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Abstract Let A > 1 be a constant and F be a family of meromorphic functions
defined in a domain D. For each f € F, f has only zeros of multiplicity at least 3 and
satisfies the following conditions: (1) | /" (z)| < A|z] when f(z) = 0; (2) "' (2) # z;
(3) all poles of f are multiple. In this paper, we characterize the non-normal sequences
of F.
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1 Introduction and main results

Let D € C be adomain, and F be a family of meromorphic functions defined on D. F
is said to be normal on D, in the sense of Montel, if for each sequence { f,,} C F there
exists a subsequence { f;,, }, such that { f,,, } converges spherically locally uniformly on
D, to a meromorphic function or oo (see [4,9,13]).

The following well-known normality criterion was conjectured by Hayman [4], and
proved by Gu [3].
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Theorem A Let F be a family of meromorphic functions defined in a domain D, and
k be a positive integer. If for every function f € F, f #0and f® # 1in D, then F
is normal in D.

This result has undergone various extensions and improvements. In [6] (cf. [8,11]),
Pang—Yang—Zalcman obtained.

Theorem B Let k be a positive integer. Let F be a family of meromorphic functions
defined in a domain D, all of whose zeros have multiplicity at least k + 2 and whose
poles are multiple. Let h(z) (5% 0) be a holomorphic functions on D. If for each f € F,
F®(2) # h(z), then F is normal in D.

When k = 1, an example [8, Example 1] shows that the condition on the multiplicity
of zeros of functions in F cannot be weakened. When k > 2, Zhang—Pang—Zalcman
[14] proved that the multiplicity of zeros of functions in F can be reduced from k + 2
to k 4 1 in Theorem C.

Theorem C Let k > 2 be a positive integer. Let F be a family of meromorphic
functions defined in a domain D, all of whose zeros have multiplicity at least k + 1
and whose poles are multiple. Let h(z)(# 0) be a holomorphic functions on D. If for
each f € F, F® (2) # h(z), then F is normal in D.

In [12], Xu reduced the multiplicity of the zeros of functions in F to k for the case
h(z) = z, but restricting the values f ®) can take at the zeros of f, as follows.

Theorem D Let k > 4 be a positive integer, A > 1 be a constant. Let F be a family
of meromorphic functions in a domain D. If, for every function f € F, f has only
zeros of multiplicity at least k and satisfies the following conditions:

@ f2=0=|fP@) < Alzl
) fP@) #z
(c) All poles of f are multiple .

Then F is normal in D.
Theorem E Let A > 1 be a constant. Let F be a family of meromorphic functions in

a domain D. If, for every function f € F, f has only zeros of multiplicity at least 3
and satisfies the following conditions:

@ f@=0=f"@I= Alzl

(b (@) #z
(c) All poles of f have multiplicity at least 3.

Then F is normal in D.

Also in [12], Xu gave the following example to show that the condition (c) in
Theorem E is necessary and the number 3 is best possible.

Example 1 (See [12]) Let A = {z : |z| < 1}, and let

(z—1/n)(z+ 1/11)3}
2472 '

F= {fn(z) =
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Clearly,
Bl =+ s #
n (@) =z 62 Z.
For each n, f, has two zeros z1 = 1/n and zo = —1/n of multiplicity 3. It’s easy to
see that

1 2 1 2
" < " - _
Jn (n) n’ I ( n) n’

and | )" (zi)| < 21zil(i = 1,2), then f,(z) =0 = |f,(2)| < 2|z|. However F is not
normal at 0 since f,,(1/n) = 0 and f,(0) = oo

In this paper, inspired by the idea in [1,2], we prove the following result, which shows
that the counterexample above is unique in some sense.

Theorem 1 Let A > 1 be a constant and F be a family of meromorphic functions
defined in D, all of whose zeros have multiplicity at least 3 and whose poles all are
multiple, such that for each f € F, f(z) =0 = |f"(2)| < Alz|, and f"(z) # z. If
F is not normal at 7o € D, then zo = 0 and there existr > 0 and { f,,} C F such that

G-g) -8,
(z—mn)?

fa(@)

onA, ={z:z| <r}, where&i/pn — ¢i(i = 1,2)andn,/pn — (c14c2)/2for some
sequence of positive numbers p, — 0 and two distinct constants ¢y and cy. Moreover,
fu(z) is holomorphic and non-vanishing on A, such that f,(z) — f(z) = 1/24
locally uniformly on A,.

In this paper, we denote A, = {z : |z| < r}and A = {z: 0 < |z| < r}, and the
number r may be different in different place. When r = 1, we drop the subscript.

2 Lemmas

To prove our results, we need the following lemmas.

Lemma 1 ([7, Lemma 2]) Let k be a positive integer and let F be a family of mero-
morphic functions in a domain D, all of whose zeros have multiplicity at least k, and
suppose that there exists A > 1 such that |f(k) (2)| < A whenever f(z) =0, f € F.
If F is not normal at zg € D, then for each o, 0 < a < k, there exist a sequence of
complex numbers z, € D, z,, — zo, a sequence of positive numbers p, — 0, and a
sequence of functions f, € F such that

() = w — g(©)

n
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locally uniformly with respect to the spherical metric, where g is a nonconstant mero-
morphic function on C, all of whose zeros have multiplicity at least k, such that
g#(g’) < g#(O) = kA + 1. Moreover, g(£) has order at most 2.

Lemma 2 ([12, Lemma 6]) Let f be a transcendental meromorphic function of finite
order p, and let k(> 2) be a positive integer. If f has only zeros of multiplicity at
least k, and there exists A > 1 such that f(z) = 0= |f®(2)| < Alz|, then f% has
infinitely many fix-points.

Lemma 3 ([11, Lemma 8]) Let f be a non-polynomial rational function and k be a
positive integer. If f® (z) # 1, then

U k=1 a
f@ =7 taz + taot+

where ax_1, ..., ag, a(# 0), b are constants and m is a positive integer.

Lemma 4 ([12, Lemma 10]) Let k > 3 be a positive integer, A > 1 be a constant. Let
F be a family of meromorphic functions in a domain D. Suppose that, for every f € F,
f has only zeros of multiplicity at least k, and satisfies the following conditions:

(@ f(2)=0=[fP@)| < Alzl.
) fPO@) #z
(¢) all poles of f are multiple.

Then F is normal in D\{0}.

Lemma 5 Let F be a family of functions meromorphic on A, b € C to be a constant
which satisfies f(z) # b on A, foreach f € F. If F is normal on A, but not normal

on A, then there exists a subsequence { f,} C F such that f,(z) < bon Al

Proof Without loss of generality, we assume that b = 0. Since F is normal on A’r,
then there exists a subsequence { f,,} C F such that f,,(z) — f(z) spherically locally
uniformly on A. Set g,(z) = 1/f,(z). Thus g,(z) — g(z) = 1/f(z) on A.. Noting
that f,,(z) # 0, it follows that f(z) # O or f(z) = 0 by Hurwitz’s theorem and g,(z)
is holomorphic on A,.. If f(z) # 0, then the maximum modulus principle implies that
gn(z) — g(z) on A,. Hence f,(z) — on A,, a contradiction. So, f(z) = 0. This
finishes the proof of Lemma 5. O

Lemma 6 Let f be a rational function, all of whose zeros are of multiplicity at least
3.If f""(2) # z, then one of the following three cases must occur:

®

@t ot
f() = LY 2.1
(i)
5
f@)= L—e) (2.2)

24(z = b)’
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(iii)

z—c)’@z—c)’
f@)= 7 (2.3)
24[z — (c1 + 2)/2]
where c is nonzero constant, b(# c1) is a constant and ¢y, ¢y are two distinct constants.
Proof First, suppose that f is a polynomial. Since f”'(z) # z, then f"(z) = z + ¢,
where c(5# 0) is a constant. Thus,

1 c
fl) = — AP ra+az+a
24 6

where ai, a; and a3 are three constants. Noting that f has only zeros of multiplicity
at least 3, it follows that f has only one zero of multiplicity 4. Thus, f has the form
(2.1).

Then, suppose that f is a non-polynomial rational function. Set

()= f(&) = 55t 4 =2
g2) = < 24Z 6Z.

Then g’ (z) # 1, so by Lemma 3

()——] 3+ 2+ + +—a
= a a a 9
8z 6Z 22 1Z 0 z — )"

where a», a1, ag, a(# 0), b are constants and m is a positive integer. Thus

_ @G =b)"+a

= , 2.4
f@) = pa(z) + G —bm Z—bm 24
where
_ Ly 2
pa(z) = —z2" +arxz” + aijz + ao.
24

Let c1,c¢2,...,¢4 be g distinct zeros of p4(z)(z — b)™ + a, with multiplicity
ni,na, ..., ng. Clearly, n; > 3, ¢; # b, and ¢; is a zero of [p4(z)(z — b)" + al’

with multiplicity n; — 1 > 2(1 <i < ¢g). Since
[Pa) @ —b)" +a] = (z—b)" " [py(2)(z — b) + mpa(2)] , (2.5)

then ¢; must be a zero of pﬁt(z)(z — b) + mpa(z) with multiplicity n; — 1(> 2).
Comparing the degree on both sides of (2.5), it follows that deg[p}(z)(z — b) +
mp4(z)] = 4. Now we divide two cases:

(@) p4(2)(z — b) + mp4(z) has only one zero ¢; with multiplicity 4;
(b) py(2)(z — b) + mp4(z) has two distinct zeros c¢1 and ¢, with multiplicity 2.
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For case (a), it follows that m = 1 and

1
pa(x)(z—b)+a= ﬁ(z — ).

Thus, by (2.4), f has the form (2.2).
For case (b), it’s easy to see that m = 2 and

1
Pa@)@ = b) +2pa@) = 3z - 1)z — c2)?,
pa(2)(z—b)* +a= i(z — 1)’z — )’

These, together with (2.5) give

1
z—bzz(z—cl+z—cz).

Thus, b = (c1 + ¢2)/2. Hence, by (2.4), f has the form (2.3).
This completes the proof of Lemma 6. O

3 Proof of Theorem 1

Since F is not normal at zg, by Lemma 4, zo = 0. Without loss of generality, we
assume that F is normal on A’ but not normal at the origin.
Consider the family

Q={g(z)=@:f€f}.

It’s easy to know that f(0) # O for every f € F. Thus, for each g € G, g(0) = oo.
Furthermore, all zeros of g(z) have multiplicity at least 3. On the other hand, by simple
calculation, we have

" 3¢”
g’”(z) _ f Z(Z) 28 (Z) 3.1

<

Since f(z) = 0= |f"(z)| < Alz|, it follows that g(z) =0 = |g""(z)| < A.

Clearly, G is normal on A’. We claim that G is not normal at z = 0. Indeed, if G
is normal at z = 0, then G is normal on the whole disk A and hence equicontinuous
on A with respect to the spherical distance. Noting that g(0) = oo for each g € G, so
there exists » > 0 such that for every ¢ € G and |g(z)| > 1 for every z € A,. Then
f(z) #0o0n A, forall f € F. Since F is normal on A’ but not normal on A, there
exists a sequence { f,,} C F such that f, — 0 on A/ according to Lemma 5. So does
{gn} C G, where g,(2) = fu(z)/z. However |g,(z)| > 1 for z € A,, a contradiction.
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Then, by Lemma 1, there exist functions g, € G, points z, — 0 and positive
numbers p, — 0 such that

Gu(e) = #ELLE ), (3.2)

n

converges spherically uniformly on compact subsets of C, where G is a non-constant
meromorphic function on C and of finite order, all zeros of G have multiplicity at least
3,and G*(¢) < G*(0) =34 + 1 forall ¢ € C.

By [12, pp. 480-482], we can assume that z,,/p, — «, a finite complex number.
Then

80P _ Gt — zufpw) B G(& — ) = G(©)

n

on C. Clearly, all zeros of G have multiplicity at least 3, and all poles of G are multiple,
except possibly the pole at 0.

Set
Hy(0) = f"(pf;). (3.3)
On
Then
Ha(g) = L20n8) qg”(’f);“g) = 6@ = HE©) (3.4)

spherically uniformly on compact subsets of C, and

Ja (ont)

n

H/'() = — H"(¢) (3.5)

locally uniformly on C\ H ~!(00). Obviously, all zeros of H have multiplicity at least
3, and all poles of H are multiple. Since 5(0) =00, H(0) # 0.

Claim (I) H(¢) =0 = [H"(¢)| < Al¢]; (D) H"(§) # ¢.

If H(¢) = 0, by Hurwitz’s theorem and (3.4), there exist {, — ¢ such that
Sn(pntn) = 0 for for n sufficiently large. By the assumption, | £, (pn8n)| < Alpninl.
Then, it follows from (3.5) that |H"'(£9)| < A|Zo|. Claim (I) is proved.

Suppose that there exists £y such that H”'(¢o) = &o. By (3.5),

0+ w (onl) — put
Pn

=H/()—-¢t— H"©¢) —¢,
uniformly on compact subsets of C\H~!(co). Hurwitz’s theorem implies that

H"'(¢) = ¢ on C\H~'(00), and then on C. It follows that H is a polynomial of
degree 4. Since all zeros of H have multiplicity at least 3, we know that H has a single
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zero ¢; with multiplicity 4, so that H”'(¢1) = 0, and hence ¢; = 0 since H"'(¢) = ¢.
But H(0) # 0, we arrive at a contradiction. This proves claim (II).

Then, by Lemma 2, H must be a rational function. Since all poles of H are multiple,
it derives from Lemma 6 that H(¢) = (¢ + b)/24 or

& -3¢ —e)?
24[ zeta — (¢ + ¢2) /2]

H() =

where b is a constant, ¢ and c; are two distinct constants. But, H(¢) = (¢ + b)/24
is impossible(for details, see [12, pp. 483—485]). By (3.3) and (3.4), it follows that

F1(pnl) (& —c1)3 (¢ — )3
— .
o 24[¢ — (c1 + ¢2)/2]%

(3.6)

Noting that all zeros of f;, have multiplicity at least 3, there exist {,} — cy, an —
and §n3 — (c1 4 ¢2)/2 such that 5,% = pn C,,l and E,% = Dn {nz are zeros of f;, with exact
multiplicity 3, and ,, = p, ;‘,13 is the pole of f;, with exact multiplicity 2.

Now write

(z—&) (z-&)’°
(z—n)?

fa(2) = fa(@ (3.7)

Then by (3.6) and (3.7), it follows that

A 1
Jn(on) — B (3.8)

on¢ € C.

Next, we complete our proof in three steps.

Step 1. Claim that there exists a r > 0 such that f,,(z) % 0on A,.

Suppose not, taking a sequence and renumbering if necessary, fn has zeros tending
to 0. Assume Z,, — 0 is the zero of fn with the smallest modulus. Then by (3.8), it’s
easy to know that Z,,/p, — 00.

Set

ﬁ(z) = fn(znz)- 3.9)

Thus, f,;“(z) is well-defined on C and non-vanishing on A. Moreover, f,;“(l) =0.
Now let

(z—&1/20)° (2 — 62/2)°

P i@. (3.10)

M, (z) =
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According to (3.7), (3.9) and (3.10), it follows that

s eNN3 (s £2\3 2 (s R
M, (z) = (Zzn gn) (ZZn En) I (ZnZ) _ fn (an)'

(220 — 1)’ @) @)

Obviously, all zeros of M, (z) have multiplicity at least 3 and all poles of M, (z)
have multiplicity at least 2. Since f,(z) = 0 = |f,"(z)| < Alz|, it follows that
M,(z) =0= |M)'(z)| < Alz|. Now that f,”(z) # z, it derives that

(f”’znz) —Znz

Zn

M (z) — £0. (3.11)

Hence, by Lemma 4, {M,,(z)} is normal on C* = C\{0}.

Noting that
1 1
oSy,
Zn Pn Zn
2 2
)
Zn Pn Zn
and )Z—” = n—n{)—” — 0,
Zn Pn Zn

we deduce from (3 10) that { f } is also normal on C*. Thus by taking a subsequence
we assume that f, £ - f F* spherically locally uniformly on C*. Clearly, f *(z) has a
zero at 1 with multiplicity at least 3 since fn (H=0.

Set

La(z) = M, (z) — z. (3.12)

Then L,, # 0 from (3.11).
Now we prove that f*(z) # 0. Otherwise f, (z) — O, thus L,(z) — —z and
L) (z) — —1 locally uniformly on C*. By the argument principle, it derives that

1 1 L 1 1
n(l. L) —n (1, _>‘ _ / —"dz‘ oL / L,
Ly 27 |Jig=1 L 270 | Jjzj=1 2

where n(r, f) denotes the number of poles of f in A,, counting multiplicity. It follows
thatn(1, L,) = 1.Onthe other hand, the poles of L,,(z) = M/’ (z)—z have multiplicity
at least 4. A contradiction.

Then fn* — f* = O spherically locally uniformly on C*. Since f;‘ isnon-vanishing
on A, then fAn* — f* on A by Lemma 5. Hence, fx f* on C.

n

:17

(3.13)
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By (3.10) and (3.12), we see that
LG~ Lo = (470) -2

on C*\( f ) l(c>o) Obviously, {L,(z)} is normal on A,. If not, Lemma 5 derives that
L(z) = (Z4f (z)) — z = 0 since L #0 on C. Thus,

4y a1z +axz + a3
£ —

where ay, a» aqd a3 be three constants. Now that the zeros of f *(z) have multiplicity
at least 3 and f*(1) = 0, then

which is impossible since A rat+amzt+as # (z — *. So L,(z) = L(z) on C.
Since L,(z) # 0, Hurwitz’s theorem implies that either L(z) = 0 or L(z) # 0.
F£*(1) = 0 follows that L(z) # 0. On the other hand, £*(0) = £,(0) — f*(0) =
1/24, it follows that L(0) = 0, a contradiction. The claim is completed.
Step 2. Show that there exists a r > 0 such that fn (z) is holomorphic on A,.
Since { f,,} and hence { fn} is normal on A’, taking a subsequence and renumbering,
we have f,, — f spherically locally uniformly on A'.
It’s easy to see that f(z) # 0on A'. Otherwise, we have fV(z) — Oand fn(4) (z) —
0 locally uniformly on A’. Then the argument principle yields that

4)
1 11 1 ~1 1 1
nl\ 5. 6 —z)-nl5 — =—/ , 'f,,_ dz —>—/ |74z
2 2 fn Z 2 ‘lef Z 27 |Z|:7 Z

=1.

Now that f,(z) # z, it follows that n(%, = (2 57— z) = 1, which is
impossible. Thus, fn — f = 0.

Recalling that fn (z) # 0,and by Lemma 5, it gives that fn — f spherically locally
uniformly on A. Since fn (0) — 1/24,then f (0) = 1/24. Thus, there exists a positive
number r such that f is holomorphic on A,. Hence fn is holomorphic on A,..

Step 3. Prove that there exists a r > 0 such that f,, (z) —> f(z) = 1/24 on A,.

By (3.7), we get f,(z) — z*f(z) on A’. Thus

) —z— [z4f(z)]m —z (3.14)

on A\ f~1(c0).

Hence there exists r > 0 such that f,”(z) — z — z*f(2)]” = zon Al

If {f, (z) —z} is not normal on A,, combining f, (z) # z with Lemma 5, it follows
that [z f(2)]” —z=0on A!.. Hence
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R |
)= ﬁz“ ta 2 +az+as

on A!. Recalling that f,, — f on A and f(O) = 1/24, s0 fn (z2) —> f(z) = 1/24 on
Ay
If { f/"(z) — z} is normal on A, then either [z4f(z)]”’—z =0or [z4f(z)]”’—z #0

n

according to f!”(z) # z . Noting the fact that [(z* £ @) = z]l.=0 = 0, it derives that
[z f(2)]” — z = 0. Similarly, it follows that f,(z) — f(z) = 1/24 on A,
The proof of Theorem 1 is finished. O
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