-off and the spatially homogeneous Landau equation, see [3,5,13,
25]. Since the approach in [16] does work for the spatially homogeneous Boltzmann
equation, it motivates us to apply this method to the Landau equation. In the sequel,
we will follow the main steps in [16] to derive the Fourier transform for the spatially
homogeneous Landau equation.

Proof of Theorem 2.11 Multiplying the Landau operator by a shifted test function
ϕ(z − v) for fixed z, and recalling the weak form of the Landau operator in Sect. 1,
we see that

∫
R3

QL( f, f )(v)ϕ(z − v)dv = 1

2

∫∫
R3×R3

f (v) f (v∗)ai j (v − v∗)(∂i jϕ(z − v)

+ ∂i jϕ(z − v∗))dvdv∗

+
∫∫

R3×R3
f (v) f (v∗)bi (v − v∗)(∂iϕ(z − v)

− ∂iϕ(z − v∗))dvdv∗.

For fixed z, changing the variables z − v → v, z − v∗ → v∗, whose Jacobian is 1, we
have

∫
R3

QL( f, f )(v)ϕ(z − v)dv = 1

2

∫∫
R3×R3

f (z − v) f (z − v∗)ai j (v − v∗)(∂i jϕ(v)
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+ ∂i jϕ(v∗))dvdv∗

+
∫∫

R3×R3
f (z − v) f (z − v∗)bi (v − v∗)(∂iϕ(v)

− ∂iϕ(v∗))dvdv∗.

Applying the inverse Fourier transform for f (z − v) and f (z − v∗), we have

f (z − v) = 1

(2π)3

∫
R3

f̂ (ξ1)e
i(z−v,ξ1)dξ1 and

f (z − v∗) = 1

(2π)3

∫
R3

f̂ (ξ2)e
i(z−v∗,ξ2)dξ2.

Inserting above inverse Fourier transforms into
∫
R3 QL( f, f )(v)ϕ(z − v)dv, we get

∫
R3

QL( f, f )ϕ(z − v)dv

= 1

(2π)6

∫∫
R3×R3

f̂ (ξ1) f̂ (ξ2)e
i(z,ξ1+ξ2)dξ1dξ2 · (T1(ξ1, ξ2) + T2(ξ1, ξ2)),

where

T1(ξ1, ξ2) = 1

2

∫∫
R3×R3

ai j (v − v∗)[∂i jϕ(v) + ∂i jϕ(v∗)]e−i(v,ξ1)e−i(v∗,ξ2)dvdv∗

and

T2(ξ1, ξ2) =
∫∫

R3×R3
bi (v − v∗)[∂iϕ(v) − ∂iϕ(v∗)]e−i(v,ξ1)e−i(v∗,ξ2)dvdv∗.

We next study T1(ξ1, ξ2) and T2(ξ1, ξ2). Let x = v+v∗
2 , y = v−v∗

2 , then v = x + y,
v∗ = x − y and dvdv∗ = 8dxdy, we deduce that

T1(ξ1, ξ2) = 4
∫∫

R3×R3
ai j (2y)[∂i jϕ(x + y)

+ ∂i jϕ(x − y)]e−i(x+y,ξ1)e−i(x−y,ξ2)dxdy

= 4
∫∫

R3×R3
ai j (2y)[∂i jϕ(x + y)

+ ∂i jϕ(x − y)]e−i(x,ξ1+ξ2)e−i(y,ξ1−ξ2)dxdy

= 4
∫
R3

ai j (2y)e
−i(y,ξ1−ξ2)

∫
R3

[∂i jϕ(x + y)

+ ∂i jϕ(x − y)]e−i(x,ξ1+ξ2)dxdy
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and

T2(ξ1, ξ2) =
∫∫

R3×R3
bi (v − v∗)[∂iϕ(v) − ∂iϕ(v∗)]e−i(v,ξ1)e−i(v∗,ξ2)dvdv∗

= 8
∫∫

R3×R3
bi (2y)[∂iϕ(x + y)

− ∂iϕ(x − y)]e−i(x,ξ1+ξ2)e−i(y,ξ1−ξ2)dxdy

= 8
∫
R3

bi (2y)e
−i(y,ξ1−ξ2)

∫
R3

[∂iϕ(x + y)

− ∂iϕ(x − y)]e−i(x,ξ1+ξ2)dxdy.

Wefirst integrate the variable x for T1 and T2. For fixed y, let x+ y = u, then dx = du,

∫
R3

∂i jϕ(x + y)e−i(x,ξ1+ξ2)dx =
∫
R3

∂i jϕ(u)e−i(u−y,ξ1+ξ2)du

= − ei(y,ξ1+ξ2)ϕ̂(ξ1 + ξ2)(ξ1 + ξ2)i (ξ1 + ξ2) j ,

where ξi denotes the i-th component of ξ . Similarly, for fixed y, let x − y = u, then
dx = du,

∫
R3

∂i jϕ(x − y)e−i(x,ξ1+ξ2)dx =
∫
R3

∂i jϕ(u)e−i(u+y,ξ1+ξ2)du

= − e−i(y,ξ1+ξ2)ϕ̂(ξ1 + ξ2)(ξ1 + ξ2)i (ξ1 + ξ2) j .

So that T1(ξ1, ξ2) becomes

T1(ξ1, ξ2) = 4
∫
R3

ai j (2y)e
−i(y,ξ1−ξ2)

∫
R3

[∂i jϕ(x + y)

+ ∂i jϕ(x − y)]e−i(x,ξ1+ξ2)dxdy

= −4
∫
R3

ai j (2y)e
−i(y,ξ1−ξ2)ϕ̂(ξ1 + ξ2)(ξ1 + ξ2)i (ξ1 + ξ2) j (e

i(y,ξ1+ξ2)

+ e−i(y,ξ1+ξ2))dy.

We use the same procedure to deal with T2(ξ1, ξ2),

T2(ξ1, ξ2) = 8i
∫
R3

bi (2y)e
−i(y,ξ1−ξ2)[ei(y,ξ1+ξ2)

− e−i(y,ξ1+ξ2)]ϕ̂(ξ1 + ξ2)(ξ1 + ξ2)i dy.

At last, we perform the change of variables ξ1 + ξ2 = ξ , ξ1 − ξ2 = η, then

ξ1 = ξ + η

2
, ξ1 = ξ + η

2
, dξ1dξ2 = 1

8
dξdη.
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It follows that
∫
R3

Q( f, f )ϕ(z − v)dv

= 1

(2π)6

∫
R3×R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
ei(z,ξ)ϕ̂(ξ)dξdη · TL(ξ, η)

= 1

(2π)3
F−1

(∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
ϕ̂(ξ)dη · TL(ξ, η)

)
,

where

TL(ξ, η) = −1

2

∫
R3

ai j (2y)e
−i(y,η)ξiξ j (e

i(y,ξ) + e−i(y,ξ))dy

+ i
∫
R3

bi (2y)e
−i(y,η)ξi [ei(y,ξ) − e−i(y,ξ)]dy.

Let us consider the following weak form of the spatially homogeneous Landau equa-
tion:

( ft , ϕ(z − v)) =
∫
R3

QL( f, f )(v)ϕ(z − v)dv.

Applying the Fourier transform to both sides of the above equation, we see that

∂ f̂

∂t
= 1

(2π)3

∫
R3

f̂

(
ξ + η

2

)
f̂

(
ξ − η

2

)
· TL(ξ, η)dη.

This ends the proof. 
�
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