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Abstract The inverse spectral problems for Dirac operator with the potential known
on an interior subinterval are considered. We prove that the potential on the entire
interval and boundary conditions are uniquely determined in terms of the potential on
an interior subinterval including midpoint, the known partial eigenvalues and partial
interior spectral data.
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1 Introduction

Consider the inverse spectral problems for the Dirac operator, denoted by L :=
L(Q(x);α, β), of the form

ly := By′ − Q(x)y = λy, 0 < x < 1 (1.1)
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with

B =
(

0 1
−1 0

)
, Q(x) =

(
p(x) 0
0 q(x)

)
, y(x) =

(
y1(x)
y2(x)

)

subject to the boundary conditions

{
U (y) := y1(0) cosα + y2(0) sin α = 0,

V (y) := y1(1) cosβ + y2(1) sin β = 0,
0 ≤ α, β < π. (1.2)

Here λ is a spectral parameter, p(x), q(x) ∈ C[0, 1] and are real-valued functions.
It is well known [9] that the operator L is self-adjoint and has a discrete spectrum
consisting of simple and real eigenvalues denoted by σ(L) = {λn}n∈Z.

The Dirac operator is the relativistic Schrödinger operator in quantum physics. The
basic and comprehensive results about Dirac operators were given in [9]. Furthermore,
spectral problems for Sturm–Liouville or Dirac operators were extensively studied in
various publications, see e.g. [3,4,10,11,17].

Research of inverse problems for Dirac operator follows investigations of closely
related inverse problems for Sturm–Liouville operator. Arutyunyan [1] obtained an
analog of Marchenko theorem [12]: one full spectrum and the corresponding normal-
ising coefficients uniquely determined the potential Q(x). Malamud [13] proved an
analog of Borg theorem [2]: two spectra (defined by different boundary conditions at
one end and identical conditions repeated at the other end) uniquely determined the
potential Q(x). He also proved an analog of the theorem of Hochstadt and Lieberman
[7]: one spectrum and a potential on the interval [0, 1/2] uniquely determined the
potential Q(x) on the whole interval [0, 1]. Horváth [8] obtained an analog of the
theorem of Gesztesy and Simon [5]: certain part of the spectrum and a potential on an
interval [0, a2] for any a2 > 1/2 completely determine the potential Q(x) uniquely
on the interval [0, 1].

The main aim of this paper is to investigate in detail the uniqueness problem for
Dirac operator with the potential Q(x) known on an interior subinterval [a1, a2] ⊂
[0, 1] with 1/2 ∈ [a1, a2], and solve it by virtue of the known eigenvalues and some
information on the eigenfunctions at the point a1. The later is called interior spectral
data, which together with the associated eigenvalues has been used to recover the
potentials uniquely for the Dirac operators and the Sturm–Liouville problems, etc.
(see [6,14,15,18] and references therein). The technique which we used to obtain this
result is based on the method discussed in Horváth [8].

2 Statement of results

In this section, we will provide a new result, analogous to the theorem of Horváth
[8], on the unique determination problem of the potential Q(x) and α, β under
the circumstance where only partial information of the potential Q(x) (on an
interior subinterval [a1, a2] ⊂ [0, 1]), of the eigenvalues {λn}n∈Z, and of the inte-
rior spectral data {ϕ2(a1, λn)/ϕ1(a1, λn)}n∈Z is available. The function ϕ(x, λ) =
(ϕ1(x, λ), ϕ2(x, λ))T is the solution of Eq. (1.1) with the initial conditions ϕ1(0, λ) =
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sin α and ϕ2(0, λ) = − cosα. Let us mention here that we allow the interior spectral
data be infinite, that is, ϕ1(a1, λn) = 0.

Without loss of generality, we always assume that a1 ≤ 1 − a2. Otherwise, the
similar approach of this paper can be used to derive similar result. Given a sequence
� := {xnk }k∈Z of arbitrary real numbers, suppose the set S := {nk : xnk ∈ �} is
almost symmetric with respect to the origin, which means that if nk ∈ S then−nk ∈ S
with finitely many exceptions. Define

N�(t) =

⎧⎪⎨
⎪⎩

∑
0≤xnk≤t

1 if t > 0,

− ∑
t<xnk<0

1 if t < 0.
(2.1)

We give our uniqueness results for the known potential on interior subinterval
[a1, a2] through the following two cases: a1 < 1 − a2 and a1 = 1 − a2.

Theorem 2.1 Let 1/2 ∈ [a1, a2] ⊂ [0, 1] with a1 < 1− a2. Let σ2 ⊂ σ := σ(L) and
σ1 ⊂ σ2, where the sets S j = {n : λn ∈ σ j } are almost symmetric with respect to the
origin for j = 1, 2. Suppose that the limits

lim|t |→∞
Nσ j (t)

t
= γ j (2.2)

exist for j = 1, 2 and there are the constants t0 > 0 and μ j ∈ R for j = 1, 2 such
that

Nσ1(t)

{≥ 2a1Nσ (t) + μ1 − a1 if t ≥ t0,
≤ 2a1Nσ (t) + μ1 − a1 if t ≤ −t0,

(2.3)

and

Nσ2(t)

{≥ 2(1 − a2)Nσ (t) + μ2 − (1 − a2) if t ≥ t0,
≤ 2(1 − a2)Nσ (t) + μ2 − (1 − a2) if t ≤ −t0,

(2.4)

where Nσ (t) and Nσ j (t) for j = 1, 2 are defined as (2.1) by replacing � with σ and
σ j respectively.

Then Q(x) on [a1, a2], {ϕ2(a1, λn)/ϕ1(a1, λn)}λn∈σ1 and {λn}λn∈σ2 uniquely deter-
mine α, β and Q(x) on [0, 1].
Remark 2.2 The obtained result here is a natural generalization of the result ofHorváth
[8] where the case a1 = 0 was treated.

For the case a1 = 1 − a2, we have the following theorem.

Theorem 2.3 Let a1 = 1 − a2 with 1/2 ∈ (a1, a2). Let σ1 ⊂ σ := σ(L), where the
set S1 = {n : λn ∈ σ1} is almost symmetric with respect to the origin. Assume that the
limit

lim|t |→∞
Nσ1(t)

t
= γ (2.5)

exists and there are the constants t0 > 0 and μ ∈ R such that

Nσ1(t)

{≥ 2a1Nσ (t) + μ − a1 if t ≥ t0,
≤ 2a1Nσ (t) + μ − a1 if t ≤ −t0,

(2.6)



158 Y. Guo et al.

where Nσ (t) and Nσ1(t) are defined as (2.1) by replacing�with σ and σ1 respectively.
Then Q(x) on [a1, a2], {λn}λn∈σ1 and {ϕ2(a1, λn)/ϕ1(a1, λn)}λn∈σ1 uniquely deter-

mine α, β and Q(x) on [0, 1].
As a special case of Theorem 2.3, we have the following corollary.

Corollary 2.4 (See Theorem 2.1 in [15]) Let a1 = 1/2 = a2. Then {λn}n∈Z and
{ϕ2(1/2, λn)/ϕ1(1/2, λn)}n∈Z uniquely determine α, β and Q(x) on [0, 1].

3 Proofs

We begin by recalling some classical results, which will be needed later. Let ϕ(x, λ) =
(ϕ1(x, λ), ϕ2(x, λ))T be the solution of Eq. (1.1) under the initial conditions

ϕ1(0, λ) = sin α, ϕ2(0, λ) = −cosα.

It is clear that for each fixed x ∈ [0, 1], these solutions are entire in λ. Let τ = Imλ.
Then the following representations hold uniformly in x as |λ| → ∞ (see [9]: page
208, (5.11) and (5.12):

ϕ1(x, λ) = sin (λx + α + η(x)) + O
(
e|τ |x
|λ|

)
, (3.1)

ϕ2(x, λ) = − cos (λx + α + η(x)) + O
(
e|τ |x
|λ|

)
. (3.2)

Here

η(x) = 1

2

∫ x

0
(p(t) + q(t)) dt. (3.3)

It is well known [9] that the eigenvalues {λn}n∈Z of the operator L are precisely the
zeros of its characteristic function

gσ (λ) = ϕ1(1, λ) cosβ + ϕ2(1, λ) sin β, (3.4)

and satisfy the classical asymptotic form

λn = nπ + c0 + O

(
1

n

)
(3.5)

as |n| → ∞, where
c0 = β − α − η(1).

Moreover, it follows from (3.1) and (3.2) that for sufficiently large |λ|

|gσ (λ)| ≥ Cδ exp(|Imλ|), λ ∈ Gδ = {λ : |λ − nπ − c0| ≥ δ, n ∈ Z}. (3.6)

Throughout of this paper we always assume that 0 is not an eigenvalue of the
operator L defined by (1.1)–(1.2), otherwise we can make a shift. For our purpose of
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this paper, together with the operator L , we consider another operator L̃ of the same
form but with different coefficients Q̃(x), α̃, β̃. We agree that, everywhere below if a
certain symbol δ denotes an object related to L , then δ̃ will denote an analogous object
related to L̃.

Next we give the proof of Theorem 2.1

Proof of Theorem 2.1 Let us consider another Dirac operator L̃ of the same form
(1.1)–(1.2) but with different coefficients (Q̃(x), α̃, β̃). Then both operators satisfy
Q̃(x) = Q(x) for x ∈ [a1, a2], and have common eigenvalues {λn}λn∈σ2 and common
interior spectral data {ϕ2(a1, λn)/ϕ1(a1, λn)}λn∈σ1 . Under the hypothesis of Theo-
rem 2.1, we will prove L = L̃ through the following two steps.

(1) We first show that α = α̃, Q̃(x) = Q(x) on [0, a1]. To this end, let us define
function gσ1(λ) by

gσ1(λ) = p.v.
∏

λn∈σ1

(
1 − λ

λn

)
, (3.7)

it is known [8] that this product converges locally uniformly and defines an entire
function with zeros {λn|λn ∈ σ1}. Consider the function

F(λ) = 〈ϕ, ϕ̃〉(a1, λ)

gσ1(λ)
, (3.8)

where 〈ϕ, ϕ̃〉(a1, λ) = (ϕ1ϕ̃2 − ϕ2ϕ̃1)(a1, λ). Under the hypothesis of Theorem 2.1
we have for λn ∈ σ1 that

ϕ2(a1, λn)

ϕ1(a1, λn)
= ϕ̃2(a1, λn)

ϕ̃1(a1, λn)
.

In particular, if both sides in the above equation are infinite, then ϕ1(a1, λn) =
ϕ̃1(a1, λn) = 0. In all, we infer that 〈ϕ, ϕ̃〉(a1, λ) vanishes at each point where gσ1(λ)

vanishes, hence F(λ) is an entire function since gσ1(λ) necessarily has simple zeros.
We estimate the numerator of F(λ) using (3.1) and (3.2) that

〈ϕ, ϕ̃〉(a1, λ) = sin (λa1 + α̃ + η̃(a1)) cos (λa1 + α + η(a1))

− sin (λa1 + α + η(a1)) cos (λa1 + α̃ + η̃(a1)) + O

(
e2a1|Imλ|

|λ|
)

= sin x0 + O

(
e2a1|Imλ|

|λ|
)

,

where x0 = α̃ − α + η̃(a1) − η(a1). We know that this function has infinitely many
real zeros and the zeros are not bounded. This is compatible with the above estimate
only when sin x0 = 0 and then

〈ϕ, ϕ̃〉(a1, λ) = O

(
e2a1|Imλ|

|λ|
)

. (3.9)
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We estimate the denominator of F(λ) in virtue of Lemma 2.6 in [8]. If |λ−λn| ≥ δ

and |λ − nπ − c0| ≥ δ for all λn ∈ σ1, then from (3.5) we have

|gσ1(λ)| � |ĝσ1(λ)| (3.10)

where the notation � means that both |gσ1(λ)/ĝσ1(λ)| and |ĝσ1(λ)/gσ1(λ)| are
bounded, and

ĝσ1(λ) = p.v.
∏

{n∈Z|λn∈σ1}

(
1 − λ

nπ + c0

)
.

We use

1 − λ + c0
nπ + c0

=
(
1 − λ

nπ

) (
1 − c0

nπ + c0

)
=: cn

(
1 − λ

nπ

)

to obtain
ĝσ1(λ + c0) = cḡσ1(λ), (3.11)

where

c = p.v.
∏

{n∈Z|λn∈σ1}

(
1 − c0

nπ + c0

)
and ḡσ1(λ) = p.v.

∏
{n∈Z|λn∈σ1}

(
1 − λ

nπ

)
.

Arrange the values {n ∈ Z|λn ∈ σ1} in an increasing sequence {zk}. Since Nσ1(zk) =
k/π + O(1), we have from (2.2) that

k

zkπ
= Nσ1(zk)

zk
+ o(1) → γ1

as |k| → ∞. Now the almost symmetric property of S1 implies a lower estimate by
Lemma 2.8 in [8]: for every ε > 0 there exists a c > 0 such that if |λ − nπ | ≥ δ for
all {n ∈ Z|λn ∈ σ1} that

|ḡσ1(λ)| ≥ c exp(πγ1|Imλ| − ε|λ|).

By the above considerations, one infers that

|gσ1(λ)| � |ĝσ1(λ)| � |ḡσ1(λ − c0)| ≥ c exp(πγ1|Imλ| − 2ε|λ|) (3.12)

for |λ| large enough. If both |λ − λn| ≥ δ and |λ − nπ − c0| ≥ δ hold for λn ∈ σ1,

then it follows from (3.12) that the whole denominator of F(λ) has a lower estimate

|gσ1(λ)| ≥ c exp(2a1|Imλ| − 2ε|λ|). (3.13)
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Combined with (3.9), there exists a positive number C such that if |λ − λn| ≥ δ and
|λ − nπ − c0| ≥ δ hold for λn ∈ σ1, then

|F(λ)| =
∣∣∣∣ 〈ϕ, ϕ̃〉(a1, λ)

gσ1(λ)

∣∣∣∣ ≤ C exp(3ε|λ|) (3.14)

for |λ| large enough. Consequently, the maximum modulus principle [16] yields that
|F(λ)| ≤ C exp(3ε|λ|) for all λ ∈ C, which implies that if F(iy) → 0 as y (real)
→ ∞, then by virtue of [8, Lemma 2.9] one can derive that F ≡ 0.

Since we always assume 0 is not an eigenvalue of the operator L , without loss of
generality, we assume that Nσ (t) = 0 for −1 ≤ t ≤ 1, which implies that Nσ1(t) = 0
also holds in the same interval. It follows from [8, Lemma 2.5] that

ln|gσ1(iy)| = p.v.
∫ ∞

−∞
Nσ1(t)

t

y2

y2 + t2
dt

=
∫ −1

−∞
Nσ1(t)

t

y2

y2 + t2
dt +

∫ ∞

1

Nσ1(t)

t

y2

y2 + t2
dt. (3.15)

By (2.3), it is easy to infer that there exists a constant C0 satisfying

Nσ1(t)

{≥ 2a1Nσ (t) + C0 if 1 < t ≤ t0,
≤ 2a1Nσ (t) + C0 if − t0 ≤ t < −1.

(3.16)

Substituting the above inequality and (2.3) into (3.15), one yields that

ln|gσ1 (iy)| ≥
∫ −t0

−∞
(2a1Nσ (t) + μ1 − a1)y

2

t y2 + t3
dt +

∫ ∞
t0

(2a1Nσ (t) + μ1 − a1)y
2

t y2 + t3
dt + O(1)

= 2a1

∫ −1

−∞
Nσ (t)

t

y2

y2 + t2
dt + 2a1

∫ ∞
1

Nσ (t)

t

y2

y2 + t2
dt

+ (μ1 − a1)
∫ −1

−∞
y2

t3 + t y2
dt + (μ1 − a1)

∫ ∞
1

y2

t3 + y2
dt + O(1). (3.17)

Here we have used the following formula:

∫ t0

1

y2

t3 + t y2
dt = −1

2
ln

(
1 + y2

t2

)∣∣∣∣
t0

1
= O(1) (3.18)

as y (real) → ∞. It follows from (3.6) that In|gσ (iy)| = |y| + O(1), as y → ∞ (y
real), analogous to (3.15), we can infer that

∫ −1

−∞
Nσ (t)

t

y2

t2 + y2
dt +

∫ ∞

1

Nσ (t)

t

y2

t2 + y2
dt = |y| + O(1). (3.19)

Moreover, in virtue of (3.18) we have

∫ ∞

1

y2

t3 + t y2
dt = −1

2
ln

(
1 + y2

t2

)∣∣∣∣
∞

t=1
= ln |y| + O(1), (3.20)
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and analogously ∫ −1

−∞
y2

t3 + t y2
dt = − ln |y| + O(1). (3.21)

Thus, by virtue of (3.17)–(3.21), we have

|gσ1(iy)| ≥ C exp(2a1|y|). (3.22)

Using (3.9), we obtain |〈ϕ, ϕ̃〉(a1, iy)| ≤ C(exp(2a1|y|)/|y|), which together with
(3.8) and (3.22) yields that for |y| sufficiently large

|F(iy)| ≤ C
exp(2a1|y|)

|y| exp(2a1|y|)
= O(|y|−1). (3.23)

This implies that |F(iy)| → 0 as y → ∞ (y real). This together with (3.14) implies
that F ≡ 0. Therefore, we obtain 〈ϕ, ϕ̃〉(a1, λ) = 0 and

m(a1, λ) := ϕ2(a1, λ)

ϕ1(a1, λ)
= ϕ̃2(a1, λ)

ϕ̃1(a1, λ)
=: m̃(a1, λ) (3.24)

for all λ ∈ C. According to the uniqueness theorem [8, Theorem 1.3], we get α = α̃,

Q̃(x) = Q(x) on [0, a1].
(2) We next show that β = β̃, Q̃(x) = Q(x) on [a2, 1]. Notice that here we

have known α = α̃, Q̃(x) = Q(x) on [0, a2]. In this situation, the uniqueness of
determining Q(x) and β needs to be in virtue of the set σ2 of common eigenvalues.
This can be followed by Step (1) and Theorem 1.9 in [8], and the proof of this theorem
is completed. �
Proof of Theorem 2.3 The proof of this theorem is analogous to that of Theorem 2.1
and therefore is omitted. �
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