

Normal family of meromorphic functions concerning fixed-points

Caiyun Fang¹ · Yan Xu[1](http://orcid.org/0000-0003-4088-4077)

Received: 1 March 2017 / Revised: 2 August 2017 / Accepted: 16 August 2017 / Published online: 4 September 2017 © Springer International Publishing AG 2017

Abstract Let $A > 1$ be a constant and $\mathcal F$ be a family of meromorphic functions defined in a domain *D*. For each $f \in \mathcal{F}$, *f* has only zeros of multiplicity at least 3 and satisfies the following conditions: (1) $|f'''(z)| \le A|z|$ when $f(z) = 0$; (2) $f'''(z) \ne z$; (3) all poles of *f* are multiple. In this paper, we characterize the non-normal sequences of *F*.

Keywords Normal family · Meromorphic function · Fixed-point

Mathematics Subject Classification 30D45

1 Introduction and main results

Let $D \subseteq \mathbb{C}$ be a domain, and $\mathcal F$ be a family of meromorphic functions defined on $D \mathcal F$ is said to be normal on *D*, in the sense of Montel, if for each sequence { f_n } $\subset \mathcal{F}$ there exists a subsequence $\{f_{n_k}\}$, such that $\{f_{n_k}\}$ converges spherically locally uniformly on *D*, to a meromorphic function or ∞ (see [\[4](#page-10-0),[9,](#page-10-1)[13\]](#page-10-2)).

The following well-known normality criterion was conjectured by Hayman [\[4](#page-10-0)], and proved by Gu [\[3](#page-10-3)].

 \boxtimes Yan Xu xuyan@njnu.edu.cn Caiyun Fang

05325@njnu.edu.cn

The first author is supported by NNSF of China (Grant Nos. 11401298, 11471163, 11501297). The second author is supported by NNSF of China (Grant No.11471163).

¹ School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China

Theorem A *Let F be a family of meromorphic functions defined in a domain D, and k* be a positive integer. If for every function $f \in \mathcal{F}$, $f \neq 0$ and $f^{(k)} \neq 1$ in D, then \mathcal{F} *is normal in D.*

This result has undergone various extensions and improvements. In [\[6](#page-10-4)] (cf. [\[8,](#page-10-5)[11\]](#page-10-6)), Pang–Yang–Zalcman obtained.

Theorem B *Let k be a positive integer. Let F be a family of meromorphic functions defined in a domain D, all of whose zeros have multiplicity at least k* + 2 *and whose poles are multiple. Let* $h(z)$ ($\neq 0$) *be a holomorphic functions on D. If for each* $f \in \mathcal{F}$ *,* $f^{(k)}(z) \neq h(z)$, then *F* is normal in *D*.

When $k = 1$, an example [\[8](#page-10-5), Example 1] shows that the condition on the multiplicity of zeros of functions in $\mathcal F$ cannot be weakened. When $k \geq 2$, Zhang–Pang–Zalcman [\[14](#page-10-7)] proved that the multiplicity of zeros of functions in $\mathcal F$ can be reduced from $k+2$ to $k + 1$ in Theorem [C.](#page-1-0)

Theorem C *Let* $k > 2$ *be a positive integer. Let* $\mathcal F$ *be a family of meromorphic functions defined in a domain D, all of whose zeros have multiplicity at least* $k + 1$ *and whose poles are multiple. Let* $h(z)$ ($\neq 0$) *be a holomorphic functions on D. If for* $\text{each } f \in \mathcal{F}, f^{(k)}(z) \neq h(z), \text{ then } \mathcal{F} \text{ is normal in } D.$

In [\[12\]](#page-10-8), Xu reduced the multiplicity of the zeros of functions in $\mathcal F$ to k for the case $h(z) = z$, but restricting the values $f^{(k)}$ can take at the zeros of f, as follows.

Theorem D *Let* $k \geq 4$ *be a positive integer,* $A > 1$ *be a constant. Let* $\mathcal F$ *be a family of meromorphic functions in a domain D. If, for every function* $f \in \mathcal{F}$ *, f has only zeros of multiplicity at least k and satisfies the following conditions:*

(a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|$. (b) $f^{(k)}(z) \neq z$.

(c) *All poles of f are multiple .*

Then F is normal in D.

Theorem E Let $A > 1$ be a constant. Let $\mathcal F$ be a family of meromorphic functions in *a domain D. If, for every function* $f \in \mathcal{F}$, f has only zeros of multiplicity at least 3 *and satisfies the following conditions:*

- (a) $f(z) = 0 \Rightarrow |f'''(z)| \le A|z|$.
- (b) $f'''(z) \neq z$.
- (c) *All poles of f have multiplicity at least* 3*.*

Then F is normal in D.

Also in [\[12\]](#page-10-8), Xu gave the following example to show that the condition (c) in Theorem [E](#page-1-1) is necessary and the number 3 is best possible.

Example 1 (See [\[12](#page-10-8)]) *Let* $\Delta = \{z : |z| < 1\}$ *, and let*

$$
\mathcal{F} = \left\{ f_n(z) = \frac{(z - 1/n)^3 (z + 1/n)^3}{24z^2} \right\}.
$$

Clearly,

$$
f_n'''(z) = z + \frac{1}{n^6 z^5} \neq z.
$$

For each n, f_n has two zeros $z_1 = 1/n$ *and* $z_2 = -1/n$ *of multiplicity 3. It's easy to see that*

$$
f_n'''\left(\frac{1}{n}\right) = \frac{2}{n}, \ f_n'''\left(-\frac{1}{n}\right) = -\frac{2}{n},
$$

 $|f_n^m(z_i)| \leq 2|z_i|(i = 1, 2)$, then $f_n(z) = 0 \Rightarrow |f_n^m(z)| \leq 2|z|$. However *F* is not *normal at* 0 *since* $f_n(1/n) = 0$ *and* $f_n(0) = \infty$ *.*

In this paper, inspired by the idea in $[1,2]$ $[1,2]$ $[1,2]$, we prove the following result, which shows that the counterexample above is unique in some sense.

Theorem 1 Let $A > 1$ be a constant and $\mathcal F$ be a family of meromorphic functions *defined in D, all of whose zeros have multiplicity at least* 3 *and whose poles all are multiple, such that for each* $f \in \mathcal{F}$ *,* $f(z) = 0 \Rightarrow |f'''(z)| \leq A|z|$ *<i>, and* $f'''(z) \neq z$ *. If F* is not normal at $z_0 \in D$, then $z_0 = 0$ and there exist $r > 0$ and $\{f_n\} \subset F$ such that

$$
f_n(z) = \frac{(z - \xi_n^1)^3 (z - \xi_n^2)^3}{(z - \eta_n)^2} \hat{f}_n(z)
$$

 $on \Delta_r = \{z : |z| < r\}$, where $\xi_n^i/\rho_n \to c_i (i = 1, 2)$ and $\eta_n/\rho_n \to (c_1+c_2)/2$ for some sequence of positive numbers $\rho_n \to 0$ and two distinct constants c_1 and c_2 . Moreover, $\hat{f}_n(z)$ is holomorphic and non-vanishing on Δ_r such that $\hat{f}_n(z) \to \hat{f}(z) \equiv 1/24$ *locally uniformly on* Δ_r .

In this paper, we denote $\Delta_r = \{z : |z| < r\}$ and $\Delta'_r = \{z : 0 < |z| < r\}$, and the number *r* may be different in different place. When $r = 1$, we drop the subscript.

2 Lemmas

To prove our results, we need the following lemmas.

Lemma 1 ([\[7](#page-10-11), Lemma 2]) *Let k be a positive integer and let F be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least k, and suppose that there exists A* \geq 1 *such that* $|f^{(k)}(z)| \leq$ *A whenever* $f(z) = 0, f \in \mathcal{F}$. *If F* is not normal at $z_0 \in D$, then for each α , $0 \leq \alpha \leq k$, there exist a sequence of *complex numbers* $z_n \in D$, $z_n \to z_0$, a sequence of positive numbers $\rho_n \to 0$, and a *sequence of functions* $f_n \in \mathcal{F}$ *such that*

$$
g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^{\alpha}} \to g(\zeta)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C*, all of whose zeros have multiplicity at least k, such that* $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$ *. Moreover,* $g(\zeta)$ has order at most 2.

Lemma 2 ([\[12](#page-10-8), Lemma 6]) *Let f be a transcendental meromorphic function of finite order* ρ , and let $k \geq 2$) *be a positive integer. If f has only zeros of multiplicity at least k, and there exists A* > 1 *such that* $f(z) = 0 \Rightarrow |f^{(k)}(z)| \leq A|z|$ *, then* $f^{(k)}$ *has infinitely many fix-points.*

Lemma 3 ([\[11](#page-10-6), Lemma 8]) *Let f be a non-polynomial rational function and k be a positive integer. If* $f^{(k)}(z) \neq 1$ *, then*

$$
f(z) = \frac{1}{k!}z^{k} + a_{k-1}z^{k-1} + \cdots + a_0 + \frac{a}{(z-b)^m},
$$

where $a_{k-1}, \ldots, a_0, a \neq 0$ *, <i>b* are constants and *m* is a positive integer.

Lemma 4 ($[12, \text{Lemma 10}]$ $[12, \text{Lemma 10}]$) *Let* $k > 3$ *be a positive integer,* $A > 1$ *be a constant. Let F* be a family of meromorphic functions in a domain D. Suppose that, for every $f \in \mathcal{F}$, *f has only zeros of multiplicity at least k, and satisfies the following conditions:*

- (a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le A|z|$.
- (b) $f^{(k)}(z) \neq z$.
- (c) *all poles of f are multiple.*

Then F *is normal in D*\{0}*.*

Lemma 5 *Let F be a family of functions meromorphic on* Δ_r , $b \in \overline{C}$ *to be a constant* which satisfies $f(z) \neq b$ on Δ_r for each $f \in \mathcal{F}$. If \mathcal{F} is normal on Δ'_r , but not normal *on* Δ_r , *then there exists a subsequence* $\{f_n\} \subset \mathcal{F}$ *such that* $f_n(z) \stackrel{\chi}{\Rightarrow} b$ *on* Δ'_r .

Proof Without loss of generality, we assume that $b = 0$. Since *F* is normal on Δ'_r , then there exists a subsequence $\{f_n\} \subset \mathcal{F}$ such that $f_n(z) \to f(z)$ spherically locally uniformly on Δ'_r . Set $g_n(z) = 1/f_n(z)$. Thus $g_n(z) \to g(z) = 1/f(z)$ on Δ'_r . Noting that $f_n(z) \neq 0$, it follows that $f(z) \neq 0$ or $f(z) \equiv 0$ by Hurwitz's theorem and $g_n(z)$ is holomorphic on Δ_r . If $f(z) \neq 0$, then the maximum modulus principle implies that $g_n(z) \to g(z)$ on Δ_r . Hence $f_n(z) \to \text{on } \Delta_r$, a contradiction. So, $f(z) \equiv 0$. This finishes the proof of Lemma [5.](#page-3-0) \Box

Lemma 6 *Let f be a rational function, all of whose zeros are of multiplicity at least* 3. If $f'''(z) \neq z$, then one of the following three cases must occur:

(i)

$$
f(z) = \frac{(z+c)^4}{24};
$$
\n(2.1)

(ii)

$$
f(z) = \frac{(z - c_1)^5}{24(z - b)};
$$
\n(2.2)

 (iii)

$$
f(z) = \frac{(z - c_1)^3 (z - c_2)^3}{24[z - (c_1 + c_2)/2]^2},
$$
\n(2.3)

where c is nonzero constant, $b \neq c_1$ *) is a constant and c₁,* c_2 *<i>are two distinct constants.*

Proof First, suppose that *f* is a polynomial. Since $f'''(z) \neq z$, then $f'''(z) = z + c$, where $c \neq 0$) is a constant. Thus,

$$
f(z) = \frac{1}{24}z^4 + \frac{c}{6}z^3 + a_1z^2 + a_2z + a_3
$$

where a_1 , a_2 and a_3 are three constants. Noting that f has only zeros of multiplicity at least 3, it follows that *f* has only one zero of multiplicity 4. Thus, *f* has the form $(2.1).$ $(2.1).$

Then, suppose that *f* is a non-polynomial rational function. Set

$$
g(z) = f(z) - \frac{1}{24}z^4 + \frac{1}{6}z^3.
$$

Then $g'''(z) \neq 1$, so by Lemma [3](#page-3-2)

$$
g(z) = \frac{1}{6}z^3 + a_2z^2 + a_1z + a_0 + \frac{a}{(z-b)^m},
$$

where a_2 , a_1 , a_0 , $a \neq 0$, *b* are constants and *m* is a positive integer. Thus

$$
f(z) = p_4(z) + \frac{a}{(z - b)^m} = \frac{p_4(z)(z - b)^m + a}{(z - b)^m},
$$
\n(2.4)

where

$$
p_4(z) = \frac{1}{24}z^4 + a_2z^2 + a_1z + a_0.
$$

Let c_1, c_2, \ldots, c_q be q distinct zeros of $p_4(z)(z - b)^m + a$, with multiplicity n_1, n_2, \ldots, n_q . Clearly, $n_i \geq 3$, $c_i \neq b$, and c_i is a zero of $[p_4(z)(z - b)^m + a]$ with multiplicity $n_i - 1 \geq 2(1 \leq i \leq q)$. Since

$$
[p_4(z)(z-b)^m + a]' = (z-b)^{m-1} [p'_4(z)(z-b) + mp_4(z)], \qquad (2.5)
$$

then c_i must be a zero of $p'_4(z)(z - b) + mp_4(z)$ with multiplicity $n_i - 1(\geq 2)$. Comparing the degree on both sides of [\(2.5\)](#page-4-0), it follows that $\deg[p'_4(z)(z - b)$ + $mp_4(z)$ = 4. Now we divide two cases:

- (a) $p'_4(z)(z b) + mp_4(z)$ has only one zero c_1 with multiplicity 4;
- (b) $p'_4(z)(z b) + mp_4(z)$ has two distinct zeros c_1 and c_2 with multiplicity 2.

For case (a), it follows that $m = 1$ and

$$
p_4(z)(z - b) + a = \frac{1}{24}(z - c_1)^5.
$$

Thus, by (2.4) , f has the form (2.2) .

For case (b), it's easy to see that $m = 2$ and

$$
p'_4(z)(z - b) + 2p_4(z) = \frac{1}{4}(z - c_1)^2(z - c_2)^2,
$$

$$
p_4(z)(z - b)^2 + a = \frac{1}{24}(z - c_1)^3(z - c_2)^3.
$$

These, together with [\(2.5\)](#page-4-0) give

$$
z - b = \frac{1}{2}(z - c_1 + z - c_2).
$$

Thus, $b = (c_1 + c_2)/2$. Hence, by [\(2.4\)](#page-4-1), f has the form [\(2.3\)](#page-4-2).

This completes the proof of Lemma [6.](#page-3-4)

3 Proof of Theorem 1

Since F is not normal at z_0 , by Lemma [4,](#page-3-5) $z_0 = 0$. Without loss of generality, we assume that $\mathcal F$ is normal on Δ' but not normal at the origin.

Consider the family

$$
\mathcal{G} = \left\{ g(z) = \frac{f(z)}{z} : f \in \mathcal{F} \right\}.
$$

It's easy to know that $f(0) \neq 0$ for every $f \in \mathcal{F}$. Thus, for each $g \in \mathcal{G}$, $g(0) = \infty$. Furthermore, all zeros of $g(z)$ have multiplicity at least 3. On the other hand, by simple calculation, we have

$$
g'''(z) = \frac{f'''(z)}{z} - \frac{3g''(z)}{z}.
$$
\n(3.1)

Since $f(z) = 0 \Rightarrow |f'''(z)| \leq A|z|$, it follows that $g(z) = 0 \Rightarrow |g'''(z)| \leq A$.

Clearly, G is normal on Δ' . We claim that G is not normal at $z = 0$. Indeed, if G is normal at $z = 0$, then $\mathcal G$ is normal on the whole disk Δ and hence equicontinuous on Δ with respect to the spherical distance. Noting that $g(0) = \infty$ for each $g \in \mathcal{G}$, so there exists $r > 0$ such that for every $g \in G$ and $|g(z)| \ge 1$ for every $z \in \Delta_r$. Then $f(z) \neq 0$ on Δ_r for all $f \in \mathcal{F}$. Since \mathcal{F} is normal on Δ' but not normal on Δ , there exists a sequence $\{f_n\} \subset \mathcal{F}$ such that $f_n \to 0$ on Δ'_r according to Lemma [5.](#page-3-0) So does {*g_n*} ⊂ *G*, where $g_n(z) = f_n(z)/z$. However $|g_n(z)| \ge 1$ for $z \in \Delta_r$, a contradiction.

Then, by Lemma [1,](#page-2-0) there exist functions $g_n \in \mathcal{G}$, points $z_n \to 0$ and positive numbers $\rho_n \to 0$ such that

$$
G_n(\zeta) = \frac{g_n(z_n + \rho_n \zeta)}{\rho_n^3} \to G(\zeta),\tag{3.2}
$$

converges spherically uniformly on compact subsets of C, where *G* is a non-constant meromorphic function on C and of finite order, all zeros of *G* have multiplicity at least 3, and $G^{\#}(\zeta) \leq G^{\#}(0) = 3A + 1$ for all $\zeta \in \mathbb{C}$.

By [\[12,](#page-10-8) pp. 480–482], we can assume that $z_n/\rho_n \to \alpha$, a finite complex number. Then

$$
\frac{g_n(\rho_n \zeta)}{\rho_n^3} = G_n(\zeta - z_n/\rho_n) \stackrel{\chi}{\to} G(\zeta - \alpha) = \widetilde{G}(\zeta)
$$

on $\mathbb C$. Clearly, all zeros of \widetilde{G} have multiplicity at least 3, and all poles of \widetilde{G} are multiple, except possibly the pole at 0.

Set

$$
H_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^4}.
$$
\n(3.3)

Then

$$
H_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^4} = \zeta \frac{g_n(\rho_n \zeta)}{\rho_n^3} \to \zeta \widetilde{G}(\zeta) = H(\zeta)
$$
 (3.4)

spherically uniformly on compact subsets of \mathbb{C} , and

$$
H_n'''(\zeta) = \frac{f_n'''(\rho_n \zeta)}{\rho_n} \to H'''(\zeta)
$$
 (3.5)

locally uniformly on $\mathbb{C}\setminus H^{-1}(\infty)$. Obviously, all zeros of *H* have multiplicity at least 3, and all poles of *H* are multiple. Since $G(0) = \infty$, $H(0) \neq 0$.

Claim (I) $H(\zeta) = 0 \Rightarrow |H'''(\zeta)| \le A|\zeta|$; (II) $H'''(\zeta) \ne \zeta$.

If $H(\zeta_0) = 0$, by Hurwitz's theorem and [\(3.4\)](#page-6-0), there exist $\zeta_n \to \zeta_0$ such that $f_n(\rho_n \zeta_n) = 0$ for *n* sufficiently large. By the assumption, $|f_n'''(\rho_n \zeta_n)| \leq A |\rho_n \zeta_n|$. Then, it follows from [\(3.5\)](#page-6-1) that $|H'''(\zeta_0)| \leq A |\zeta_0|$. Claim (I) is proved.

Suppose that there exists ζ_0 such that $H'''(\zeta_0) = \zeta_0$. By [\(3.5\)](#page-6-1),

$$
0 \neq \frac{f_n'''(\rho_n \zeta) - \rho_n \zeta}{\rho_n} = H_n'''(\zeta) - \zeta \to H'''(\zeta) - \zeta,
$$

uniformly on compact subsets of $\mathbb{C}\setminus H^{-1}(\infty)$. Hurwitz's theorem implies that $H'''(\zeta) \equiv \zeta$ on $\mathbb{C}\backslash H^{-1}(\infty)$, and then on \mathbb{C} . It follows that *H* is a polynomial of degree 4. Since all zeros of *H* have multiplicity at least 3, we know that *H* has a single zero ζ_1 with multiplicity 4, so that $H'''(\zeta_1) = 0$, and hence $\zeta_1 = 0$ since $H'''(\zeta) = \zeta$. But $H(0) \neq 0$, we arrive at a contradiction. This proves claim (II).

Then, by Lemma [2,](#page-3-6) *H* must be a rational function. Since all poles of *H* are multiple, it derives from Lemma [6](#page-3-4) that $H(\zeta) = (\zeta + b)/24$ or

$$
H(\zeta) = \frac{(\zeta - c_1)^3 (\zeta - c_2)^3}{24[zeta - (c_1 + c_2)/2]^2},
$$

where *b* is a constant, c_1 and c_2 are two distinct constants. But, $H(\zeta) = (\zeta + b)/24$ is impossible(for details, see $[12, pp. 483-485]$ $[12, pp. 483-485]$). By (3.3) and (3.4) , it follows that

$$
\frac{f_n(\rho_n \zeta)}{\rho_n^4} \to \frac{(\zeta - c_1)^3 (\zeta - c_2)^3}{24[\zeta - (c_1 + c_2)/2]^2}.
$$
\n(3.6)

Noting that all zeros of f_n have multiplicity at least 3, there exist $\zeta_n^1 \to c_1$, $\zeta_n^2 \to c_2$ and $\zeta_n^3 \to (c_1 + c_2)/2$ such that $\xi_n^1 = \rho_n \zeta_n^1$ and $\xi_n^2 = \rho_n \zeta_n^2$ are zeros of f_n with exact multiplicity 3, and $\eta_n = \rho_n \zeta_n^3$ is the pole of f_n with exact multiplicity 2.

Now write

$$
f_n(z) = \frac{\left(z - \xi_n^1\right)^3 (z - \xi_n^2)^3}{\left(z - \eta_n\right)^2} \hat{f}_n(z) \tag{3.7}
$$

Then by (3.6) and (3.7) , it follows that

$$
\hat{f}_n(\rho_n \zeta) \to \frac{1}{24} \tag{3.8}
$$

on $\zeta \in \mathbb{C}$.

Next, we complete our proof in three steps.

Step 1. Claim that *there exists a r* > 0 *such that* $f_n(z) \neq 0$ *on* λ_r .

Suppose not, taking a sequence and renumbering if necessary, \hat{f}_n has zeros tending to 0. Assume $\hat{z}_n \to 0$ is the zero of \hat{f}_n with the smallest modulus. Then by [\(3.8\)](#page-7-2), it's easy to know that $\hat{z}_n/\rho_n \to \infty$.

Set

$$
\widehat{f}_n^*(z) = \widehat{f}_n(\widehat{z}_n z). \tag{3.9}
$$

Thus, $\hat{f}_n^*(z)$ is well-defined on $\mathbb C$ and non-vanishing on Δ . Moreover, $\hat{f}_n^*(1) = 0$. Now let

$$
M_n(z) = \frac{\left(z - \xi_n^1/\hat{z}_n\right)^3 \left(z - \xi_n^2/\hat{z}_n\right)^3}{\left(z - \eta_n/\hat{z}_n\right)^2} \widehat{f}_n^*(z). \tag{3.10}
$$

According to (3.7) , (3.9) and (3.10) , it follows that

$$
M_n(z) = \frac{\left(z\hat{z}_n - \xi_n^1\right)^3 \left(z\hat{z}_n - \xi_n^2\right)^3}{\left(z\hat{z}_n - \eta_n\right)^2} \frac{\hat{f}_n\left(\hat{z}_n z\right)}{\left(\hat{z}_n\right)^4} = \frac{f_n\left(\hat{z}_n z\right)}{\left(\hat{z}_n\right)^4}.
$$

Obviously, all zeros of $M_n(z)$ have multiplicity at least 3 and all poles of $M_n(z)$ have multiplicity at least 2. Since $f_n(z) = 0 \Rightarrow |f_n'''(z)| \leq A|z|$, it follows that $M_n(z) = 0 \Rightarrow |M_n^{\prime\prime\prime}(z)| \le A|z|$. Now that $f_n^{\prime\prime\prime}(z) \ne z$, it derives that

$$
M_n'''(z) - z = \frac{\left(f_n''' \hat{z}_n z\right) - \hat{z}_n z}{\hat{z}_n} \neq 0. \tag{3.11}
$$

Hence, by Lemma [4,](#page-3-5) $\{M_n(z)\}\$ is normal on $\mathbb{C}^* = \mathbb{C}\backslash\{0\}.$

Noting that

$$
\frac{\xi_n^1}{\hat{z}_n} = \frac{\xi_n^1}{\rho_n} \frac{\rho_n}{\hat{z}_n} \to 0,
$$

$$
\frac{\xi_n^2}{\hat{z}_n} = \frac{\xi_n^2}{\rho_n} \frac{\rho_n}{\hat{z}_n} \to 0,
$$

and
$$
\frac{\eta_n}{\hat{z}_n} = \frac{\eta_n}{\rho_n} \frac{\rho_n}{\hat{z}_n} \to 0,
$$

we deduce from [\(3.10\)](#page-7-4) that $\{\widehat{f}_i^*\}$ is also normal on \mathbb{C}^* . Thus by taking a subsequence, we assume that $\hat{f}_n^* \to \hat{f}^*$ spherically locally uniformly on \mathbb{C}^* . Clearly, $\hat{f}^*(z)$ has a zero at 1 with multiplicity at least 3 since $f_n^*(1) = 0$.

Set

$$
L_n(z) = M_n'''(z) - z.
$$
 (3.12)

Then $L_n \neq 0$ from [\(3.11\)](#page-8-0).

Now we prove that $f^*(z) \neq 0$. Otherwise $f^*_n(z) \to 0$, thus $L_n(z) \to -z$ and $L'_n(z) \to -1$ locally uniformly on \mathbb{C}^* . By the argument principle, it derives that

$$
\left| n(1, L_n) - n\left(1, \frac{1}{L_n}\right) \right| = \frac{1}{2\pi} \left| \int_{|z|=1} \frac{L'_n}{L_n} dz \right| \to \frac{1}{2\pi} \left| \int_{|z|=1} \frac{1}{z} dz \right| = 1,
$$
\n(3.13)

where $n(r, f)$ denotes the number of poles of f in Δ_r , counting multiplicity. It follows that $n(1, L_n) = 1$. On the other hand, the poles of $L_n(z) = M_n'''(z) - z$ have multiplicity at least 4. A contradiction.

Then $\hat{f}_n^* \to \hat{f}^* \neq 0$ spherically locally uniformly on \mathbb{C}^* . Since \hat{f}_n^* is non-vanishing on Δ , then $\hat{f}_n^* \to \hat{f}^*$ on Δ by Lemma [5.](#page-3-0) Hence, $\hat{f}_n^* \to \hat{f}^*$ on \mathbb{C} .

By (3.10) and (3.12) , we see that

$$
L_n(z) \to L(z) = \left(z^4 \widehat{f}^*(z)\right)^{n} - z
$$

on $\mathbb{C}^*\setminus (\widehat{f}^*)^{-1}(\infty)$. Obviously, $\{L_n(z)\}$ is normal on Δ_r . If not, Lemma [5](#page-3-0) derives that $L(z) = (z^4 \hat{f}^*(z))^m - z \equiv 0$ since $L_n \neq 0$ on \mathbb{C} . Thus,

$$
\hat{f}^*(z) = \frac{z^4 + a_1 z^2 + a_2 z + a_3}{24z^4},
$$

where a_1 , a_2 and a_3 be three constants. Now that the zeros of $\hat{f}^*(z)$ have multiplicity at least 3 and $\hat{f}^*(1) = 0$, then

$$
\hat{f}^*(z) = \frac{(z-1)^4}{24z^4},
$$

which is impossible since $z^4 + a_1z^2 + a_2z + a_3 \neq (z - 1)^4$. So $L_n(z) \to L(z)$ on \mathbb{C} .
Since $L_n(z) \neq 0$, Hurwitz's theorem implies that either $L(z) \equiv 0$ or $L(z) \neq 0$. Since $L_n(z) \neq 0$, Hurwitz's theorem implies that either $L(z) \equiv 0$ or $L(z) \neq 0$.
 $\hat{f}^*(1) = 0$ follows that $L(z) \neq 0$. On the other hand, $\hat{f}_n^*(0) = \hat{f}_n(0) \rightarrow \hat{f}^*(0) =$ 1/24, it follows that $L(0) = 0$, a contradiction. The claim is completed.

Step 2. Show that *there exists a r* > 0 *such that* $f_n(z)$ *is holomorphic on* Δ_r *.*

Since $\{f_n\}$ and hence $\{f_n\}$ is normal on Δ' , taking a subsequence and renumbering, we have $f_n \to f$ spherically locally uniformly on Δ' .

It's easy to see that $\hat{f}(z) \neq 0$ on Δ' . Otherwise, we have $f_n'''(z) \to 0$ and $f_n^{(4)}(z) \to 0$ 0 locally uniformly on Δ' . Then the argument principle yields that

$$
\left| n\left(\frac{1}{2}, f_n''' - z\right) - n\left(\frac{1}{2}, \frac{1}{f_n''' - z}\right) \right| = \frac{1}{2\pi} \left| \int_{|z| = \frac{1}{2}} \frac{f_n^{(4)} - 1}{f_n''' - z} dz \right| \to \frac{1}{2\pi} \left| \int_{|z| = \frac{1}{2}} \frac{1}{z} dz \right|
$$

= 1.

Now that $f_n'''(z) \neq z$, it follows that $n(\frac{1}{2}, f_n''') = n(\frac{1}{2}, f_n''' - z) = 1$, which is impossible. Thus, $\hat{f}_n \to \hat{f} \neq 0$.

Recalling that $\hat{f}_n(z) \neq 0$, and by Lemma [5,](#page-3-0) it gives that $\hat{f}_n \to \hat{f}$ spherically locally uniformly on Δ . Since $f_n(0) \to 1/24$, then $f(0) = 1/24$. Thus, there exists a positive number *r* such that *f* is holomorphic on Δ_r . Hence f_n is holomorphic on Δ_r .

Step 3. Prove that *there exists a r* > 0 *such that* $f_n(z) \to f(z) \equiv 1/24$ *on* Δ_r . By [\(3.7\)](#page-7-1), we get $f_n(z) \to z^4 \hat{f}(z)$ on Δ' . Thus

$$
f_n'''(z) - z \to \left[z^4 \hat{f}(z)\right]''' - z,\tag{3.14}
$$

on $\Delta' \backslash \hat{f}^{-1}(\infty)$.

Hence there exists $r > 0$ such that $f_n'''(z) - z \rightarrow [z^4 \hat{f}(z)]''' - z$ on Δ'_r .

If $\{f_n^m(z) - z\}$ is not normal on Δ_r , combining $f_n^{m'}(z) \neq z$ with Lemma [5,](#page-3-0) it follows that $[z^4 \hat{f}(z)]''' - z \equiv 0$ on Δ'_r . Hence

$$
z^4 \hat{f}(z) = \frac{1}{24} z^4 + a_1 z^2 + a_2 z + a_3
$$

on Δ'_r . Recalling that $f_n \to f$ on Δ and $f(0) = 1/24$, so $f_n(z) \to f(z) \equiv 1/24$ on Δ_r .

If $\{f_n'''(z) - z\}$ is normal on Δ_r , then either $[z^4 \hat{f}(z)]''' - z \equiv 0$ or $[z^4 \hat{f}(z)]''' - z \neq 0$ according to $f_n'''(z) \neq z$. Noting the fact that $[(z^4 \hat{f}(z))'' - z]|_{z=0} = 0$, it derives that $[z^4 \hat{f}(z)]''' - z \equiv 0$. Similarly, it follows that $\hat{f}_n(z) \to \hat{f}(z) \equiv 1/24$ on Δ_r .

The proof of Theorem 1 is finished.

Acknowledgements We thank the referee for his/her valuable comments and suggestions made to this paper.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- 1. Chang, J.M.: Normal families of meromorphic functions whose derivatives omit a holomorphic function. Sci. China Ser. Math. **55**, 1669–1676 (2012)
- 2. Chen, C.N., Xu, Y.: Normality concerning exceptional functions. Rocky Mt. J. Math. **45**, 157–168 (2015)
- 3. Gu, Y.X.: A normal criterion of meromorphic families. Sci. Math. Issue **I**, 267–274 (1979)
- 4. Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)
- 5. Pang, X.C., Fang, M.L., Zalcman, L.: Normal families of holomorphic functions with multiple zeros. Conf. Geom. Dyn. **11**, 101–106 (2007)
- 6. Pang, X.C., Yang, D.G., Zalcman, L.: Normal families of meromorphic functions whose derivatives omit a function. Comput. Methods Funct. **2**, 257–265 (2002)
- 7. Pang, X.C., Zalcman, L.: Normal families and shared values. Bull. Lond. Math. Soc. **32**, 325–331 (2000)
- 8. Pang, X.C., Zalcman, L.: Normal families of meromorphic functions with multiple zeros and poles. Isr. J. Math. **136**, 1–9 (2003)
- 9. Schiff, J.: Normal Families. Springer, New York (1993)
- 10. Wang, Y.F., Fang, M.L.: Picard values and normal families of meromorphic functions with multiple zeros. Acta Math. Sin. (N.S.) **14**(1), 17–26 (1998)
- 11. Xu, Y.: Normality and exceptional functions of derivatives. J. Aust. Math. Soc. **76**, 403–413 (2004)
- 12. Xu, Y.: Normal families and fixed-points of meromorphic functions. Monatsh Math. **179**, 471–485 (2016)
- 13. Yang, L.: Value Distribution Theory. Springer, Berlin (1993)
- 14. Zhang, G.M., Pang, X.C., Zalcman, L.: Normal families and omitted functions II. Bull. Lond. Math. Soc. **41**, 63–71 (2009)