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Abstract We use methods from potential theory and harmonic analysis to show non-
cyclicity of polynomials on a polydiscwhose zero setmeets the distinguished boundary
along a hypersurface. We also generalize methods used for proving cyclicity for poly-
nomials in two variables with small zero sets to arbitrary dimension. In doing so,
we show that in higher dimension, the cyclicity properties of a function do not only
depend on the codimension, but also on the orientation of the zero set. Furthermore,
we illustrate our results by studying a special class of polynomials. Finally, we use
methods from potential theory to prove that our estimates for non-cyclicity are in fact
sharp.

Keywords Cyclic vectors · Dirichlet-type spaces · Polydiscs

1 Introduction

In this article we study cyclic vectors for the shift operators on a range of Hilbert
spaces on polydiscs, which among others include the Hardy space and the Dirichlet
space. The problem of characterizing cyclic vectors is a difficult one, and already
in one variable, the cyclic vectors for the Dirichlet space are not entirely known. In
order to better understand the phenomena which determine the cyclicity properties
of different functions, we mainly restrict ourselves to studying polynomials in this
article. More concretely, we investigate cyclicity properties of polynomials in the so
called Dirichlet type spaces on the polydisc. For α ∈ R

n+, we define the Dirichlet type
space with parameter α, Dn

α , as the Hilbert space of holomorphic functions on the
n-dimensional polydisc whose power series expansion
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f (z1, . . . , zn) =
∞∑

k1=0

· · ·
∞∑

kn=0

ak1,...,kn z
k1
1 . . . zknn

satisfies

‖ f ‖2α =
∞∑

k1=0

· · ·
∞∑

kn=0

(k1 + 1)α1 . . . (kn + 1)αn |ak1,...,kn |2 < ∞.

When they dimension is obvious from the context, we will simply use the notation
Dα . Furthermore, we denote the multiplier algebra of Dα by M(Dα).

Several results regarding the one variables analogue of these spaces can be found
in the book [4]. In [5], it was shown that for α with all αi ≤ 2, Dα is characterized by
finiteness of the seminorm given by

∫

Dn
|∂1 . . . ∂n f (z1, . . . , zn)|2(1 − |z1|2)1−α1 . . . (1 − |zn|2)1−αn d A(z1) . . . d A(zn),

(1)
where A(z) is the normalized Lebesgue measure with respect to D. One important
property of Dα is the fact that they are all reproducing kernel Hilbert spaces, that is,
point evaluation is a bounded linear functional.

The shift operators on Dα are defined by Si ( f (z)) = zi f (z), and from their defi-
nition and the definition of the norm, we see that they are commuting, bounded linear
operators from Dα to itself. We say that a function f is cyclic if the smallest invariant
subspace of the shift operators which contains f is all of Dα . This is equivalent to
[ f ] = Dα , where [ f ] = span{zk f (z) : k ∈ N

n}, where we have used multi-index
notation in the previous definition. Since polynomials are dense subsets of all Dα , we
see that a function f is cyclic if and only if there exists a sequence of polynomials
{pn} such that lim

n→∞ ‖pn f − 1‖α = 0. See for example [3] for details.

In one and two variables, the cyclic polynomials have been completely charac-
terized. In [3] it was shown that all polynomials in one variable with no zeros in D

are cyclic for all α ≤ 1. In [2] the authors studied isotropic spaces, i.e. spaces with
α1 = · · · = αn , and they showed that, apart from certain degenerate cases where the
polynomial in C[z1, z2] was in fact a polynomial in which only one variable was rep-
resented, the cyclicity properties were determined by the cardinality of the zero set on
T
2. They showed that polynomials with only finitely many zeros on T2 are cyclic for

all α ≤ 1, and polynomials with an infinite zero set are cyclic if and only if α ≤ 1/2.
In [6], this result was extended to the anisotropic setting, where the authors showed
that a polynomial with infinite zero set is cyclic if and only if |α| = α1 + α2 ≤ 1. In
fact, this was shown to be true even when one α j was negative.

In this article, we generalize some of the methods used in [2] in order to tackle the
analogous problem in higher dimension. In particular, a result from [2] which relates
non-vanishing Gaussian curvature of the zero set of a function f on Tn , Z( f )∩T

n , to
non-cyclicity of f is shown to still be true in arbitrary dimension if Z( f )∩T

n contains
a hypersurface. To avoid repetition, wewill assume that f �= 0 inDn , and furthermore,
for simplicity we will usually talk about “the zero set of f ” instead of “Z( f ) ∩ T

n” .
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However, whereas in two variables we can only have finite zero sets or zero sets which
contain a hypersurface, the situation ismore complicated in higher dimensions. It turns
out that this method does not yield a complete answer for polynomials whose zero set
is not a hypersurface. In order to understand this problem, we instead study a special
class of polynomials. The results for this class shows us that two polynomials that
both have infinite zero sets will have different cyclicity properties, depending on the
dimension of the zero set. Furthermore, in two variables, the only deviations from the
general behaviour were the “degenerate polynomials” in which not all variables were
represented, but in this article, we show that there are true three-variable polynomials
whose cyclicity properties deviate from those of other polynomials whose zero set has
the same dimension, essentially as a consequence of the location of the zero set.

Some of the results in this note are contained in the author’s 2017 master’s thesis
at Stockholm University.

2 Preliminaries

2.1 Some lemmas regarding cyclicity

The following lemmas will be very valuable for understanding cyclicity properties of
functions, and especially polynomials.

Lemma 1 Let f and g ∈ Dα be polynomials such that | f (z)| > |g(z)| for z ∈ D
n. If

g is cyclic in Dα for some α ∈ R
n+, then f is cyclic in Dα .

The above theorem is merely a special case of the Corollary 1 on page 281 in [3]
which concerns cyclicity in Dirichlet spaces. The proof for weighted Dirichlet spaces
in several variables is analogous.

Lemma 2 Let f ∈ Dα and g ∈ M(Dα), then g f ∈ Dα is cyclic if and only if both f
and g are cyclic.

The proof is given in Proposition 8 of [3].
The above lemma is very useful when working with polynomials. For example, it

shows us that if p(z1, . . . zn)n is cyclic, then so is the polynomial p(z1, . . . , zn).
The proof for the following lemma is completely analogous to the two dimensional

counterpart, the proof of which is given in Proposition 2.4 of [1].

Lemma 3 Let f (z1, . . . , zn) = g(z1, . . . , zk)h(zk+1, . . . , zn) for g ∈ Dk
α′ and h ∈

Dn−k
α′′ . Then f is cyclic in D(α′,α′′) if and only if g is cyclic in Dk

α′ and h is cyclic in

Dn−k
α′′ .

The previous two lemmas are especially important when working with polynomials.
For example, they imply that it is sufficient to understand the cyclicity properties of
irreducible polynomials. Also, when working with polynomials in several variables,
for example three variables, it sufficies to understand the cyclicity properties of polyno-
mials which are really polynomials in all three variables, since the cyclicity properties
of one variable and two variable polynomials are known.
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2.2 Möbius transformations and the type of a set

For simplicity, we will later study polynomials in three variables. At that point we will
need certain results which are related to Möbius transformations in three variables.

The automorphism group of the tridisc consists of rotations, permutations of vari-
ables, and Möbius transformations

ma,b,c : (x, y, z) =
(

a − x

1 − āx
,
b − y

1 − b̄y
,
c − z

1 − c̄z

)
,

with a, b, c ∈ D. By using the integral norm of Dα , it can be shown that composition
with any Möbius transformation defines a bounded operator from Dα to itself. In this
article, this is mainly important since it implies that if a function f is cyclic then every
function of the form f ◦ ma,b,c is also cyclic. To see this, simply note that

‖(pn ◦ ma,b,c)( f ◦ ma,b,c) − 1‖α ≤ ‖ma,b,c‖‖pn f − 1‖α,

where ‖ma,b,c‖ denotes the operator norm.
Furthermore, this implies that f is non-cyclic if any f ◦ ma,b,c is non-cyclic.
Composition with any rotation or permutation is in fact an isometry, and so a func-

tion is cyclic if and only if any such composite is cyclic. This is a major convenience as
it allows us to, without loss of generality, study local behaviour at any suitable point.

We will use this definition from section V I I I3.2 in [9].

Definition 1 Let S ⊂ T
n be a smooth m-manifold. Let φ : Im → T

n be a smooth
parametrization, where I ⊂ R is an interval. We define the type of a point ξ = φ(x) as
the smallest τ such that for all unit vectors η ∈ R

n there exists a multi-index k ∈ N
m

with |k| ≤ τ such that

[
dkφ

dtk
· η

]

t=x
�= 0.

We say that S has type τ if the maximum of the types of ξ ∈ S is τ .

In particular, having type 2 is the same as having non-vanishing Gaussian curvature.
For a function f ∈ Dα , it will later be proved that there is a strong connection

between f being cyclic and Z( f ) ∩ T
3 having type 2. Therefore, it is especially

important to understand when a set which can locally be parametrized by φ(x) =
(x, g(x), h(x)) or φ(x, y) = (x, y, g(x, y)) has type 2. It will also be very useful to
know that even if a curve or a surface does not have type 2, we can still, in certain
circumstances, apply aMöbius transformation in order to obtain a new curve or surface
which does have type 2. This new curve will be the zero set of another function whose
cyclicity properties can be related to those of f .

Now, given a function f such that Z( f )∩T
3 is locally parametrized by φ(x, y) =

(x, y, g(x, y)),weknow that the zero set does not have type2 at the point (0, 0, g(0, 0))
if and only if there is some η ∈ S3 such that

η1 + g′
x (0, 0)η3 = η2 + g′

y(0, 0)η3 = 0
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and

g′′
xx (0, 0)η3 = g′′

yy(0, 0)η3 = g′′
xy(0, 0)η3 = 0.

This is possible if and only if all second derivatives of g(x, y) vanish.
However, even if all second order partial derivatives vanish, we can still precompose

f with a Möbius transformation ma,b,0 in order to obtain a new function f ◦ ma,b,0.
A piece of the zero set of this new function will be parametrized by

(
argma

(
eix

)
, argmb

(
eiy

)
, g(x, y)

)
.

For convenience we denote argma
(
eix

)
by ψa(x). One can compute that ψ ′

a(0) > 0
and ψ ′′

a (0) �= 0 as long as Im(a) �= 0. For suitable choices of a and b we see that this
new surface fails to have type 2 if and only if there is some θ ∈ S3 such that

ψ ′
a(0)θ1 + g′

x (0, 0)θ3 = ψ ′
b(0)θ2 + g′

y(0, 0)θ3 = 0

and

ψ ′′
a (0)θ1 + g′′

xx (0, 0)θ3 = ψ ′′
b (0)θ2 + g′′

yy(0, 0)θ3 = g′′
xy(0, 0)θ3 = 0.

But as noted before, if our original surface did not have type 2, then all second deriva-
tives of g must vanish. Thus, in order for the second family of equations to hold both
θ1 and θ2 must vanish. Together with the first family of equations this implies that
the new surface does not have type 2 if and only if all first order and second order
derivatives of g vanish at the origin.

If however a piece of Z( f ) ∩ T
3 can be parametrized locally by (x, g(x), h(x)),

then it has type 2 if and only if there is some η ∈ S3 for which

η1 + g′(x)η2 + h′(x)η3 = 0

and

g′′(x)η2 + h′′(x)η3 = 0.

If this surface does not have type 2, then we can once again apply a Möbius transfor-
mation, ma,0,0 in order to obtain a new function and a new zero set. This new zero set
has type 2 if and only if there exist θ ∈ S3 such that

ψ ′
a(0)θ1 + g′(x)θ2 + h′(x)θ3 = 0

and

ψ ′′
a (0)θ1 + g′′(x)θ2 + h′′(x)θ3 = 0.

Unfortunately, there are several examples of when such θ ∈ S3 exist: for example, if
both g′′(0) and h′′(0) = 0.
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At this point, we wish to point out some similarities and differences between the
abovediscussion and the twovariable counterpart in Section 2.3 in [2]. In twovariables,
the case of a curve coincides with that of a hypersurface. The results in three variables
largely coincide with those of hypersurfaces in two variables, namely it is almost
always possible to apply Möbius transformations in order to obtain a set of type 2.
However, in three variables we also have a possibility which does not exist in two
variables, namely when the zero set is locally a curve. The above calculations show
that we can not in general expect to be able to apply the methods for determining
non-cyclity that were used in [2], so we must instead find other methods.

2.3 Riesz capacity

We will later use known results which relate existence of measures of finite Riesz
energy that are supported on Z( f )∩T

n to non-cyclicity of f . In this article we define
the Riesz potential with parameter α ∈ (0, 1)n , hα , as

hα(x1, . . . , xn) = 1/|1 − eix1 |1−α1 . . . 1/|1 − eixn |1−αn .

One important lemma regarding the Riesz energy of measures is the following.

Lemma 4 Let hα be the Riesz potential with parameter α ∈ (0, 1)n, we have that

Ihα [μ] =
∫

Tn

∫

Tn

1

|eix1 − eiy1 |1−α1 . . . |eixn − eiyn |1−αn
dμ(x)dμ(y)

=
∞∑

k1=−∞
· · ·

∞∑

kn=−∞
ĥα(k)|μ̂(k)|2.

It is known that the Fourier coefficients of hα satisfy

c(|k1| + 1)−α1 . . . (|kn| + 1)−αn ≤ ĥα(k) ≤ C(|k1| + 1)−α1 . . . (|kn| + 1)−αn . (2)

The summation formula for the Riesz α-energy will later be used in order to show that
certain sets have non-zero Riesz capacity.

3 Cyclicity in n variables

3.1 Small zero sets

In [2,6], Lemma 1 was used to show cyclicity for polynomials in C[x, y] with finite
zero set. The idea was to use Łojasiewicz’s inequality, Lemma 1, combined with
knowledge of the cyclicity properties of one-variable polynomials. In two variables
not much more could be said using this idea. But in higher dimensions we observe
that polynomials of the form c j − x j have very large zero sets. By combining this with
the above idea we can show the following.
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Theorem 1 Let f be a polynomial with no zeros in Dn. If Z( f ) ∩ T
n is contained in

a finite union of coordinate hyperplanes of Tn, then f is cyclic for all α ∈ (0, 1]n.
Proof Denote by S the union of coordinate planes,

⋃
j {z : z j = c j }, with c j ∈ T

which contain Z( f ) ∩T
n . By Łjasiewicz’s inequality (as quoted in [7]) we know that

there exists C > 0 and q ∈ N such that

| f (z)| > c · dist(z, Z( f ))q > C · dist(z, S)q

= C · min{|z j − c j |}q ≥ C ·
(

∏

i

|z j − c j |
2

)q

.

By applying Lemmas 1 and 2 this shows us that f is cyclic whenever the polynomials
z j − c j are cyclic, which is for all α ≤ 1. 
�

For n = 2, only one-variable polynomials and polynomials with finite zero set
satisfy the assumptions of the above Theorem. But as we will see, this is no longer
true in higher dimensions.

3.2 Large zero sets

The cornerstone in our proofs regarding non-cyclicity is the following theorem, which
relates properties of Z( f ) ∩ T

n to non-cyclicity of f .

Theorem 2 If f ∈ Dα for α ∈ (0, 1)n, and Z( f ) ⊂ T
n has positive Riesz capacity,

then f is not cyclic.

The proof is largely analogous to Brown and Shields’ proof for the Dirichlet space
in the disc, with only minor differences related to using Riesz capacity instead of
logarithmic capacity. See Theorem 5 in [3] for the complete proof. For a good outline
of the proof idea in two variables we refer the reader to Proposition 4.2 in [1]. Later
on we will use a partial result from the proof of the above theorem, so for convenience
we state that partial result as a lemma.

Lemma 5 If f ∈ Dα has the property that Z( f ) ∩ T
n supports a measure μ whose

Cauchy transform C[μ] lies in D−α , then f is not cyclic in Dα .

Our next goal is to relate certain geometric properties of Z( f ) ∩ T
n to existence of

measures with finite Riesz energy. In order to do so we need the following theorem,
the proof of which can be found on page 348, Theorem 1 and page 351 Theorem 2 in
[9].

Theorem 3 Let S ⊂ T
n be a locally smooth m-manifold of finite type τ ∈ N and let

σ be the measure on S induced by pulling back to the Lebesgue measure using the
parametrization of S. Ifμ is a measure of the form dμ(x) = φ(x)dσ(x), x ∈ S ⊂ T

n,
where φ(x) is a non-negative smooth function with compact support (defined on S),
then there exists a constant C > 0 such that

|μ̂ (k1, . . . , kn) | ≤ C
(
k21 + · · · + k2n

)−1/2τ
, k1, . . . , kn ∈ Z\{0}.
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If we have a smooth hypersurface of non-vanishing Gaussian curvature, that is it has
type 2, then

|μ̂(k1, . . . , kn)|2 ≤ C
(
k21 + · · · + k2n

)(1−n)

, k1, . . . , kn ∈ Z\{0}.

Theorem 4 Assume that f ∈ Dα for α ∈ (0, 1)n, is such that Z( f ) ∩ T
n contains a

locally smooth m-manifold of finite type τ . Then f is not cyclic in Dα for any α for
which |α| > n − 2/τ . If it contains a locally smooth hypersurface of type 2, then f is
not cyclic in Dα for any α for which |α| > 1.

Weonly give the proof of the statement for a generalm-manifold, the proof of the state-
ment for the hypersurface is completely analogous if one uses the second inequality
in Theorem 3 instead of the first inequality.

Proof Since S ⊂ Z( f ) we know that the Riesz capacity of S is less than or equal
to the Riesz capacity of Z( f ). So if we can show that S supports a measure of finite
α−energy for |α| > n − 2/τ , and thus show that S has positive Riesz capacity, then it
follows that Z( f ) has positive Riesz capacity. By applying Theorem 2 the statement
follows.

That S supports such a measure will be shown by using Theorem 3 together with
Lemma 4, since these statements prove that all absolutely continuous measures have
Fourier coefficients which decay quickly.

Let μ be any absolutely continuous measure on F . From Lemma 4 with K = hα

and the bound on the Fourier coefficients of the Riesz capacity from Eq. 2, we have

Ihα [μ] ≤ C
∞∑

kn=−∞
· · ·

∞∑

k1=−∞

|μ̂(k)|2
(|kn| + 1)αn . . . (|k1| + 1)α1

. (3)

μ is a probability measure, |μ̂(0, . . . , 0)|2 = 1, and so, from Theorem 3 and the
assumptions on μ, we have that

(3) ≤ C

⎛

⎝1 +
∞∑

kn=−∞
· · ·

∞∑

k1=−∞

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

⎞

⎠ ,

where k1, . . . , kn are not all equal to zero in the above series. The above expression is
finite if and only if the series is finite. By using that the summand is even in each ki ,
we have that

∞∑

kn=−∞
· · ·

∞∑

k1=−∞

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

≤ 2n
∞∑

kn=0

· · ·
∞∑

k1=0

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

.
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Note that we do not necessarily have equality since terms with at least one ki equal
to 0 are counted several times in the second expression. We can now bound the above
series by

2n
∑

σ∈Sym(n)

∞∑

kσ(n)=1

kσ(n)∑

kσ(n−1)=0

· · ·
kσ(2)∑

kσ(1)=0

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

,

where Sym(n) is the symmetric group of n symbols, i.e. the group of permutations.
Note that we again do not have equality, since terms with ki = k j for i �= j will be
counted several times in the last series, e.g. all terms with k1 = k2 will be covered by
both I d ∈ Sym(n) and (12) ∈ Sym(n).

Note that kσ(n) cannot be zero as this would force all ki ’s to be zero.
Since the symmetric group is finite, we are done if we can show that

∞∑

kσ(n)=1

kσ(n)∑

kσ(n−1)=0

· · ·
kσ(2)∑

kσ(1)=0

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

< ∞

is finite for α > 1 − 2/nτ for each σ . The calculations are completely analogous for
each σ ∈ Sym(n), and so we will only show this for σ = I d, i.e.

∞∑

kn=1

kn∑

kn−1=0

· · ·
k2∑

k1=0

1

(|kn| + 1)αn . . . (|k1| + 1)α1(k21 + · · · + k2n)
1/τ

. (4)

That this is true can be seen in the following way.

(4) ≤ C
∞∑

kn=1

kn∑

kn−1=0

· · ·
k2∑

k1=0

1

(|kn| + 1)αn . . . (|k1| + 1)α1k2/τn

(5)

= C
∞∑

kn=1

k−2/τ
n

kn∑

kn−1=0

· · ·
k3∑

k2=0

1

(|kn| + 1)αn . . . (|k2| + 1)α2

k2∑

k1=0

1

(|k1| + 1)α1

(6)

By applying the inequality
∑l

k=0(k + 1)(m−1)−mα ≤ C(l + 1)m−mα, inductively
to (6) we get that

(6) ≤ C
∞∑

kn=1

k−2/τ
n

kn∑

kn−1=0

· · ·
k3∑

k2=0

(k2 + 1)1−α1

(|kn| + 1)αn . . . (|k2| + 1)α2

= C
∞∑

kn=1

k−2/τ
n

kn∑

kn−1=0

· · ·
k4∑

k3=0

1

(|kn| + 1)αn . . . (|k3| + 1)α3

k3∑

k2=0

(k2 + 1)1−(α1+α2)
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≤ C
∞∑

kn=1

k−2/τ
n

kn∑

kn−1=0

· · ·
k4∑

k3=0

(k3 + 1)2−(α1+α2+α3)

(|kn| + 1)αn . . . (|k4| + 1)α4

...

≤ C
∞∑

kn=1

k−2/τ
n (kn + 1)(n−1)−|α| ≤ C

∞∑

kn=1

(kn + 1)(n−1)−|α|−2/τ .

The last sum is finite if and only if (n − 1) − |α| − 2/τ < −1 ⇐⇒ n − 2/τ < |α|,
which is what we want to show. 
�

4 Polynomials in three variables

For simplicity,wewill now turnour attention to polynomials in three variables.Herewe
will show that the above theorem can in fact be applied “very often” for hypersurfaces.

Theorem 5 Let f ∈ C[x, y, z] be a polynomial with no zeros in D
3, and in which

all variables are represented. If Z( f ) ∩ T
3 contains a hypersurface S which is not

contained in some coordinate plane ofT3, then f is not cyclic in D3
α for anyα ∈ (0, 1)3

with |α| > 1.

Proof We have two possibilities. Either S contains a point of type 2, or it does not
contain a point of type 2. If S has type 2, then the statement follows immediately from
Theorem 4.

Without loss of generality, let a part of S be parametrized by (x, y, g(x, y)). From
the discussion in Sect. 2.2, we can apply Möbius transformations to the parameters in
the parametrization in order to obtain a new surface that is of type 2 at the point p, as
long as some partial derivative of g is non-vanishing at some point in the parametrized
part of S, i.e. g is not constant. But by assumption, S is not contained in some coordinate
plane, and so we know that g has a non-vanishing partial derivative.

After applying a Möbius transformation, we obtain a new surface which is a
parametrization of a part of Z( f ) ∩ T

3 for the function f ◦ ma,b,0. By applying
Theorem 4, we can conclude that f ◦ ma,b,0 is not cyclic for any |α| > 1. This in
turn implies that f is not cyclic, since assuming that f is cyclic, then there exists a
sequence of polynomials pn for which

lim
n→∞ ‖pn f − 1‖α = 0.

But this is not possible since this would imply that

‖(pn ◦ ma,b,0) · ( f ◦ ma,b,0) − 1‖α ≤ ‖ma,b,0‖‖pn f − 1‖α,

where the right hand side tends to zero as n → ∞. But by approximating pn ◦ma,b,0
by polynomials qn , this implies that
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lim
n→∞ ‖qn f ◦ ma,b,0 − 1‖α = 0,

and so f ◦ ma,b,0 would be cyclic, a contradiction. 
�
Note that the case where Z( f ) ∩T

3 is contained in a coordinate plane was already
covered in Theorem 1.

4.1 A special class of polynomials

In the previous subsection we showed that methods, similar to those used in [2] for
proving non-cyclicity of two-variable polynomials, worked well for proving non-
cyclicity of three-variable polynomials whose zero set in the 3-torus contains a
hypersurface. However, from the discussion in Sect. 2.2, it is clear that the situa-
tion is more delicate for polynomials whose zero set meets the 3-torus along a curve.
In this subsection, we will instead focus on a special class of polynomial and try to
better understand their cyclicity properties.

Consider all polynomials in C[x, y, z] of the form

p(x, y, z) = 1 −
l∑

i=1

di x
ai ybi zci , (7)

where ai , bi , ci ∈ N, Im(di ) = 0, di > 0 and
∑

di = 1. None of these polynomials
have any zeros in D

3, and so they are good candidates for being cyclic. Since the
cyclicity properties are completely understood for one-, and two-variable polynomi-
als, as well as for polynomials with a finite zero set, we will only be interested in
polynomials of the above form in which all three variables are represented and whose
zero set is infinite.

By simple arguments from linear algebra, one can conclude that every zero set of
polynomial of the form (7) will also be the zero set of a polynomial of the form

1 − xa ybzc or 2 − xa yb − xazc or 2 − xa yb − zc, (8)

or some composite of such a polynomial with an element in the automorphism group
of the tridisc. For simplicity we will henceforth study polynomials of the form (8),
which we will refer to as flat polynomials. Since we are only interested in true three-
variable polynomials, we assume that a, b, c �= 0. The first class of flat polynomials
will have a hyperplane with rational coefficients as their zero set, and the last two will
have a line with rational coefficients as their zero set.

One method for showing cyclicity for such polynomials is by comparing them
to polynomials in fewer variables whose cyclicity properties are known, namely the
polynomials 1− z and 2 − x − y, both of which are known to be cyclic for all α ≤ 1
(finite zero set). Note that by Theorem 1, we already know that 2− xa yb − zc is cyclic
for all α ∈ (0, 1)3.

Theorem 6 All flat polynomials whose zero set on the 3-torus is parametrized by a
(finite) collection of curves which do not lie in a coordinate plane of T3 are cyclic for
all α ∈ (0, 1]3 for which α1 + α2 and α1 + α3 ≤ 1.
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Proof Let α ∈ (0, 1]3 be such that α1 +α2 and α1 +α3 ≤ 1. Denote by La,b,c( f ) the
operation which takes f (s, t) to f (xa yb, xazc). We will show that ‖La,b,c( f )‖α ≤
C‖ f ‖α′ , where α′ = (α1 + α2, α1 + α3).

For f (s, t) = ∑
k,l∈N f̂ (k, l)sktl , we have that

La,b,c( f )(x, y, z) =
∑

p1,p2,p3∈N
Apx

p1 y p2 z p3 =
∑

k,l∈N
f̂ (k, l)xak+al ybk zcl ,

and so Ap = f̂ (k, l) if (p1, p2, p3) = (ak + al, bk, cl). It follows that

‖La,b,c( f )‖2α =
∑

p∈N3

|Ap|2(1 + p1)
α1(1 + p2)

α2(1 + p3)
α3

=
∑

k,l∈N
| f̂ (k, l)|2(1 + ak + al)α1(1 + bk)α2(1 + cl)α3

≤ C(a, b, c)
∑

k,l∈N
| f̂ (k, l)|2(1 + k)α1+α2(1 + l)α1+α3

= C(a, b, c)‖ f ‖2α′ .

By noting that La,b,c(2− s − t)(x, y, z) = 2− xa yb − xazc, and using that 2− s − t
is cyclic for all α ∈ (0, 1]2, we know that there is a sequence of polynomials pn such
that

lim
n→∞ ‖(2 − s − t)pn(s, t) − 1‖(1,1) = 1,

By using the above norm inequality and setting qn = La,b,c(pn), we see that

lim
n→∞ ‖qnLa,b,c(2 − s − t) − 1‖α = 0,

and so 2 − xa yb − xazc is cyclic for α with the described properties. 
�
By using the same method as above but instead comparing 1 − xa ybzc to 1 − s, we
can conclude that the polynomials in our class whose zero set on T3 is a hypersurface
will be cyclic for all α such that|α| ≤ 1. By combining this with Theorem 5, we obtain
the following.

Theorem 7 Every flat polynomial whose zero set on T3 is a hypersurface not entirely
contained in a finite collection of coordinate planes is cyclic in Dα , α ∈ (0, 1)3, if and
only if |α| ≤ 1.

As previously noted, if the zero set of a polynomial is entirely contained in a coor-
dinate plane, then that polynomial is cyclic for all α ∈ (0, 1]3. We also note that there
are true three-variable polynomials with this property, for example the polynomial
2− y − xz. One might expect that this is always the case for polynomials whose zero
set is a curve, but as the next example will show, this is not true. In fact, all remaining
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flat polynomials are non-cyclic for all α ∈ (0, 1]3 with |α| > 2. This will be shown
by finding a measure supported on Z( f )∩T

3 whose Cauchy transform lies in Dα for
all α with |α| ≤ −2, and then applying Lemma 5.

Themeasurewe have inmind is a simple one, namely the probabilitymeasureμ that
has constant density everywhere on the parametrized piece of Z( f )∩T

3 with respect
to the pullback of the Lebesgue measure, and which has density zero everywhere else.
We illustrate this method through an example. The general proof for flat polynomials
is analogous.

Example 1 Consider the polynomial

p(z1, z2, z3) = 2 − z1z2 − z1z3.

A piece of the zero set of this polynomial is parametrized by (s,−s,−s), and so, the
corresponding Cauchy transform is given by

C[μ](z) = 1

2π

∫ 2π

0

1

(1 − eis z1)(1 − e−is z2)(1 − e−is z3)
ds.

By replacing the factors in the integral by their power series expansions and changing
orders of integration and summation, we see that

C[μ](z1, z2, z3) =
∑

l,m∈N
(z1z2)

l(z1z3)
m = 1

1 − z1z2

1

1 − z1z3
.

If the above function lies in D−α , then, by Lemma 5, p(z1, z2, z3) is not cyclic in Dα .
We have that C[μ] lies in Dα (α < 0) if and only if

‖C[μ]‖2α =
∞∑

l=0

∞∑

m=0

(1 + l + m)α1(1 + m)α2(1 + l)α3 < ∞.

The above series is finite if

∞∑

l=0

(1 + l)α3
l∑

m=0

(1 + l + m)α1(1 + m)α2 < ∞. (9)

and the corresponding series where m ≥ l is finite. The calculations for both series of
the above form are analogous.

Since l ≥ 0, we have that

l∑

m=0

(1 + l + m)α1(1 + m)α2 ≤
l∑

m=0

(1 + m)α1+α2 ≤ c(1 + l)α1+α2+1.

By plugging this into (9), we see that

∞∑

l=0

(1 + l)α3
l∑

m=0

(1 + l + m)α1(1 + m)α2 ≤ c
∞∑

l=0

(1 + l)α1+α2+α3+1,
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and the last expression is finite if and only if |α| + 1 < −1, which implies that
|α| < −2.

It follows that C[μ] ∈ Dα if |α| < −2, and so 2− z1z2 − z1z3 is not cyclic for any
α ∈ (0, 1)3 with |α| > 2.

Note that the above calculations only depend on the zero set, and really is not using
any other property of the polynomial. For example, the corresponding calculations for
the polynomial 5 − xy − x3y3 − xz − 2x2yz are exactly the same. Note also that if
one tries to carry out the corresponding calculations for the polynomial 2 − x − yz,
then the result is that the corresponding series converges if and only if α > 1, which
is in line with Theorem 1.

By applying Frostman’s lemma it can be shown that the above calculations are in
fact sharp.

Theorem 8 Let S ⊂ T
3 have (Hausdorff) dimension equal to s ∈ N. Then S has

isotropic α−capacity equal to zero for all α ≤ 1 − s/3.

Proof For all a, b, c ∈ R, we have that

(abc)(2/3) ≤
(
max{a, b, c}3

)(2/3) = max{a, b, c}2 ≤ a2 + b2 + c2.

It follows that, for any positive measure μ

∫

S

∫

S

dμ(x)dμ(y)

(|eix1 − eiy1 ||eix2 − eiy2 ||eix3 − eiy3 |)1−α

≥
∫

S

∫

S

dμ(x)dμ(y)

(
√|eix1 − eiy1 |2 + |eix2 − eiy2 |2 + |eix3 − eiy3 |2)3(1−α)

.

By Frostman’s lemma (for example Theorem 8.9 in [8]), we know that the right hand
side is infinite for every probability measure μ supported on S if 3(1 − α) ≥ s. It
follows that S has α−capacity zero for all α ≤ 1 − s/3. 
�
This shows that the estimates in Example 1 and Theorem 5 are sharp in the sense
that we could not have pushed non-cyclicity further by selecting different measures
supported on these zero sets. If the Brown and Shields conjecture is true, then this
would also imply that functions whose zero set is a curve are cyclic in the isotropic
Dirichlet type space on the tridisc for all α ≤ 2/3, and functions whose zero set is a
hypersurface are cyclic for all α ≤ 1/3.

In two variables, only the cardinality of the zero set was important regarding cyclic-
ity. However, the above example shows us that polynomials in three variables whose
zero set is a curve have worse cyclicity properties than those whose zero set is finite,
but better than those whose zero set is a hypersurface. It seems like dimension of
the zero set, and not only cardinality is important. But furthermore, in two variables,
the only deviation of this behaviour was for polynomials which were not truly two
variable polynomials. In three variables, we still have this property, but furthermore,
we know that even the orientation of the zero set is important, and we have examples
of genuine three variable polynomials where this comes into play.



A note on cyclic polynomials in polydiscs 211

Acknowledgements The author thanks the referee for a careful reading of the paper, and Alan Sola for
several valuable discussions and ideas.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bénéteau, C., Condori, A.A., Liaw,C., Seco,D., Sola,A.: Cyclicity inDirichlet-type spaces and extremal
polynomials II: functions on the bidisk. Pac. J. Math. 276, 35–58 (2015)
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