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Abstract Let A > 1 be a constant and F be a family of meromorphic functions
defined in a domain D. For each f ∈ F , f has only zeros of multiplicity at least 3 and
satisfies the following conditions: (1) | f ′′′(z)| ≤ A|z|when f (z) = 0; (2) f ′′′(z) �= z;
(3) all poles of f are multiple. In this paper, we characterize the non-normal sequences
of F .
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1 Introduction and main results

Let D ⊆ C be a domain, andF be a family of meromorphic functions defined on D.F
is said to be normal on D, in the sense of Montel, if for each sequence { fn} ⊂ F there
exists a subsequence { fnk }, such that { fnk } converges spherically locally uniformly on
D, to a meromorphic function or ∞ (see [4,9,13]).

The following well-known normality criterion was conjectured by Hayman [4], and
proved by Gu [3].
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Theorem A Let F be a family of meromorphic functions defined in a domain D, and
k be a positive integer. If for every function f ∈ F , f �= 0 and f (k) �= 1 in D, then F
is normal in D.

This result has undergone various extensions and improvements. In [6] (cf. [8,11]),
Pang–Yang–Zalcman obtained.

Theorem B Let k be a positive integer. Let F be a family of meromorphic functions
defined in a domain D, all of whose zeros have multiplicity at least k + 2 and whose
poles are multiple. Let h(z)( �≡ 0) be a holomorphic functions on D. If for each f ∈ F ,
f (k)(z) �= h(z), then F is normal in D.

When k = 1, an example [8, Example 1] shows that the condition on themultiplicity
of zeros of functions in F cannot be weakened. When k ≥ 2, Zhang–Pang–Zalcman
[14] proved that the multiplicity of zeros of functions in F can be reduced from k + 2
to k + 1 in Theorem C.

Theorem C Let k ≥ 2 be a positive integer. Let F be a family of meromorphic
functions defined in a domain D, all of whose zeros have multiplicity at least k + 1
and whose poles are multiple. Let h(z)( �≡ 0) be a holomorphic functions on D. If for
each f ∈ F , f (k)(z) �= h(z), then F is normal in D.

In [12], Xu reduced the multiplicity of the zeros of functions in F to k for the case
h(z) = z, but restricting the values f (k) can take at the zeros of f , as follows.

Theorem D Let k ≥ 4 be a positive integer, A > 1 be a constant. Let F be a family
of meromorphic functions in a domain D. If, for every function f ∈ F , f has only
zeros of multiplicity at least k and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|.
(b) f (k)(z) �= z.
(c) All poles of f are multiple .

Then F is normal in D.

Theorem E Let A > 1 be a constant. Let F be a family of meromorphic functions in
a domain D. If, for every function f ∈ F , f has only zeros of multiplicity at least 3
and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f ′′′(z)| ≤ A|z|.
(b) f ′′′(z) �= z.
(c) All poles of f have multiplicity at least 3.

Then F is normal in D.

Also in [12], Xu gave the following example to show that the condition (c) in
Theorem E is necessary and the number 3 is best possible.

Example 1 (See [12]) Let � = {z : |z| < 1}, and let

F =
{
fn(z) = (z − 1/n)3(z + 1/n)3

24z2

}
.
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Clearly,

f ′′′
n (z) = z + 1

n6z5
�= z.

For each n, fn has two zeros z1 = 1/n and z2 = −1/n of multiplicity 3. It’s easy to
see that

f ′′′
n

(
1

n

)
= 2

n
, f ′′′

n

(
−1

n

)
= −2

n
,

and | f ′′′
n (zi )| ≤ 2|zi |(i = 1, 2), then fn(z) = 0 ⇒ | f ′′′

n (z)| ≤ 2|z|. HoweverF is not
normal at 0 since fn(1/n) = 0 and fn(0) = ∞.

In this paper, inspired by the idea in [1,2], we prove the following result, which shows
that the counterexample above is unique in some sense.

Theorem 1 Let A > 1 be a constant and F be a family of meromorphic functions
defined in D, all of whose zeros have multiplicity at least 3 and whose poles all are
multiple, such that for each f ∈ F , f (z) = 0 ⇒ | f ′′′(z)| ≤ A|z|, and f ′′′(z) �= z. If
F is not normal at z0 ∈ D, then z0 = 0 and there exist r > 0 and { fn} ⊂ F such that

fn(z) =
(
z − ξ1n

)3 (
z − ξ2n

)3
(z − ηn)2

f̂n(z)

on�r = {z : |z| < r}, where ξ in/ρn → ci (i = 1, 2) andηn/ρn → (c1+c2)/2 for some
sequence of positive numbers ρn → 0 and two distinct constants c1 and c2. Moreover,
f̂n(z) is holomorphic and non-vanishing on �r such that f̂n(z) → f̂ (z) ≡ 1/24
locally uniformly on �r .

In this paper, we denote �r = {z : |z| < r} and �′
r = {z : 0 < |z| < r}, and the

number r may be different in different place. When r = 1, we drop the subscript.

2 Lemmas

To prove our results, we need the following lemmas.

Lemma 1 ([7, Lemma 2]) Let k be a positive integer and let F be a family of mero-
morphic functions in a domain D, all of whose zeros have multiplicity at least k, and
suppose that there exists A ≥ 1 such that | f (k)(z)| ≤ A whenever f (z) = 0, f ∈ F .
If F is not normal at z0 ∈ D, then for each α, 0 ≤ α ≤ k, there exist a sequence of
complex numbers zn ∈ D, zn → z0, a sequence of positive numbers ρn → 0, and a
sequence of functions fn ∈ F such that

gn(ζ ) = fn(zn + ρnζ )

ρα
n

→ g(ζ )



200 C. Fang et al.

locally uniformly with respect to the spherical metric, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that
g#(ζ ) ≤ g#(0) = k A + 1. Moreover, g(ζ ) has order at most 2.

Lemma 2 ([12, Lemma 6]) Let f be a transcendental meromorphic function of finite
order ρ, and let k(≥ 2) be a positive integer. If f has only zeros of multiplicity at
least k, and there exists A > 1 such that f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|, then f (k) has
infinitely many fix-points.

Lemma 3 ([11, Lemma 8]) Let f be a non-polynomial rational function and k be a
positive integer. If f (k)(z) �= 1, then

f (z) = 1

k! z
k + ak−1z

k−1 + · · · + a0 + a

(z − b)m
,

where ak−1, . . . , a0, a( �= 0), b are constants and m is a positive integer.

Lemma 4 ([12, Lemma 10]) Let k ≥ 3 be a positive integer, A > 1 be a constant. Let
F be a family of meromorphic functions in a domain D. Suppose that, for every f ∈ F ,
f has only zeros of multiplicity at least k, and satisfies the following conditions:

(a) f (z) = 0 ⇒ | f (k)(z)| ≤ A|z|.
(b) f (k)(z) �= z.
(c) all poles of f are multiple.

Then F is normal in D\{0}.
Lemma 5 LetF be a family of functions meromorphic on �r , b ∈ C to be a constant
which satisfies f (z) �= b on �r for each f ∈ F . IfF is normal on �′

r , but not normal

on �r , then there exists a subsequence { fn} ⊂ F such that fn(z)
χ⇒ b on �′

r .

Proof Without loss of generality, we assume that b = 0. Since F is normal on �′
r ,

then there exists a subsequence { fn} ⊂ F such that fn(z) → f (z) spherically locally
uniformly on �′

r . Set gn(z) = 1/ fn(z). Thus gn(z) → g(z) = 1/ f (z) on �′
r . Noting

that fn(z) �= 0, it follows that f (z) �= 0 or f (z) ≡ 0 by Hurwitz’s theorem and gn(z)
is holomorphic on�r . If f (z) �= 0, then the maximummodulus principle implies that
gn(z) → g(z) on �r . Hence fn(z) → on �r , a contradiction. So, f (z) ≡ 0. This
finishes the proof of Lemma 5. 
�
Lemma 6 Let f be a rational function, all of whose zeros are of multiplicity at least
3. If f ′′′(z) �= z, then one of the following three cases must occur:

(i)

f (z) = (z + c)4

24
; (2.1)

(ii)

f (z) = (z − c1)5

24(z − b)
; (2.2)
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(iii)

f (z) = (z − c1)3(z − c2)3

24[z − (c1 + c2)/2]2 , (2.3)

where c is nonzero constant, b( �= c1) is a constant and c1, c2 are twodistinct constants.

Proof First, suppose that f is a polynomial. Since f ′′′(z) �= z, then f ′′′(z) = z + c,
where c( �= 0) is a constant. Thus,

f (z) = 1

24
z4 + c

6
z3 + a1z

2 + a2z + a3

where a1, a2 and a3 are three constants. Noting that f has only zeros of multiplicity
at least 3, it follows that f has only one zero of multiplicity 4. Thus, f has the form
(2.1).

Then, suppose that f is a non-polynomial rational function. Set

g(z) = f (z) − 1

24
z4 + 1

6
z3.

Then g′′′(z) �= 1, so by Lemma 3

g(z) = 1

6
z3 + a2z

2 + a1z + a0 + a

(z − b)m
,

where a2, a1, a0, a( �= 0), b are constants and m is a positive integer. Thus

f (z) = p4(z) + a

(z − b)m
= p4(z)(z − b)m + a

(z − b)m
, (2.4)

where

p4(z) = 1

24
z4 + a2z

2 + a1z + a0.

Let c1, c2, . . . , cq be q distinct zeros of p4(z)(z − b)m + a, with multiplicity
n1, n2, . . . , nq . Clearly, ni ≥ 3, ci �= b, and ci is a zero of [p4(z)(z − b)m + a]′
with multiplicity ni − 1 ≥ 2(1 ≤ i ≤ q). Since

[
p4(z)(z − b)m + a

]′ = (z − b)m−1 [
p′
4(z)(z − b) + mp4(z)

]
, (2.5)

then ci must be a zero of p′
4(z)(z − b) + mp4(z) with multiplicity ni − 1(≥ 2).

Comparing the degree on both sides of (2.5), it follows that deg[p′
4(z)(z − b) +

mp4(z)] = 4. Now we divide two cases:

(a) p′
4(z)(z − b) + mp4(z) has only one zero c1 with multiplicity 4;

(b) p′
4(z)(z − b) + mp4(z) has two distinct zeros c1 and c2 with multiplicity 2.
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For case (a), it follows that m = 1 and

p4(z)(z − b) + a = 1

24
(z − c1)

5.

Thus, by (2.4), f has the form (2.2).
For case (b), it’s easy to see that m = 2 and

p′
4(z)(z − b) + 2p4(z) = 1

4
(z − c1)

2(z − c2)
2,

p4(z)(z − b)2 + a = 1

24
(z − c1)

3(z − c2)
3.

These, together with (2.5) give

z − b = 1

2
(z − c1 + z − c2).

Thus, b = (c1 + c2)/2. Hence, by (2.4), f has the form (2.3).
This completes the proof of Lemma 6. 
�

3 Proof of Theorem 1

Since F is not normal at z0, by Lemma 4, z0 = 0. Without loss of generality, we
assume that F is normal on �′ but not normal at the origin.

Consider the family

G =
{
g(z) = f (z)

z
: f ∈ F

}
.

It’s easy to know that f (0) �= 0 for every f ∈ F . Thus, for each g ∈ G, g(0) = ∞.
Furthermore, all zeros of g(z) havemultiplicity at least 3. On the other hand, by simple
calculation, we have

g′′′(z) = f ′′′(z)
z

− 3g′′(z)
z

. (3.1)

Since f (z) = 0 ⇒ | f ′′′(z)| ≤ A|z|, it follows that g(z) = 0 ⇒ |g′′′(z)| ≤ A.
Clearly, G is normal on �′. We claim that G is not normal at z = 0. Indeed, if G

is normal at z = 0, then G is normal on the whole disk � and hence equicontinuous
on � with respect to the spherical distance. Noting that g(0) = ∞ for each g ∈ G, so
there exists r > 0 such that for every g ∈ G and |g(z)| ≥ 1 for every z ∈ �r . Then
f (z) �= 0 on �r for all f ∈ F . Since F is normal on �′ but not normal on �, there
exists a sequence { fn} ⊂ F such that fn → 0 on �′

r according to Lemma 5. So does
{gn} ⊂ G, where gn(z) = fn(z)/z. However |gn(z)| ≥ 1 for z ∈ �r , a contradiction.
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Then, by Lemma 1, there exist functions gn ∈ G, points zn → 0 and positive
numbers ρn → 0 such that

Gn(ζ ) = gn(zn + ρnζ )

ρ3
n

→ G(ζ ), (3.2)

converges spherically uniformly on compact subsets of C, where G is a non-constant
meromorphic function onC and of finite order, all zeros ofG have multiplicity at least
3, and G#(ζ ) ≤ G#(0) = 3A + 1 for all ζ ∈ C.

By [12, pp. 480–482], we can assume that zn/ρn → α, a finite complex number.
Then

gn(ρnζ )

ρ3
n

= Gn(ζ − zn/ρn)
χ→ G(ζ − α) = G̃(ζ )

onC. Clearly, all zeros of G̃ havemultiplicity at least 3, and all poles of G̃ aremultiple,
except possibly the pole at 0.

Set

Hn(ζ ) = fn(ρnζ )

ρ4
n

. (3.3)

Then

Hn(ζ ) = fn(ρnζ )

ρ4
n

= ζ
gn(ρnζ )

ρ3
n

→ ζ G̃(ζ ) = H(ζ ) (3.4)

spherically uniformly on compact subsets of C, and

H ′′′
n (ζ ) = f ′′′

n (ρnζ )

ρn
→ H ′′′(ζ ) (3.5)

locally uniformly on C\H−1(∞). Obviously, all zeros of H have multiplicity at least
3, and all poles of H are multiple. Since G̃(0) = ∞, H(0) �= 0.

Claim (I) H(ζ ) = 0 ⇒ |H ′′′(ζ )| ≤ A|ζ |; (II) H ′′′(ζ ) �= ζ .
If H(ζ0) = 0, by Hurwitz’s theorem and (3.4), there exist ζn → ζ0 such that

fn(ρnζn) = 0 for for n sufficiently large. By the assumption, | f ′′′
n (ρnζn)| ≤ A|ρnζn|.

Then, it follows from (3.5) that |H ′′′(ζ0)| ≤ A|ζ0|. Claim (I) is proved.
Suppose that there exists ζ0 such that H ′′′(ζ0) = ζ0. By (3.5),

0 �= f ′′′
n (ρnζ ) − ρnζ

ρn
= H ′′′

n (ζ ) − ζ → H ′′′(ζ ) − ζ,

uniformly on compact subsets of C\H−1(∞). Hurwitz’s theorem implies that
H ′′′(ζ ) ≡ ζ on C\H−1(∞), and then on C. It follows that H is a polynomial of
degree 4. Since all zeros of H have multiplicity at least 3, we know that H has a single
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zero ζ1 with multiplicity 4, so that H ′′′(ζ1) = 0, and hence ζ1 = 0 since H ′′′(ζ ) ≡ ζ .
But H(0) �= 0, we arrive at a contradiction. This proves claim (II).

Then, by Lemma 2, H must be a rational function. Since all poles of H aremultiple,
it derives from Lemma 6 that H(ζ ) = (ζ + b)/24 or

H(ζ ) = (ζ − c1)3(ζ − c2)3

24[ zeta − (c1 + c2)/2]2 ,

where b is a constant, c1 and c2 are two distinct constants. But, H(ζ ) = (ζ + b)/24
is impossible(for details, see [12, pp. 483–485]). By (3.3) and (3.4), it follows that

fn(ρnζ )

ρ4
n

→ (ζ − c1)3(ζ − c2)3

24[ζ − (c1 + c2)/2]2 . (3.6)

Noting that all zeros of fn havemultiplicity at least 3, there exist ζ 1
n → c1, ζ 2

n → c2
and ζ 3

n → (c1 + c2)/2 such that ξ1n = ρnζ
1
n and ξ2n = ρnζ

2
n are zeros of fn with exact

multiplicity 3, and ηn = ρnζ
3
n is the pole of fn with exact multiplicity 2.

Now write

fn(z) =
(
z − ξ1n

)3 (
z − ξ2n

)3
(z − ηn)

2 f̂n(z) (3.7)

Then by (3.6) and (3.7), it follows that

f̂n(ρnζ ) → 1

24
(3.8)

on ζ ∈ C.
Next, we complete our proof in three steps.
Step 1. Claim that there exists a r > 0 such that f̂n(z) �= 0 on �r .
Suppose not, taking a sequence and renumbering if necessary, f̂n has zeros tending

to 0. Assume ẑn → 0 is the zero of f̂n with the smallest modulus. Then by (3.8), it’s
easy to know that ẑn/ρn → ∞.

Set

f̂ ∗
n (z) = f̂n(ẑn z). (3.9)

Thus, f̂ ∗
n (z) is well-defined on C and non-vanishing on �. Moreover, f̂ ∗

n (1) = 0.
Now let

Mn(z) =
(
z − ξ1n /ẑn

)3 (
z − ξ2n /ẑn

)3
(
z − ηn/ẑn

)2 f̂ ∗
n (z). (3.10)
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According to (3.7), (3.9) and (3.10), it follows that

Mn(z) =
(
zẑn − ξ1n

)3 (
zẑn − ξ2n

)3
(
zẑn − ηn

)2 f̂n
(
ẑn z

)
(
ẑn

)4 = fn
(
ẑn z

)
(
ẑn

)4 .

Obviously, all zeros of Mn(z) have multiplicity at least 3 and all poles of Mn(z)
have multiplicity at least 2. Since fn(z) = 0 ⇒ | f ′′′

n (z)| ≤ A|z|, it follows that
Mn(z) = 0 ⇒ |M ′′′

n (z)| ≤ A|z|. Now that f ′′′
n (z) �= z, it derives that

M ′′′
n (z) − z =

(
f ′′′
n ẑnz

) − ẑn z

ẑn
�= 0. (3.11)

Hence, by Lemma 4, {Mn(z)} is normal on C
∗ = C\{0}.

Noting that

ξ1n

ẑn
= ξ1n

ρn

ρn

ẑn
→ 0,

ξ2n

ẑn
= ξ2n

ρn

ρn

ẑn
→ 0,

and
ηn

ẑn
= ηn

ρn

ρn

ẑn
→ 0,

we deduce from (3.10) that { f̂ ∗
n } is also normal on C∗. Thus by taking a subsequence,

we assume that f̂ ∗
n → f̂ ∗ spherically locally uniformly on C

∗. Clearly, f̂ ∗(z) has a
zero at 1 with multiplicity at least 3 since f̂ ∗

n (1) = 0.
Set

Ln(z) = M ′′′
n (z) − z. (3.12)

Then Ln �= 0 from (3.11).
Now we prove that f̂ ∗(z) �≡ 0. Otherwise f̂ ∗

n (z) → 0, thus Ln(z) → −z and
L ′
n(z) → −1 locally uniformly on C∗. By the argument principle, it derives that

∣∣∣∣n(1, Ln) − n

(
1,

1

Ln

)∣∣∣∣ = 1

2π

∣∣∣∣
∫

|z|=1

L ′
n

Ln
dz

∣∣∣∣ → 1

2π

∣∣∣∣
∫

|z|=1

1

z
dz

∣∣∣∣ = 1,

(3.13)

where n(r, f ) denotes the number of poles of f in�r , countingmultiplicity. It follows
thatn(1, Ln) = 1.On the other hand, the poles of Ln(z) = M ′′′

n (z)−z havemultiplicity
at least 4. A contradiction.

Then f̂ ∗
n → f̂ ∗ �≡ 0 spherically locally uniformly onC∗. Since f̂ ∗

n is non-vanishing
on �, then f̂ ∗

n → f̂ ∗ on � by Lemma 5. Hence, f̂ ∗
n → f̂ ∗ on C.
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By (3.10) and (3.12), we see that

Ln(z) → L(z) =
(
z4 f̂ ∗(z)

)′′′ − z

onC∗\( f̂ ∗)−1(∞). Obviously, {Ln(z)} is normal on �r . If not, Lemma 5 derives that
L(z) = (z4 f̂ ∗(z))′′′ − z ≡ 0 since Ln �= 0 on C. Thus,

f̂ ∗(z) = z4 + a1z2 + a2z + a3
24z4

,

where a1, a2 and a3 be three constants. Now that the zeros of f̂ ∗(z) have multiplicity
at least 3 and f̂ ∗(1) = 0, then

f̂ ∗(z) = (z − 1)4

24z4
,

which is impossible since z4 + a1z2 + a2z + a3 �= (z − 1)4. So Ln(z) → L(z) on C.
Since Ln(z) �= 0, Hurwitz’s theorem implies that either L(z) ≡ 0 or L(z) �= 0.

f̂ ∗(1) = 0 follows that L(z) �= 0. On the other hand, f̂ ∗
n (0) = f̂n(0) → f̂ ∗(0) =

1/24, it follows that L(0) = 0, a contradiction. The claim is completed.
Step 2. Show that there exists a r > 0 such that f̂n(z) is holomorphic on �r .
Since { fn} and hence { f̂n} is normal on�′, taking a subsequence and renumbering,

we have f̂n → f̂ spherically locally uniformly on �′.
It’s easy to see that f̂ (z) �≡ 0 on�′. Otherwise, we have f ′′′

n (z) → 0 and f (4)
n (z) →

0 locally uniformly on �′. Then the argument principle yields that

∣∣∣∣n
(
1

2
, f ′′′

n − z

)
−n

(
1

2
,

1

f ′′′
n − z

)∣∣∣∣= 1

2π

∣∣∣∣∣
∫

|z|= 1
2

f (4)
n −1

f ′′′
n − z

dz

∣∣∣∣∣ → 1

2π

∣∣∣∣∣
∫

|z|= 1
2

1

z
dz

∣∣∣∣∣
= 1.

Now that f ′′′
n (z) �= z, it follows that n( 12 , f ′′′

n ) = n( 12 , f ′′′
n − z) = 1, which is

impossible. Thus, f̂n → f̂ �≡ 0.
Recalling that f̂n(z) �= 0, and by Lemma 5, it gives that f̂n → f̂ spherically locally

uniformly on�. Since f̂n(0) → 1/24, then f̂ (0) = 1/24. Thus, there exists a positive
number r such that f̂ is holomorphic on �r . Hence f̂n is holomorphic on �r .

Step 3. Prove that there exists a r > 0 such that f̂n(z) → f̂ (z) ≡ 1/24 on �r .
By (3.7), we get fn(z) → z4 f̂ (z) on �′. Thus

f ′′′
n (z) − z →

[
z4 f̂ (z)

]′′′ − z, (3.14)

on �′\ f̂ −1(∞).

Hence there exists r > 0 such that f ′′′
n (z) − z → [z4 f̂ (z)]′′′ − z on �′

r .
If { f ′′′

n (z)−z} is not normal on�r , combining f
′′′
n (z) �= z with Lemma 5, it follows

that [z4 f̂ (z)]′′′ − z ≡ 0 on �′
r . Hence
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z4 f̂ (z) = 1

24
z4 + a1z

2 + a2z + a3

on �′
r . Recalling that f̂n → f̂ on � and f̂ (0) = 1/24, so f̂n(z) → f̂ (z) ≡ 1/24 on

�r .
If { f ′′′

n (z)−z} is normal on�r , then either [z4 f̂ (z)]′′′−z ≡ 0 or [z4 f̂ (z)]′′′−z �= 0
according to f ′′′

n (z) �= z . Noting the fact that [(z4 f̂ (z))′′′ − z]|z=0 = 0, it derives that
[z4 f̂ (z)]′′′ − z ≡ 0. Similarly, it follows that f̂n(z) → f̂ (z) ≡ 1/24 on �r .

The proof of Theorem 1 is finished. 
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