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Abstract The Gerdjikov–Ivanov equation is investigated by the Riemann–Hilbert
approach and the technique of regularization. The trace formula and new form of N -
soliton solution are given. The dynamics of the stationary solitons and non-stationary
solitons are discussed.
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1 Introduction

The main purpose of this paper is to study the following Gerdjikov–Ivanov (GI) equa-
tion [14]

iqt + qxx − iq2q∗
x + 1

2
q3q∗2 = 0 (1)

by Riemann–Hilbert methods [1,2,6,11,22,24,27,30] and the technique of regular-
ization. Here ∗ denotes the complex conjugation. This method is a generalization of
the dressing methods [28,29], which now have many development, such as [3,12,13].

In this paper, we construct a nonregular Riemann–Hilbert problem, and give a new
form of N -soliton solution. For the present Riemann–Hilbert problem, the determina-
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tion of its solution, which is sectionally analytic, has zeroes in each analytic domain.
So the Riemann–Hilbert problem, whose index is not zero, is called a nonregular one.
Note that it is very difficult to solve a matrix nonregular Riemann–Hilbert problem.
The method of regularization is an efficient way to solve the problem. The regulariza-
tion of the Riemann–Hilbert problem can be fulfilled by introducing a rational matrix,
named the soliton matrix. In this procedure, the zeroes of the Riemann–Hilbert prob-
lem are transformed into the poles of the soliton matrix, which plays an important role
in deriving the solitons.

The GI equation (1) is the generalization of the derivative nonlinear Schrödinger
equation [19–21], and is usually called the third type of derivative nonlinear
Schrödinger equation, while the second type of derivative nonlinear Schrödinger equa-
tion is Chen–Lee–Liu equation [4]. The GI equation is an important integrable model
in physics andmathematics, and has been studied extensively. For example, it has been
studied via Darboux transformation [8–10,15,25], the nonlinearization [5,16,26], and
others [17,18,23,31]. As a result, many properties, such as Hamiltonian structures,
N -soliton solution, rogue wave, algebro-gemetric solutions, were investigated. In this
work, we give the trace formula and the new form of N -soliton solution of the GI
equation. Here, the N -soliton solution is derived by using the block matrix decompo-
sition.

An outline of this paper is as follows: In Sect. 2, we study the direct scattering
problems of theGI spectral problem. In Sect. 3, the trace formula andRiemann–Hilbert
problem are constructed, and solitons of the GI equation are derived. In addition, for
one-soliton, dynamic behaviors of the stationary solitons and non-stationary solitons
are investigated.

2 Spectral analysis

In this section, we present the scattering and inverse scatteringmethods forGI equation
using the Riemann–Hilbert formulation. The Lax equations of Eq. (1) are

Jx = −ik2[σ3, J ] + X J,

Jt = −2ik4[σ3, J ] + Y J,
(2)

where [σ3, J ] = σ3 J − Jσ3 is the commutator and

X = kQ − i

2
Q2σ3, Q =

(
0 q(x, t)

−q∗(x, t) 0

)
,

Y = 2k3Q − ik2Q2σ3 − ikQxσ3 + 1

2
(Qx Q − QQx ) + i

4
Q4σ3,

with σi (i = 1, 2, 3) are classical Pauli matrices.
As usual, in the direct scattering process, we only concentrate on the x-part of the

Lax pair (2), where t enters as a dummy variable and is omitted. Now we introduce
matrix Jost solutions J± = J±(x, t, k) for the x-part of the Lax pair (2) with the
asymptotic conditions
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J± → I, x → ±∞. (3)

Here I is the 2× 2 identity matrix. Since J+ and J− are both solutions of (2), they are
linearly related:

J−(x, t, k) = J+(x, t, k)e−iθ(x,t,k)σ3T (k)eiθ(x,t,k)σ3 , (4)

where

θ(x, t, k) = k2x + 2k4t, T (k) =
(
a(k) −b̃(k)
b(k) ã(k)

)
. (5)

Since tr(Q) = 0, det J±(x, t, k) are independent of x , we have det J±(x, t, k) = 1 in
view of (3), and det T (k) = 1 from (4).

We note that X (x, t, k) in (2) admits the relations X†(x, t, k∗) = −X (x, t, k) and
σ3X (x, t,−k)σ3 = X (x, t, k), and Y (x, t, k) has the same properties. So, it is readily
verified that the Jost functions J±(x, t, k) satisfy the following symmetry conditions

J †±(k∗) = J−1± (k), σ3 J±(−k)σ3 = J±(k). (6)

In fact, if the function J±(k) admits the Eq. (2) and boundary condition (3), then the
function σ3 J±(−k)σ3 also does. The unique solution of the boundary problem implies
the second equation in (6). In addition, the functions J †±(k∗) and J−1± (k) satisfy the
adjoint equation of (2) and boundary condition (3), so the first equation in (6) is
produced. We note that Eq. (6) implies that

T †(k∗) = T−1(k), σ3T (−k)σ3 = T (k), (7)

in terms of (4). Thus, we have

ã(k) = a∗(k∗), a(−k) = a(k), ã(−k) = ã(k),

b̃(k) = b∗(k∗), b(−k) = −b(k), b̃(−k) = −b̃(k).
(8)

Using the large-x asymptotic condition (3), we can turn the x-part of (2) into the
Volterra integral equations

J±(x, t, k) = I +
∫ x

±∞
eik

2σ3(y−x)X (y, t, k)J±(y, t, k)eik
2σ3(x−y)dy. (9)

By performing the standard procedures on the Volterra integral equations (9), one can
prove the existence and uniqueness of the Jost solutions J±. Moreover, it is important
that [J−]1, [J+]2 can be analytically extended into D+, and [J−]1, [J+]2 into D−,
where the regions D± are defined by

D+ = {k ∈ C| arg k ∈ (0, π/2) ∪ (π, 3π/2)},
D− = {k ∈ C| arg k ∈ (π/2, π) ∪ (3π/2, 2π)}.

Here [J±]l (l = 1, 2) denote the lth column of J±.
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To construct the Riemann–Hilbert problem onR∪ iR by using the analytic proper-
ties of the Jost solutions J±, it is important to introduce amatrix function P1 = P1(x, k)
which is analytic in D+

P1 = ([J−]1, [J+]2), (10)

and solves the linear spectral problem (2). Furthermore, by considering the large-k
asymptotic behavior of P1, we have

P1 → I, k ∈ D+ → ∞. (11)

On the other hand, we can define a matrix function P2 = P2(x, k)which is analytic
for k in D−

P2 =
([J−1− ]1

[J−1+ ]2
)

, (12)

in terms of (4) and (6). Here each superscript denotes the row of a matrix. Moreover,
the large-k asymptotic behavior of P2 can be shown to be

P2 → I, k ∈ D− → ∞. (13)

Note that the sectionally analytic functions P1 and P2 admit the following symmetry
condition

P†
1 (k∗) = P2(k), (14)

in view of the definition (10), (12) and the symmetry condition in (6).
Let us consider the asymptotic expansion of P1

P1(k) = I + k−1P(1)
1 + k−2P(1)

1 + · · · , k → ∞, (15)

and substitute this expansion into (2), then we find that

Q = i[σ3, P(1)
1 ]. (16)

Thus, the potential q can be reconstructed as

q = 2i(P(1)
1 )12, (17)

where (P(1)
1 )12 is the (1, 2)-entry of P(1)

1 .

3 Trace formula and solitons

From the definitions of P1 and P2 as well as the scattering relations between J+ and
J−, we see that

det P1(k) = a(k), k ∈ D+, (18)

det P2(k) = ã(k), k ∈ D−, (19)
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which means that the zeros of det P1 and det P2 are the same as a(k) and ã(k), respec-
tively.

From (8), we find that if k j is a zero of det P1, then−k j is also a zero of det P1
and k̂ j = k∗

j is a zero of det P2. Thus we first assume that det P1 has 2N simple

zeros {k j }2N1 satisfying kN+ j = −k j , 1 ≤ j ≤ N , which all lie in D+. Hence, det P2
possesses 2N simple zeros {k̂ j }2N1 satisfying k̂ j = k∗

j , 1 ≤ j ≤ 2N , which all lie in
D−. By virtue of analyticity, we know that a(k) is independent of the variables x and t ,
so that the zeros {k j } are constants. Thus, the generating function for the conservation
laws is just a(k), and log a(k) is the generating function for local integrals of the
motion [7]. We note that the latter gives the trace formula.

In the following, we discuss the associated trace formula. To this end, we introduce
the sectionally analytic functions

Ω+(k) = a(k)
N∏
j=1

k2 − k̂2j
k2 − k2j

, Ω−(k) = ã(k)
N∏
j=1

k2 − k2j

k2 − k̂2j
, (20)

which imply that Ω+(k)Ω−(k) = a(k)ã(k), k ∈ R∪ iR. From det T (k) = 1, we find

Ω+(k)Ω−(k) = 1

1 + ρ(k)ρ̃(k)
, k ∈ R ∪ iR, (21)

where

ρ(k) = b(k)

a(k)
, ρ̃(k) = b̃(k)

ã(k)
.

From (8), we find

ρ̃(k) = ρ∗(k∗), ρ(−k)ρ̃(−k) = ρ(k)ρ̃(k).

We note that this equation can be used to construct a jump condition on the curve
R ∪ iR. Taking logarithms and applying the Cauchy projectors

P±[ f ](k) = 1

2π i

∫
�

f (z)

z − (k ± i0)
dz,

we have

logΩ±(k) = ∓ 1

2π i

∫
�

1 + ρ(z)ρ∗(z∗)
z − k

dz, k ∈ D±,

where � is the path consisting of lines from i∞ to 0, from 0 to ∞, from −i∞ to 0,
and from 0 to −∞. Substituting �+(k) for a(k), we obtain the trace formula

a(k) =
N∏
j=1

k2 − k2j

k2 − k̂2j
exp

[
− 1

2π i

∫
�

1 + ρ(z)ρ∗(z∗)
z − k

dz

]
, k ∈ D+. (22)
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Now, it is time to construct the Riemann–Hilbert problem. In fact, P1 and P2 satisfy
the jump condition on the curve R ∪ iR

P−(x, t, k)P+(x, t, k) = E1G(k)E−1
1 , k ∈ � (23)

where E1 = exp(−i(k2x + 2k4t)) and

G(k) =
(

1 b̃(k)
b(k) 1

)
. (24)

In this case, each of ker[P1(k j )] and ker[P2(k̂ j )] contains only a single column
vector v j = v j (x, t) and a row vector v̂ j = v̂ j (x, t), respectively

P1(k j )v j = 0, v̂ j P2(k̂ j ) = 0, 1 ≤ j ≤ 2N . (25)

It is noted that these vectors satisfy the following relations

v j = σ3v j−N , N + 1 ≤ j ≤ 2N . (26)

v̂ j = v
†
j , 1 ≤ j ≤ 2N . (27)

Now we shall get the spatial evolutions of the vectors v j , 1 ≤ j ≤ N . For this
purpose, we take the x-derivative of P1(k j )v j = 0. Then utilizing the x-part of (2),
we obtain the particular spatial evolution

v j,x = (α j I − ik2jσ3) · v j , (28)

in terms of the fact that the rank of the matrix P1(k j ) is 1. On the other hand, taking the
t-derivative of P1(k j )v j = 0 and using the t-part of (2), we have the special temporal
evolution

v j,t = (β j I − 2ik4jσ3) · v j . (29)

Here α j and β j are arbitrary constant. By solving (28) and (29) explicitly, we get

v j = e(α j I−ik2jσ3)x+(β j I−2ik4jσ3)t · v j,0, 1 ≤ j ≤ N , (30)

where each v j,0, 1 ≤ j ≤ N is a nonzero complex constant vector. If we set k j =
ξ j + iη j and v j,0 = (eα j0+iβ j0 , 1)T , where α j0 and β j0 are some real constants, then
v j is denoted in the following form

v j = eε j
(
e(z j+iϕ j )/2, e−(z j+iϕ j )/2

)T
, 1 ≤ j ≤ N , (31)

where
ε j = α j x + β j t + (α j0 + iβ j0)/2,

z j = 4ξ jη j [x + 4(ξ2j − η2j )t] + α j0,

ϕ j = −2(ξ2j − η2j )x − 4(ξ4j − 6ξ2j η
2
j + η4j )t + β j0.

(32)
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It is known that utilizing themethods inRefs. [24,27] theRiemann–Hilbert problem
(23) with the canonical normalization condition can be transformed to a Riemann–
Hilbert problem without zeros. we note that the index , 2N , of the non-regular
Riemann–Hilbert problem is given by its zeroes. By introducing the soliton matrix,
(see P2(k) below), we get a regular Riemann–Hilbert problem, whose index is zero.
To obtain soliton solutions for the GI equation (1), we choose the jump matrix G
to be the 2 × 2 identity matrix which corresponds to the reflection-less case. In this
case, the solution of the regular Riemann–Hilbert problem is holomorphic, and can be
chosen as the identity matrix in view of the canonical normalization. Consequently,
the unique solution for this particular Riemann–Hilbert problem is represented by the
soliton matrix and its inverse

P1(k) = I −
2N∑
m=1

2N∑
j=1

vmv
†
j (M

−1)mj

k − k̂ j

P2(k) = I +
2N∑
m=1

2N∑
j=1

vmv
†
j (M

−1)mj

k − km

(33)

where M = (Mmj )2N×2N is a matrix whose entries are

Mmj = v
†
mv j

k j − k̂m
, 1 ≤ m, j ≤ 2N . (34)

In order to eliminate the inverse matrix M−1 in (33), we introduce the following
vectors

f̂α = (v1,α, v2,α, · · · , v2N ,α),

gβ = (v
†
1,β , v

†
2,β , · · · , v

†
2N ,β)T ,

g̃β =
(

v
†
1,β

k − k1
,

v
†
2,β

k − k2
· · · ,

v
†
2N ,β

k − k2N

)T

,

(35)

where vm,α and v
†
j,β , (α, β = 1, 2) denote the elements. Then each element of the

matrix P1 in (33) can be rewritten as

(P1)αβ = det(M̃a
αβ)

det M
, M̃a

αβ =
(

δαβ f̂α
g̃β M

)
. (36)

Furthermore, each element of the matrix P(1)
1 in (15) takes the form

(P(1)
1 )αβ = det(Ma

αβ)

det M
, Ma

αβ =
(
0 f̂α
gβ M

)
. (37)

Note that the representations (36) and (37) can be derived in terms of the following
block matrix decomposition
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(
Am×m Bm×n

Cn×m Dn×n

)
=

(
A 0
C In×n

)(
Im×m A−1B
0 D − CA−1B

)

=
(
Im×m B
0 D

) (
A − BD−1C 0

D−1C In×n

)
.

In fact, one may find

(P1)αβ = δαβ −
2N∑
m=1

2N∑
j=1

vm,α(M−1)mj
v
†
j,β

k − k̂ j
= δαβ − f̂α(M−1)g̃β,

(P(1)
1 )αβ = −

2N∑
m=1

2N∑
j=1

vm,α(M−1)mjv
†
j,β = − f̂α(M−1)gβ.

Since

M̃a
αβ =

(
1 f̂α
0 M

) (
δαβ − f̂α(M−1)g̃β 0

M−1g̃β I

)
,

and det(M̃a
αβ) = det(M)(δαβ − f̂α(M−1)g̃β). Thus Eq. (36) is proved. Equation (37)

can be shown similarly.
Hence the N -soliton solution of GI equation has the new form

q = 2i
det(Ma

12)

det M
, (38)

where the matrix M is defined by (34) and Ma
12 by (37). We note that the N -fold

Darboux transformation of the GI equation was discussed in [9,10], and one soliton
and two soliton were presented, but no explicit N -soliton solition.

For N = 1 in formula (38). Consequently, one-soliton solution of the GI equation
(1) takes the form

q = 8ξ1η1eiϕ1

k1e−z1 + k∗
1e

z1
(39)

where k1 = ξ1 + iη1 ∈ D+ and

z1 = 4ξ1η1[x + 4(ξ21 − η21)t] + α,

ϕ1 = −2(ξ21 − η21)x − 4(ξ41 − 6ξ21 η21 + η41)t + β.

Here, we have chosen v1,0 = (eα0+iβ0 , 1)T .
Thus, ξ1η1 > 0 if k1 ∈ D+. Moreover, in the subregion {ξ1 < η1} of D+, the

one-soliton is a right traveling wave (see Fig. 1), and in the subregion {ξ1 > η1} of
D+, the one-soliton is a left traveling wave (see Fig. 2). On the line ξ1 = η1, the
one-soliton is a stationary wave (see Fig. 3).
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Fig. 1 One-soliton q(x, t) in (39) with the parameters chosen as ξ1 = 0.5, η1 = 1, α = β = 0. Red line
absolute value of q, yellow line real part of q and green line imaginary of q (colour figure online)

Fig. 2 One-soliton q(x, t) in (39) with the parameters chosen as ξ1 = 1, η1 = 0.5, α = β = 0

Fig. 3 One-soliton q(x, t) in (40) with the parameters chosen as ξ1 = 0.5, η1 = 0.5, α = β = 0

The stationary soliton can be derived by letting k1 = ξ(1 + i),

q = 2ξeiφ
cosh(z) + i sinh(z)

cosh(2z)
, (40)

where

z = 4ξ2x + α, φ = 16ξ4t + β.

Hence |q|2 = 4ξ2/ cosh(2z).
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Fig. 4 One-soliton q(x, t) in (39) with the parameters chosen as ξ1 = 0.5, η1 = 1, α = β = 0

Fig. 5 One-soliton q(x, t) in (39) with the parameters chosen as ξ1 = 1, η1 = 0.5, α = β = 0

Fig. 6 One-soliton q(x, t) in (40) with the parameters chosen as ξ1 = 0.5, η1 = 0.5, α = β = 0

Wenote that the real part and imaginary part of the one-soliton have some interesting
behaviors (see Figs. 4, 5, 6). For non-stationary solitons, the wave forms of the real
part and imaginary part do not change (see Figs. 1, 2). However, for stationary soliton,
the waves of the real part and imaginary part are changing over time, but the wave
form of the absolute value does not change (see Fig. 3).
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