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Abstract We construct a new class of coherent states indexed by points z of the
complex plane and depending on two positive parametersm and ε > 0 by replacing the
coefficients zn/

√
n! of the canonical coherent states by polyanalytic functions. These

states solve the identity of the states Hilbert space of the harmonic oscillator at the
limit ε → 0+ and obey a thermal stability property. Their wavefunctions are obtained
in a closed form and their associated Bargmann-type transform is also discussed.

1 Introduction

In general, coherent states (CS) are a specific overcomplete family of vectors in the
Hilbert space of the problem that describes the quantum phenomena and solves the
identity of this Hilbert space. These states have long been known for the harmonic
oscillator (HO) potential and their properties have frequently been taken as models
for defining this notion for other models [6,13]. The HO potential finds application in
the description of vibrational modes in nuclei, atoms, molecules and crystal lattices.

Here, the CSs for HO potential we are introducing are quite different from the
existing ones in the above literature and are simply obtained by adopting a general
Hilbertian probabilistic scheme [14] reminiscent to the classical construction of the
Bargmann transform [9]. Our procedure can be described as follows. In [20] we have
introduced a family of CS for the HO potential through superpositions of the corre-
sponding eigenstates where the role of coefficients zn/

√
n! of the canonical CS was

played by coefficients
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�m
n (z) := (−1)m∧n (m ∧ n)! |z||m−n| e−i(m−n) arg z L(|m−n|)

m∧n (zz) , z ∈ C, n = 0, 1, . . . ,
(1.1)

where L(α)
n (.) denotes the Laguerre polynomial [19] and m ∧ n = min (m, n) . To be

more precise, the
{
�m

n (z)
}
constitute an orthonormal basis of a true polyanalytic space

attached to a fixed mth Landau level [3]. The reproducing kernel Km (z, w) of a such
Hilbert space has been recently used to prove hyperuniformity [27] of the determinantal
processes modeling the Integer Quantum-Hall Effect [1,24]. In this paper, we proceed
bymodifying the coefficients (1.1) by a factor e−nε . This defines what we call epsilon
coherent states andwe denote by ε-CS for brevity. Their overlapping function provides
a deformation of the previous kernel function Km (z, w) .In fact these ε-CS solve an ε

-identity operator which has the advantage of being a compact and trace class operator.
The latter one becomes the identity operator of the Hilbert space L2 (R) at the limit
ε → 0+. This can be proved essentially by using a result on the Poisson kernel for
Hermite polynomials, which is due to Muckenhoupt [23].

On the physical side, we can interpret the number ε as the usual parameter 1/kBT
of statistical physics where kB is the Boltzmann constant and T is the temperature.
Therefore the resolution of the ε-identity operator gives in fact (up to a normalization
factor) the thermodynamical quantum density for a HO potential with the form ρ̂ =∑∞

n=0 n |n〉 〈n| . These ε-CS also obey a thermal stability property. It will also be of
interest to relate the parameter ε to the inverse temperature β appearing in the Gibbs
measure of theCoulombplasma [10] but this could requires to adapt our construction to
the Hamiltonian of this model. Furthermore, the method we are using, which is similar
to the one used in [21], makes possible to obtain a closed form for the ε-CS allowing
to define a Bargmann-type transform, say Bε

m . The latter one can be considered as
generalization with the respect to parameter ε of the true-polyanalytic m-Bargmann
transform [3,5,20,28].

The paper is organized as follows. In Sect. 2, we recall briefly some needed fact on
polyanalytic functions on the complex plane. Section 3 deals with the coherent states
formalism we will be using. In Sect. 4 we construct ε-coherent states and we show
that they solve an ε-identity which becomes the identity of the states Hilbert space at
the limit ε → 0+. In Sect. 5, we give a closed form for the constructed states an we
discuss their associated Bargmann-type transform.

2 Polyanalytic functions on C

The Bargmann–Fock space Fm+1 (C) of polyanalytic functions consists of all func-
tions F (z) satisfying the equation

(
∂

∂z

)m+1

F (z) = 0 (2.1)

and such that ∫

C

|F (z)|2 e−zzdμ (z) < +∞ (2.2)
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wheredμ (z)denotes theLebesguemeasure onC. Functions satisfying (2.1) are known
as polyanalytic functions of order m + 1. Since Eq. (2.1) generalizes the Cauchy–
Riemann equation

∂

∂z
F (z) = 0, (2.3)

then the space Fm+1 (C) is a generalization of the well known Bargmann–Fock space
F (C) of entire Gaussian-square integrable functions on C. That is, for m = 0,
F1 (C) ≡ F (C), see [3,8]. Polyanalytic functions inherit some of the properties
of analytic functions, in an nontrivial form. However, many of the properties break
down once we leave the analytic setting. For instance, while nonzero entire functions
do not have sets of zeros with an accumulation point, polyanalytic functions can vanish
along closed curves. To illustrate such situation, take F (z) := zz − 1, a polyanalytic
function of order 2.

Now, if we look at the so-called true polyanalytic Fock spaces [2,28] which will be
denoted here byA2

l (C) , l = 0, 1, . . . ,m. These spaces are related to the polyanalytic
Fock space Fm+1 (C) by the orthogonal decomposition [2,3,28] :

Fm+1 (C) = A2
0 (C) ⊕ A2

1 (C) ⊕ · · · ⊕ A2
m (C) . (2.4)

Moreover, for each fixed m ∈ Z+, the true polyanalytic Bargmann–Fock space
A2

m (C) admits a nice realization as an eigenspace [7]:

A2
m (C) :=

{
f ∈ L2

(
C, e−zzdμ

)
, �̃ f = m f

}
(2.5)

of the second order differential operator

�̃ := − ∂2

∂z∂z
+ z

∂

∂z
. (2.6)

This operator constitutes, in suitable units and up to additive constant, a realization in
the Hilbert space L2

(
C, e−zzdμ

)
of the Schrödinger operator with uniform magnetic

field in C. Its spectrum consists of eigenvalues λm of infinite multiplicity (Euclidean
Landau levels) of the form λm := m,m ∈ Z+. The space in (2.5) admits an orthogonal
basis whose elements are expressed by

�m
n (z) := (−1)m∧n (m ∧ n)! |z||m−n| e−i(m−n) arg z L(|m−n|)

m∧n (zz) , z ∈ C, n = 0, 1, . . . ,
(2.7)

in terms of Laguerre polynomials [18] :

L(α)
j (t) =

j∑

k=0


 (α + j + 1)


 (α + k + 1)

(−t)k

( j − k)!k! , α > −1 (2.8)

with the orthogonality relations (with respect to the scalar product in L2
(
C, e−zzdμ

)
)

given by

〈�m
n

∣∣∣�m
j

〉
= πm!n!δn, j . (2.9)
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where δ j,k denotes theKronecker symbol.Direct calculations using (2.7),(2.9) together
with a known summation formula of the product of Laguerre polynomials allow to
obtain the reproducing kernel of the Hibert space A2

m (C) with the form [22] :

Km (z, w) = π−1ezwL(0)
m

(
|z − w|2

)
, z, w ∈ C. (2.10)

More information on these spaces and applications to signal analysis and physics can
be found in [3,5,17] and references therein.

3 Epsilon coherent states

In this section, we will review a generalization of canonical CS by considering a kind
of the identity resolution that we obtain at the zero limit with respect to a parameter
ε > 0. Their formalism can be found in [21] where new families of CS attached to the
Hamiltonian with pseudo-harmonic oscillator potential were constructed.

Definition 3.1 Let H be a (complex, separable, infinite-dimensional) Hilbert space
with an orthonormal basis {ψn}∞n=0 . Let D ⊆ C be an open subset of C and let
cn : D → C; n = 0, 1, 2, · · · , be a sequence of complex functions. Define

|z, ε〉 := (Nε (z))−
1
2

+∞∑

n=0

cn (z)√
σε (n)

|ψn〉 (3.1)

where Nε (z) is a normalization factor and σε (n); n = 0, 1, 2, · · · , a sequence of
positive numbers depending on ε > 0. The vectors {|z, ε〉 , z ∈ D} are said to form a
set of epsilon coherent states if

(i) for each fixed z ∈ D and ε > 0, the state in (3.1) is normalized, that is
〈z, ε|z, ε〉H = 1,

(ii) the following resolution of the identity operator on H

lim
ε→0+

∫

D
|z, ε〉 〈z, ε| dμε (z) = 1H (3.2)

is satisfied with an appropriately chosen measure dμε.
In the above definition, the Dirac’s bra-ket notation |z, ε〉 〈z, ε| in (3.2) means

the rank-one operator ϕ �→ |z, ε〉 〈z, ε|ϕ〉H, ϕ ∈ H. Also, the limit in (3.2) is to be
understood as follows. We define the integral of rank-one operators as being the linear
operator

Oε [ϕ] (•) :=
∫

D
〈• |z, ε〉 〈z, ε|ϕ〉dμε (z) . (3.3)

Then, the above limit is pointwise meaning Oε [ϕ] (•) → ϕ (•) as ε → 0+, almost
every where with respect to (•) . Here, we should mention that the usual way is to
understand the integral ∫

D
|z, ε〉 〈z, ε|dμε (z) (3.4)
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in the weak sense, see for instance ([11], p.8). Namely, it is the sesquilinear form

Bε (φ, ψ) :=
∫

D
〈φ |z, ε〉 〈z, ε|ψ〉dμε (z) . (3.5)

Choosing this way, one has to check that the form (3.5) is bounded so that the Riesz
lemma ensures the existence of a unique bounded operatorOε satisfying Bε (φ, ψ) =
〈φ|Oε [ψ]〉. In our framework the resolution of the identity reads limε→0 Bε (φ, ψ) =
〈φ|ψ〉 meaning that limε→0 Oε = 1H in the weak operator topology.

Note also that the above expression (3.1) can be viewed as a generalization of the
series expansion of the canonical (anti-holomorphic) coherent states

|z〉 :=
(
ezz̄

)− 1
2

+∞∑

n=0

zn√
n! |ϕn〉 ; z ∈ C, (3.6)

where {|ϕn〉} is an orthonormal basis in L2 (R), which consists of eigenstates of the
Hamiltonian with the HO potential −∂2x + x2 given by

ϕn (x) = (
√

π2nn!)−1/2e− 1
2 x

2
Hn(x) (3.7)

in terms of the Hermite polynomial

Hn(x) =
n/2�∑

k=0

(−1)k n!
k! (n − 2k)! (2x)n−2k (3.8)

see [18]. Here, the notation a� means the greatest integer not exceeding a.

4 Epsilon CS with polyanalytic coefficients for the HO potential

We now construct a class of ε-CS indexed by points z ∈ C and depending on two
parameteres m and ε by replacing the coefficients zn/

√
n! of the canonical coherent

states by polyanalytic coefficients as mentioned in the introduction.

Definition 4.1 Define a set of states labeled by points z ∈ C and depending on two
parameters m and ε > 0 by the following superposition

|z;m, ε〉 := (Nm,ε (z)
)− 1

2

+∞∑

n=0

�m
n (z)

√
σε,m (n)

|ϕn〉 (4.1)

where Nm,ε (z) is a normalization factor, σm,ε(n) are positive numbers given by

σm,ε (n) := πm!n!enε, n = 0, 1, 2, · · · , (4.2)
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and {|ϕn〉} is the orthonormal basis of H = L2 (R), consisting of eigenstates of the
harmonic oscillator as given in (3.7).

In the next result (see Appendix A) we give the overlap relation between two ε-CS.

Proposition 4.1 Let m ∈ Z+ and ε > 0. Then, for every z,w inC, the overlap relation
between two ε-CS is expressed as

〈z;m, ε |w;m, ε〉L2(R) = exp
(
e−εzw − mε

)

π
√Nm,ε (z)Nm,ε (w)

L(0)
m

((
ze−ε − w

) (
zeε − w

))

(4.3)
where the normalization factor is given by

Nm,ε (z) = π−1 exp
(
e−εzz − mε

)
L(0)
m (2 (1 − cosh ε) zz) (4.4)

in terms of the Laguerre polynomial L(0)
m (.).

Corollary 4.1 At the limit ε → 0+, the overlap relation (4.3) gives the normalized
reproducing kernel of the true polyanalytic Fock space A2

m (C). That is,

lim
ε→0+〈z;m, ε |w;m, ε〉L2(R) = Km (z, w)√

Km (z, z) Km (w,w)
(4.5)

where Km (z, w) is given explicitly by (2.10).

We now proceed to determine a measure of the form Nm,ε (z) dη (z) with respect
to which the ε-CS satisfy a resolution of an ε -identity operator and where dη (z) is
not ε -independent.

Proposition 4.2 The ε-CS solve an ε-identity operator as follows

∫

C

|z;m, ε〉 〈z;m, ε|dμm,ε (z) = e−εH (4.6)

where H = ∑+∞
n=0 n |ϕn〉 〈ϕn| and

dμm,ε (z) = e−zzπ−1 exp
(
e−εzz − mε

)
L(0)
m (2 (1 − cosh ε) zz) dμ (z) (4.7)

with dμ (z) being the Lebesgue measure on C.

Proof Let us assume that the measure takes the form

dμm,ε (z) = Nm,ε (z) ρ (z) dμ (z) (4.8)

where ρ (z) is an auxiliary density to be determined. Let ϕ ∈ L2 (R) and let us start
according to (3.3) by writing
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Om,ε [ϕ] :=
⎛

⎝
∫

C

|z;m, ε〉 〈z;m, ε|dμm,ε (z)

⎞

⎠ [ϕ] (4.9)

=
∫

C

〈ϕ |z;m, ε〉 〈z;m, ε|dμm,ε (z) (4.10)

=
∫

C

〈ϕ | (Nm,ε (z)
)− 1

2

+∞∑

n=0

�m
n (z)

√
σε,m (n)

|ϕn〉〉〈z;m, ε|dμm,ε (z) (4.11)

=
∫

C

+∞∑

n=0

�m
n (z)

√
σε,m (n)

〈ϕ |ϕn〉〉〈z;m, ε| (Nm,ε (z)
)− 1

2 dμm,ε (z) (4.12)

=
⎛

⎝
+∞∑

n, j=0

∫

C

�m
n (z)�m

j (z)
√

σε,m (n)
√

σε,m ( j)
|ϕn〉 〈ϕ j |

(Nm,ε (z)
)−1

dμm,ε (z)

⎞

⎠ [ϕ] .

(4.13)

Replace dμm,ε (z) = Nm,ε (z) ρ (z) dμ (z) , then Eq. (4.13) takes the form

Om,ε =
+∞∑

n, j=0

e−(n+ j) ε
2

⎡

⎣
∫

C

�m
j (z)�m

n (z)
√

πm! j !√πm!n!ρ (z) dμ (z)

⎤

⎦ |ϕn〉 〈ϕ j |. (4.14)

We recall the orthogonality relations (2.9) :

〈�m
n

∣∣∣�m
j

〉
= πm!n!δn, j . (4.15)

This suggests us to set
ρ (z) := e−zz, z ∈ C. (4.16)

Therefore, the operator in (4.14) takes the form

Om,ε [ϕ] ≡ Oε [ϕ] =
+∞∑

n=0

e−nε (|ϕn〉 〈ϕn|) [ϕ] . (4.17)

By defining a Hamiltonian operator of the harmonic oscillator type via the dis-
crete spectral resolution H = ∑+∞

n=0 n |ϕn〉 〈ϕn|, then Eq. (4.14) also reads Oε [ϕ] =
e−εH [ϕ] , ϕ ∈ H. ��

In the next result (see Appendix B) we state the resolution of the identity operator.

Proposition 4.3 The ε-CS satisfy the following resolution of the identity

lim
ε→0+

∫

C

|z;m, ε〉〈z;m, ε|dμm,ε (z) = 1L2(R) (4.18)
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where dμm,ε (z) is the measure given by (4.7).

We close this section by mentionning the following property of these ε-CS.

Proposition 4.4 The ε-CS obey the following thermal stability property

e
− 1

2 t
(
−∂2x+x2− 1

2

)

|z;m, ε〉 =
(Nm,ε+t (z)

Nm,ε (z)

) 1
2 |z;m, ε + t〉 , t > 0. (4.19)

Proof On one hand, we write the spectral resolution of the heat operator e− 1
2 t L̃ asso-

ciated with the shifted harmonic oscillator L̃ :=−∂2x + x2 − 1
2 as

e− 1
2 t L̃ =

+∞∑

j=0

e− 1
2 j t

∣∣ϕ j
〉 〈ϕ j |. (4.20)

On an other hand, we rewrite the ε−CS in (4.1) as

|z;m, ε〉 := (Nm,ε (z)
)− 1

2

+∞∑

n=0

γ (m)
n (z) e− 1

2 nε |ϕn〉 , (4.21)

where γ
(m)
n (z) := (πm!n!)− 1

2 �m
n (z). So that writting the action of the heat operator

e− 1
2 t L̃ on the form (4.21) , we get successively

e− 1
2 t L̃ |z;m, ε〉 = e− 1

2 t L̃

(
(Nm,ε (z)

)− 1
2

+∞∑

n=0

γ (m)
n (z) e− 1

2 nε |ϕn〉
)

(4.22)

=
+∞∑

j=0

e− 1
2 t j

∣∣ϕ j
〉 〈ϕ j |

(
(Nm,ε (z)

)− 1
2

+∞∑

n=0

γ (m)
n (z) e− 1

2 nε |ϕn〉
)

(4.23)

= (Nm,ε (z)
)− 1

2

+∞∑

j,n=0

γ (m)
n (z) e− 1

2 j t− 1
2 nε

∣∣ϕ j
〉 〈ϕ j |ϕn〉. (4.24)

Using the orthonormality relation 〈ϕ j |ϕk〉 = δk, j , this action reduces to

e− 1
2 t L̃ |z;m, ε〉 = (Nm,ε (z)

)− 1
2

+∞∑

n=0

γ (m)
n (z) e− 1

2 n(t+ε) |ϕn〉 (4.25)

and it can also be written as

e− 1
2 t L̃ |z;m, ε〉 =

(Nm,ε+t (z)

Nm,ε (z)

) 1
2 |z;m, ε + t〉 (4.26)



Epsilon coherent states with polyanalytic coefficients for… 375

which means that, up to a factor depending on the labelling point z, the action of the
heat operator exp

(− 1
2 t L̃

)
reproduces a similar state ε-CS, where ε is shifted by t . ��

Remark 4.1 Equation (4.26) means that these ε-CS satisfy a thermal stability (with
respect to L̃ ≥ 0). What also make this property possible is the linearity (with respect
to the integer index) of the spectrum of the Hamiltonian with HO potential. A similar
fact can be found in [15] where Gazeau and Klauder introduced a real two parameters
set of coherents, say {|J, γ 〉 , J ≥ 0, γ ∈ R} associated with the discrete dynamics of
a positive Hamiltonian Ĥ . One of the requirements for their CS was the so-called
temporal stability meaning that e−i t Ĥ |J, γ 〉 = |J, γ + ωt〉 , ω can be taken equal to
one.

5 A closed form for the ε-CS

In this section we will establish a closed form for the constructed ε−CS and we will
discuss the associated Bargmann-type integral transform.

Proposition 5.1 Let m ∈ Z+ and ε > 0 be fixed parameters. Then, the wavefunctions
of the ε-CS defined in (4.1) can be written in a closed form as

〈x |z;m, ε〉 =
(−1)m

(
e− 1

2 ε/
√
2
)m

(√
π

) 3
2
√
m!

×
exp

(
− 1

2 x
2+√

2xze− 1
2 ε− 1

2e
−εz2

)
Hm

(
x − 1√

2

(
e
1
2 εz + e− 1

2 εz
))

√
π−1 exp

(
e−εzz − mε

)
L(0)
m (2 (1 − cosh ε) zz)

(5.1)

for every x ∈ R.

Proof We start by writing the expression of the wave function of ε-CS according to
Definition (4.1) as

〈x |z;m, ε〉 = (Nm,ε (z)
)− 1

2

+∞∑

n=0

�m
n (z)

√
σε,m (n)

ϕn (x) ; x ∈ R. (5.2)

We have thus to look for a closed form of the series

Sm,ε
z (x) :=

+∞∑

n=0

�m
n (z)

√
σε,m (n)

ϕn (x) . (5.3)
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To do this, we start by replacing the coefficients �m
n (z) by their expression in (2.7) .

So that Equation (5.3) reads

Sm,ε
z (x) =

+∞∑

n=0

e− 1
2 nε

√
πn!m! (−1)n∧m (m∧n)! |z||m−n| e−i(m−n) arg z L(|m−n|)

m∧n (zz) ϕn (x) ,

(5.4)
where m ∧ n := min(m, n). Next, with the help of the identity (A.7) on Laguerre
polynomials, we are able to rewrite (5.4) in the following form

Sm,ε
z (x) = (−1)m

√
m!√

π

+∞∑

n=0

e− 1
2 nε

√
n! zn−mL(n−m)

m (zz) ϕn (x) . (5.5)

Making use of the explicite expression (3.7) of the eigenstates ϕn (x), then the sum in
(5.5) becomes

Sm,ε
z (x) = (−1)m

√
m!

(√
π

) 3
2 zm

e− 1
2 x

2
+∞∑

n=0

(
(2eε)−

1
2 z

)n

n! L(n−m)
m (zz) Hn (x) . (5.6)

We now introduce the notation τ := (2eε)−
1
2 z in (5.6) and we will be dealing with

the sum

Gm,ε
z (x) :=

+∞∑

n=0

τ n

n! Hn (x) L(n−m)
m (zz) . (5.7)

Using the integral representation of Hermite polynomials ([16], p.365):

Hp (x) = ex
2

√
π

∫

R

(2iu)p e−2iux e−u2du, (5.8)

then the sum (5.7) may be written as

Gm,ε
z (x) =

+∞∑

n=0

1

n!

⎛

⎝ ex
2

√
π

∫

R

(2iuτ)n e−2iux e−u2du

⎞

⎠ L(n−m)
m (zz) (5.9)

= ex
2

√
π

∫

R

e−2iux e−u2
(+∞∑

n=0

(2iuτ)n
1

n! L
(n−m)
m (zz)

)

du. (5.10)

The sum in (5.10) can also be presented as follows

+∞∑

n=0

((
1

z
2iu

(
2eε

)− 1
2

)
zz

)n 1

n! L
(n−m)
m (zz) . (5.11)
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Making appeal to the following formula due to Deruyts ([12], p.142):
+∞∑

n=0

(sα)n
1

n! L
(n−m)
n (s) = sm

m! (α − 1)m esα (5.12)

for the parameters α = 1
z 2iu (2eε)−

1
2 and s = zz then the sum (5.11) reduces to

zm

m!
(
iu

√
2e− 1

2 ε − z
)m

exp
(√

2iue− 1
2 εz

)
. (5.13)

Returning back to (5.10) and inserting the quantity (5.13) then (5.9) reads

Gm,ε
z (x) = zmex

2

m!√π

∫

R

e−2iux e−u2
(
iu

√
2e− 1

2 ε − z
)m

exp
(√

2iue− 1
2 εz

)
du.

(5.14)
We now use the binomial formula

(
iu

√
2e− 1

2 ε − z
)m =

m∑

l=0

(
m
l

) (
iu

√
2e− 1

2 ε
)l

(−z)m−l (5.15)

and we replace it in the right hand side of (5.14). We obtain that

Gm,ε
z (x) = zmex

2

m!√π

∫

R

e−2iux−u2 exp
(√

2iue− 1
2 εz

) (
m∑

l=0

(
m
l

) (
iu

√
2e− 1

2 ε
)l

(−z)m−l

)

du.

(5.16)
This can also be written as

Gm,ε
z (x) = zmex

2

m!√π

m∑

l=0

(
m
l

)
(−z)m−l

×
∫

R

e−2iux−u2 exp
(√

2iue− 1
2 εz

) (
iu

√
2e− 1

2 ε
)l

du. (5.17)

Now, the integral in (5.17) :

Il =
(
e− 1

2 ε

√
2

)l ∫

R

exp

(

−2iu

(

x − z
e− 1

2 ε

√
2

))

e−u2 (i2u)l du (5.18)

can be written by taking into account (5.8) as

Il =
(
e− 1

2 ε

√
2

)l √
π exp

⎛

⎝−
(

x − z
e− 1

2 ε

√
2

)2
⎞

⎠ Hl

(

x − z
e− 1

2 ε

√
2

)

. (5.19)
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Replacing (5.19) in (5.17), we arrive at

Gm,ε
z (x) = zmex

2

m!

(
e− 1

2 ε

√
2

)m

exp

⎛

⎝−
(

x − z
e− 1

2 ε

√
2

)2
⎞

⎠

×
m∑

l=0

(
m
l

) (
−√

2ze
1
2 ε

)m−l
Hl

(

x − z
e− 1

2 ε

√
2

)

. (5.20)

Next, we apply the following identity to the last sum in (5.20) ([19], p.255):

m∑

l=0

(
m
l

)
(−2a)m−l Hl (t) = Hm (t − a) . (5.21)

Finally, summarizing the above calculations, we arrive at the announced expression
for the ε−CS in (5.1). ��

Naturally, once we have obtained a closed form for the ε-CS we can look for
the associated coherent states transform, say Bε

m . In view of the definition (4.1), this
transform shouldmap the space L2 (R) spanned by eigenstates |ϕn〉 of theHamiltonian
with theHOpotential onto the ε-true polyanalytic spaceA2,ε

m (C)which can be defined
as the subspace of L2

(
C, π−1e−zzdμ

)
obtained as the closure of vector space spanned

by all linear combinations of the polyanalytic functions z �→ (
σε,m (n)

)− 1
2 �m

n (z)with
the normalized reproducing kernel

Km,ε (z, w) := exp
(
e−εzw − mε

)

√Nm,ε (z)Nm,ε (w)
L(0)
m

((
ze−ε − w

) (
zeε − w

))
. (5.22)

Here, σε,m(n) = m!n!enε and Nm,ε (z) = exp
(
e−εzz − mε

)
L(0)
m (2 (1 − cosh ε) zz).

Definition 5.1 TheBargmann-type integral transform Bε
m : L2 (R) → A2,ε

m (C) asso-
ciated with the ε-CS is defined by

Bε
m [ϕ] (z) = (Nm,ε (z)

) 1
2 〈ϕ |z;m, ε〉L2(R) (5.23)

and explicitly as

Bε
m [ϕ] (z) : = (−1)m e− 1

2mε

2m/2
√
m!π1/4

∫

R

exp

(
− x2

2
+ √

2xze− 1
2 ε − e−εz2

2

)

× Hm

(

x − e− 1
2 εz√
2

− e
1
2 εz√
2

)

ϕ (x) dx

for every z ∈ C.
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At the limit ε → 0+, we recover the coherent states transform [20] :

B0
m : L2 (R) → A2

m (C) (5.24)

defined by

B0
m [ϕ] (z) := (−1)m

2m/2
√
m!π1/4

∫

R

exp

(
− x2

2
+ √

2xz − z2

2

)
Hm

(
x − z + z̄√

2

)
ϕ (x) dx

The latter one can also be written [3] as

B0
m [ϕ] (z) ∝ eπ zz (∂z)

m−1
(
e−π zz B [ϕ] (z)

)
(5.25)

in terms of the transform

B ≡ B0
0 : L2 (R) → A2

0 (C) ≡ F (C)

ϕ �→ B [ϕ] (z) = π−1/4
∫

R

exp

(
− x2

2
+ √

2xz − z2

2

)
ϕ (x) dx (5.26)

which is the well known Bargmann transform [8] .
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Appendix A

Proof Using the orthogonality relations of the basis elements {ϕn (x)} in (3.7) the
scalar product in L2 (R) beteween two ε-CS can written as

〈z;m, ε |w;m, ε〉L2(R) = Qε (z, w)

πm!√Nm,ε (z)Nm,ε (w)
(A1)

where
Qε (z, w) =

+∞∑

n=0

e−nε

n! �m
n (z)�m

n (w). (A2)

Recalling the explicite expression (2.7) of the of the polyanalytic coefficients, we can
split the sum in (A2) into two part as
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Qε (z, w) =
m−1∑

n=0

e−nεn! (|z| |w|)(m−n) L(m−n)
n (zz) L(m−n)

n (ww) e−i(m−n) arg zei(m−n) argw

+
+∞∑

n=m

e−nε

n! (m!)2 (|z| |w|)(n−m) L(n−m)
m (zz) L(n−m)

m (ww) e−i(m−n) arg zei(m−n) argw.

(A3)

This quantity can also be decomposed as

Qε (z, w) = Q(<∞)
ε (z, w) + Q(∞)

ε (z, w) (A4)

with a finite sum

Q(<∞)
ε (z, w) :=

m−1∑

n=0

e−nεn! (zw)m−n L(m−n)
n (zz) L(m−n)

n (ww)

−
m−1∑

n=0

e−nε

n! (m!)2 (zw)n−m L(n−m)
m (zz) L(n−m)

m (ww) (A5)

and an infinite sum

Q(∞)
ε (z, w) :=

+∞∑

n=0

e−nε

n! (m!)2 (zw)n−m L(n−m)
m (zz) L(n−m)

m (ww) . (A6)

Making appeal to the identity ([24], p.98):

L(−k)
m (t) = (−t)k

(m − k)!
m! L(k)

m−k (t) , 1 ≤ k ≤ m (A7)

for k = j − m and t = zz, we can check that the finite sum Q(<∞)
ε (z, w) = 0. For

the infinite sum in (A6) , we rewrite it as

Q(∞)
ε (z, w) = (m!)2

(zw)m

+∞∑

n=0

1

n!
(
zwe−ε

)n
L(n−m)
m (zz) L(n−m)

m (ww) . (A8)

We now apply the Wicksell–Campbell–Meixner formula ([25], p.279):
+∞∑

n=0

ζ n

n! L
(n−l)
l (X) L(n−m)

m (Y ) = eζ (ζ − Y )m−l ζ l

m! L
(m−l)
l

(
− (X − ζ ) (Y − ζ ) ζ−1

)

(A9)
with the notations ζ = e−εzw, X = zz,Y = ww and l = m. With this, Eq.(A8)
reduces to

Q(∞)
ε (z, w) = m!e−mε exp

(
e−εzz

)
L(0)
m

((
weε − z

) (
we−ε − z

))
. (A10)
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Finally, we replace this last expression in the right hand side of (A2) to arrive
at the expression (4.3) . We put z = w in (4.3) and we use the condition
〈z;m, ε |z;m, ε〉L2(R) = 1. This allows us to obtain the expression (4.4) of the nor-
malization factor. ��

Appendix B

Proof For x ∈ R, we can write successively

Oε [ϕ] (x) =
+∞∑

n=0

e−nε〈ϕ |ϕn〉 〈x |ϕn〉 (B1)

=
+∞∑

n=0

e−nε

(∫ +∞

−∞
ϕ (y) 〈y |ϕn〉dy

)
〈x |ϕn〉 (B2)

=
∫ +∞

−∞

(+∞∑

n=0

e−nε〈y |ϕn〉〈x |ϕn〉
)

ϕ (y) dy. (B3)

We now look closely at the sum

Gε (x, y) :=
+∞∑

n=0

e−nε〈y |ϕn〉〈x |ϕn〉 =
+∞∑

n=0

e−nεϕn (x) ϕn (y). (B4)

Recalling the expression (3.7) of the {ϕn} then (4.21) reads

Gε (x, y) = 1√
π
e− 1

2

(
x2+y2

) +∞∑

n=0

(
1

2
e−ε

)n 1

n!Hn (x) Hn (y) . (B5)

Equation (B5) can be rewritten as

Gε (x, y) = e− 1
2

(
x2+y2

)
K

(
e−ε; x, y) (B6)

where we have introduced the kernel function

K (τ ; x, y) :=
+∞∑

j=0

τ j 1

j !Hj (x) Hj (y) ; 0 < τ < 1. (B7)

The latter can be written in a closed form by applying the Mehler formula ( [19],
p.252):

K (τ ; x, y) = π− 1
2√

1 − τ 2
exp

(
2τ

1 + τ
xy − τ 2

1 − τ 2
(x − y)2

)
(B8)
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which also is the Poisson kernel for the Hermite polynomials expansion. Taking this
into account, Eq. (B3) takes the form

Oε [ϕ] (x) = e− 1
2 x

2
∫ +∞

−∞
ϕ (y) e− 1

2 y
2
K

(
e−ε, x, y

)
dy. (B9)

We can also write the right hand side of (B9) as

Oε [ϕ] (x) = e− 1
2 x

2
Mε [ϕ] (x) , (B10)

where

Mε [ϕ] (u) =
∫ +∞

−∞
K

(
e−ε, x, y

)
ϕ (y) e− 1

2 y
2
dy. (B11)

This suggests us to introduce the function

f (y) := ϕ (y) e− 1
2 y

2
, y ∈ R. (B12)

which statisfies
‖ f ‖

L2
(
R,e−y2dy

) = ‖ϕ‖L2(R) . (B13)

We now apply the result of B. Muckenhoupt [23] who considered the Poisson integral

ofHermite polynomials expansion and proved that for a function f ∈ L p
(
R, e−y2dy

)

with 1 ≤ p ≤ +∞ the integral defined by

A [ f ] (τ, x) :=
∫ +∞

0
K (τ, x, y) f (y) e−y2dy; 0 ≤ τ < 1 (B14)

with the kernel K (τ, •, •) defined as given in (B8) satisfies limτ→1− A [ f ] (τ, y) =
f (y) almost everywhere in [0,+∞[, 1 ≤ p ≤ ∞. We apply this result in the case

p = 2, A ≡ M and τ = e−ε to obtain that Mε [ϕ] (x) → e
1
2 x

2
ϕ (x), a.e. as ε → 0+

, which says that the limit Oε [ϕ] (x) = e− 1
2 x

2
Mε [ϕ] (x) → ϕ (x) , a.e. as ε → 0+

is valid for every ϕ ∈ L2 (R). In other words, we get the limit

lim
ε→0+

∫

C

|z;m, ε〉 〈z;m, ε|dμm,ε (z) = 1L2(R). (B15)

in terms of Dirac’s bra-ket notation. This completes the proof. ��
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