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Abstract Weconsider theSturm–Liouville differential equationwith a constant delay,
which is not less than the half length of the interval. An inverse spectral problem is
studied of recovering the potential from subspectra of two boundary value problems
with one common boundary condition. The conditions on arbitrary subspectra are
obtained that are necessary and sufficient for the unique determination of the potential
by specifying these subspectra, and a constructive procedure for solving the inverse
problem is provided along with necessary and sufficient conditions of its solvability.
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1 Introduction

Inverse problems of spectral analysis consist in recovering operators from their spectral
characteristics. The problemsof this type often appear inmathematics, physics,mecha-
nics, geophysics, electronics, meteorology, etc. The greatest success in the inverse
problem theory has been achieved for the classical Sturm–Liouville operator (see [1–
4] and the references therein) and afterwards for higher order differential operators
[5–7]). In particular, it is known that the spectra of two boundary value problems
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for one and the same classical Sturm–Liouville equation with one common boundary
condition uniquely determine the potential along with the coefficients of the boundary
conditions (see [1,4]). In the present paper we study an inverse problem for the Sturm–
Liouville operator with a constant delay.

Consider the boundary value problems L j = L j (q), j = 0, 1, of the form

− y′′(x) + q(x)y(x − a) = λy(x), 0 < x < π, (1)

y(0) = y( j)(π) = 0, (2)

whereq(x) is a complex-valued function,q(x) ∈ L2(0, π) andq(x) = 0 a.e. on (0, a).

It is known that the problem L j , j = 0, 1, has infinitely many complex eigenvalues
λn, j , n ≥ 1, of the form

λn, j =
(
n − j

2
+ O

(1
n

))2
. (3)

More precise asymptotics is given in formula (11) below.
The interest in differential equations with delay has started intensively growing

in twentieth century stimulated by the appearance of various applications in natural
sciences and engineering, including the theory of automatic control, the theory of
self-oscillating systems, long-term forecasting in the economy, biophysics, etc (see,
e.g., [8–13] and the references therein). The presence of a delay in the mathemati-
cal model frequently causes phenomena that essentially influence the entire process.
Technological and constructive improvements require taking into account such phe-
nomena even in the classical areas of engineering. That is why admitting a delay in
the mathematical model makes an essential advance as compared with mathematical
models of ideal processes based on the assumption that the process has a local nature.
In many situations even the presence of a constant delay a > 0 in the mathematical
model describes real processes much more adequately than after its simplification by
assuming a = 0. In particular, it is vital for transmission of acoustic signals as well as
in modelling a hydraulic shock or other wave processes. For example, a second order
differential equationwith delay appears inmodelling the combustion process in liquid-
propellant rocket engines [13]. The analysis of such processes is based on the concept
that there occurs a combustion time delay from the moment of propellant injection to
the moment of propellant combustion. In this case the function q(x) characterizes the
influence of all parameters responsible for this delay, such as: cross-sectional area of
propellant feed line, rocket nozzle throat area, etc.

There exists a number of results revealing spectral properties of differential opera-
tors with delay (see, e.g., [10] and the references therein). At the same time, concerning
the inverse spectral theory, its classical methods do not work for such operators as well
as for other classes of nonlocal operators, and therefore there are only few separate
results in this direction, which do not form a comprehensive picture. However, some
aspects of inverse problems for differential operators with a constant delay were stud-
ied in [14–17]. For example, in [15] it was proven that if the spectra of the problems
L j (q), j = 0, 1, coincide with the spectra of L j (0), j = 0, 1, respectively, then
q(x) = 0 a.e. on (0, π). In [16] the reconstruction of q(x) was studied from the two
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spectra if a ∈ (π/2, π). We note that inverse problems for operators with an integral
delay were studied in [16–24] and other works.

As will be seen below, unlike the classical case (a = 0) two spectra {λn, j }n≥1, j =
0, 1, carry an excessive information about the potential q(x). For example, when
a = π/2 it is sufficient to specify the eigenvalues only with, e.g., even indices. In this
paper we study the inverse problem of recovering the potential q(x) from given subse-
quences of the spectra {λn, j }n≥1, j = 0, 1.Assuming in the sequel that a ∈ [π/2, π),

we note that the case a ∈ (0, π/2) is essentially more difficult and requires a sepa-
rate investigation. We obtain conditions on the increasing natural sequence {nk}k≥1
that are necessary and sufficient for the unique determination of the potential q(x)
by specifying the subspectra {λnk ,0}k≥1 and {λnk ,1}k≥1. Moreover, we obtain also
sufficient conditions for the solvability of the inverse problem, i.e. requirements on
two arbitrary sequences of complex numbers to be subspectra for certain problems
L j (q), j = 0, 1, of the form (1), (2) with a common potential q(x). The related
proof is constructive and generates an algorithm for solving the inverse problem. In
some cases this result allows one to obtain necessary and sufficient conditions for the
solvability of the inverse problem in terms of asymptotics. In particular, we prove that
a proper asymptotic behavior is a necessary and sufficient condition for two arbitrary
sequences of complex numbers {λ2k,0}k≥1 and {λ2k,1}k≥1 to be the even subspectra
in the case a = π/2. The term ”even” here indicates that each such subspectrum
consists of eigenvalues with even indices. Since the eigenvalues are indexed accord-
ing to their asymptotic behavior at infinity (3), in any spectrum there can be chosen
infinitely many such even subspectra pairwise differing in an at most finite number of
elements. In view of this, there is no restrictionwhich namely even subspectrum to use.
Analogous results also hold for other types of subspectra {λnk ,0}k≥1 and {λnk ,1}k≥1
that are not asymptotically even but for which the corresponding functional systems
{1} ∪ {cos nkx}k≥1 and {sin(nk − 1/2)x}k≥1 are Riesz bases in L2(0, π − a).

The paper is organized as follows. In the next section we prove some auxiliary
assertions and provide the asymptotics of the spectra {λn, j }n≥1, j = 0, 1. In Sect. 3
we study recovering the potential q(x) from subspectra.

2 Preliminary information

Let S(x, λ) be a solution of equation (1) satisfying the initial conditions S(0, λ) = 0,
S′(0, λ) = 1. The eigenvalues of L j coincide with the zeros of its characteristic
function

� j (λ) := S( j)(π, λ). (4)

The following representations hold (see [15]):

S(x, λ) = sin ρx

ρ
− cos ρ(x − a)

2λ

∫ x

a
q(t) dt + 1

2λ

∫ x

a
q(t) cos ρ(x − 2t + a) dt,

(5)
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S′(x, λ) = cos ρx + sin ρ(x − a)

2ρ

∫ x

a
q(t) dt − 1

2ρ

∫ x

a
q(t) sin ρ(x − 2t + a) dt,

(6)

where ρ2 = λ. Substituting (5), (6) into (4) we get

�0(λ) = sin ρπ

ρ
− ω

cos ρ(π − a)

λ
+ 1

λ

∫ π−a

0
w0(x) cos ρx dx, (7)

�1(λ) = cos ρπ + ω sin ρ(π − a)

ρ
+ 1

ρ

∫ π−a

0
w1(x) sin ρx dx, (8)

where

w0(x) = v(−x) + v(x), w1(x) = v(−x) − v(x), (9)

v(x) = 1

4
q
(π + a − x

2

)
, ω = 1

2

∫ π

a
q(x) dx =

∫ π−a

0
w0(x) dx . (10)

By the standard approach (see, e.g., [4]) involving Rouché’s theorem and by using
representations (7), (8) one can prove the following theorem.

Theorem 1 The spectrum {λn, j }n≥1 of the problem L j , j = 0, 1, has the form

λn, j = ρ2
n, j , ρn, j = n − j

2
+ ω cos(n − j/2)a

πn
+ κn

n
, {κn}n≥1 ∈ l2. (11)

In (11) and everywhere belowwe assume that one and the same symbol {κn} denotes
different sequences in l2.

Let {nk}k≥1 be an increasing sequence of natural numbers and n0 := 0. Consider
the following inverse problem.

Inverse Problem 1 Given the subspectra {λnk , j }k≥1, j = 0, 1, find q(x).

We begin the next section with providing conditions on the sequence {nk}k≥1 that
are necessary and sufficient for the unique determination of q(x) by the subspectra.
However, the value ω is always determined uniquely by their specification. Indeed,
according to Theorem 1 we have

λnk , j = ρ2
nk , j , ρnk , j = nk − j

2
+ ω cos(nk − j/2)a

πnk
+ κk

nk
. (12)

If cos nka → 0 as k → ∞, then sin2 nka → 1 and

sin nka cos
(
nk − 1

2

)
a = sin nka cos nka cos

a

2

+ sin2 nka sin
a

2
→ sin

a

2
�= 0, k → ∞.
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Hence

ω = lim
k→∞ πnk

(
ρnk ,1 − nk + 1

2

)
sin nka sin

−1 a

2
, lim

k→∞ cos nka = 0. (13)

Otherwise, for finding ω one can use, for example, the following formula

ω = lim
ν→∞ πnkν (ρnkν ,0 − nkν )

(
lim

ν→∞ cos nkνa
)−1

, lim
ν→∞ cos nkνa �= 0. (14)

In particular, if a = π/2 and nk = 2k, then

ω = lim
ν→∞ 4πν(ρ4ν,0 − 4ν).

Before proceeding with the inverse problem, we introduce and study special func-
tional systems. Consider the sequences

	0 := {μk,0}k≥0, 	1 := {μk,1}k≥1,

where μ0,0 = 0, μk, j := λnk , j , k ≥ 1, j = 0, 1. Denote by mk, j the multiplicity of
the value μk, j in the sequence 	 j . Note that in {λnk ,0}k≥1 the multiplicity of 0 equals
m0,0 − 1, while the multiplicity of λnk ,0 �= 0 is mk,0. Without loss of generality one
can assume that multiple elements in 	 j are neighboring, i.e.

μk, j = μk+1, j = . . . = μk+mk, j−1, j .

Put S j := { j}∪{k : μk, j �= μk−1, j , k ≥ j+1} and consider two systems of functions

{cn(x)}n≥0, {sn(x)}n≥1, (15)

where

ck+ν(x) = dν

dλν
cos ρx

∣∣∣
λ=μk,0

, k ∈ S0, ν = 0,mk,0 − 1,

sk+ν(x) = nk
dν

dλν

sin ρx

ρ

∣∣∣
λ=μk,1

, k ∈ S1, ν = 0,mk,1 − 1.

In particular, we have c0(x) = 1.
We remind that the functional systems in (15) are dependent on the initial choice

of the increasing natural sequence {nk}k≥1. The following lemma gives conditions on
{nk}k≥1 that are necessary and sufficient for systems in (15) to be complete in L2(0, b)
(to be a Riesz basis in L2(0, b)).

Lemma 1 (i) The system {cn(x)}n≥0 is complete (is a Riesz basis) in L2(0, b) if and
only if so is the system {cos nkx}k≥0.

(ii) The system {sn(x)}n≥1 is complete (is a Riesz basis) in L2(0, b) if and only if so
is the system {sin(nk − 1/2)x}k≥1.



22 S. A. Buterin, V. A. Yurko

Proof First let us prove that the systems {cn(x)}n≥0 and {cos nkx}k≥0 can be complete
in L2(0, b) only simultaneously. Let {cos nkx}k≥0 be not complete in L2(0, b). Then
there exists a nonzero entire function u(λ) of the form

u(λ) =
∫ b

0
f (x) cos ρx dx, f (x) ∈ L2(0, b),

whose zeros include the sequence {n2k}k≥0. Consider the meromorphic function

F(λ) :=
∞∏
k=1

μk,0 − λ

n2k − λ
.

Let us show that the function v(λ) := F(λ)u(λ) also has the form

v(λ) =
∫ b

0
g(x) cos ρx dx, g(x) ∈ L2(0, b). (16)

As in the proof of Lemma 3.3 in [19] one can show that |F(λ)| < Cδ in Gδ,1 :=
{λ = ρ2 : |ρ ± nk | ≥ δ, k ∈ N} for each fixed δ > 0. Obviously, the function v(λ),

after removing the singularities, is entire in λ and, by virtue of the maximummodulus
principle, we have |v(λ)| ≤ Cδ|u(λ)| on C. Hence, {v((πn/b)2)}n≥0 ∈ l2 and one
can construct a function g(x) ∈ L2(0, b) such that

v
((πn

b

)2) =
∫ b

0
g(x) cos

πnx

b
dx, n + 1 ∈ N.

Consider the function

R(λ) :=
(
v(λ) −

∫ b

0
g(x) cos ρx dx

)
ρ−1 sin−1 ρb,

which, by definition of g(x), after removing the singularities, is entire inλ.Further, it is
clear that R(λ) = o(ρ−1) asλ → ∞ inGδ,2 := {λ = ρ2 : |ρ−πn/b| ≥ δ, n ∈ Z} for
each fixed δ > 0.Again using the maximummodulus principle along with Liouville’s
theorem we get R(λ) ≡ 0, and hence the representation (16) holds. Since the function
v(λ) is not identically zero and its zeros include the elements of the sequence 	0
with account of their multiplicities, the functional system {cn(x)}n≥0 is not complete
in L2(0, b). In the inverse way, assuming the incompleteness of {cn(x)}n≥0 one can
analogously show that the system {cos nkx}k≥0 is not complete too.

Let us show the simultaneous Riesz basisness of these systems. According to
Proposition 1.8.5 in [4], a system of functions forms a Riesz basis if and only if
it is complete and quadratically close to a Riesz basis. Thus, it is sufficient to prove the
quadratical closeness of {cn(x)}n≥0 and {cos nkx}k≥0 in L2(0, b), which is equivalent
to the inequality
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∞∑
k=0

∫ b

0
|ck(x) − cos nkx |2 dx < ∞. (17)

Indeed, (17) follows from (11) and the estimate for large k (and as k → ∞)

ck(x) − cos nkx = cos ρnk ,0x − cos nkx

= 2 sin
(ρnk ,0 + nk)x

2
sin

(nk − ρnk ,0)x

2
= O

(1
k

)
.

Thus, (i) is proven. The second assertion (ii) can be proven analogously. ��

3 Solution of the inverse problem

The following theorem gives conditions on the sequence {nk}k≥1 that are necessary
and sufficient for the unique determination of the potential q(x) by specifying the
subspectra {λnk ,0}k≥1 and {λnk ,1}k≥1.

Theorem 2 Specification of the subspectra {λnk ,0}k≥1 and {λnk ,1}k≥1 of the problems
L0(q) and L1(q) uniquely determines the potential q(x) if and only if the functional
systems {cos nkx}k≥0 and {sin(nk − 1/2)x}k≥1 are complete in L2(0, π − a).

Proof We start with the necessity. For j = 0, 1 differentiating ν = 0,mk, j − 1 times
the functions λ1− j� j (λ) using (7) and (8), where k ∈ S j , and afterwards substituting
λ = λnk , j into the obtained derivatives, we arrive at

βk+ν,0 := dν

dλν

(
ω cos ρ(π − a) − ρ sin ρπ

)∣∣∣
λ=λnk ,0

=
∫ π−a

0
w0(t)ck+ν(t) dt, k ∈ S0, ν = 0,mk,0 − 1, (18)

where λn0,0 = 0, and

βk+ν,1 := −nk
dν

dλν

(
cos ρπ + ω sin ρ(π − a)

ρ

)∣∣∣
λ=λnk ,1

=
∫ π−a

0
w1(t)sk+ν(t) dt, k ∈ S1, ν = 0,mk,1 − 1. (19)

Since by the assumption the specification of the subspectra uniquely determines
q(x) and according to (9) and (10) the specification of q(x), in turn, uniquely
determines the functions w0(x) and w1(x), we observe that the specification of the
subspectra uniquely determines w0(x) and w1(x). In other words, w0(x) and w1(x)
are unique functions in L2(0, π − a) obeying (18) and (19), respectively, which is
equivalent to the completeness in L2(0, π − a) of each functional system in (15), and
by Lemma 1, the necessity is proven.
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Let us prove the sufficiency. By virtue of Lemma 1, each functional system in (15)
is complete in L2(0, π − a), then according to (18) and (19) the functions w0(x)
and w1(x) are uniquely determined by the specification of the subspectra. Further,
according to (9) and (10), the function q(x) on (a, π) is uniquely determined by the
formula

q(x) = 2

⎧⎨
⎩

w0(π + a − 2x) − w1(π + a − 2x), a < x <
π + a

2
,

w0(2x − π − a) + w1(2x − π − a),
π + a

2
< x < π,

which finishes the proof. ��
The following theorem gives sufficient conditions for the solvability of Inverse

Problem 1.

Theorem 3 For arbitrary sequences of complex numbers {μk, j }k≥1, j = 0, 1, to be
subspectra of boundary value problems L j (q), j = 0, 1, respectively, it is sufficient
that the following two conditions are fulfilled:

(i) These sequences {μk, j }k≥1, j = 0, 1, have the asymptotics

μk, j =
(
nk − j

2
+ ω cos(nk − j/2)a

πnk
+ κk

nk

)2
, {κk}k≥1 ∈ l2, (20)

with a certain increasing sequence of natural numbers {nk}k≥1;
(ii) Each of the systems {cos nkx}k≥0 and {sin(nk − 1/2)x}k≥1 is a Riesz basis in

L2(0, π − a).

Remark 1 According to Theorem 2, under the condition (ii) of Theorem 3, the solution
of Inverse Problem 1 is unique.

Proof of Theorem 3. Put λnk , j := μk, j , k ≥ 1, j = 0, 1. Then (20) implies (12).
Find ω by formula (13) or (14). Construct the sequences {βn, j }n≥ j , j = 0, 1, by
formulae

βk+ν,0 := dν

dλν

(
ω cos ρ(π − a) − ρ sin ρπ

)∣∣∣
λ=λnk ,0

, k ∈ S0, ν = 0,mk,0 − 1,

βk+ν,1 := −nk
dν

dλν

(
cos ρπ + ω sin ρ(π − a)

ρ

)∣∣∣
λ=λnk ,1

, k ∈ S1, ν = 0,mk,1 − 1,

(21)

where λ0,n0 = 0. Let us show that {βn, j }n≥ j ∈ l2, j = 0, 1, i.e. βn, j = κn . For
briefness we denote

εk, j := ρnk , j − nk + j

2
, k ≥ 1, j = 0, 1.
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Then, according to (12) and (21) for large k we have

βk,0 = ω cos nk(π − a) − nk sin εk,0π cos nkπ + O
( 1

nk

)

= ω(−1)nk cos nka − nkπεk,0(−1)nk + O
(1
k

)
= κk,

βk,1 = −nk
(
(−1)nk sin εk,1π + ω

nk
sin

(
nk − 1

2

)
(π − a)

)
+ O

( 1

nk

)

= −nk(−1)nk
(
εk,1π − ω

nk
cos

(
nk − 1

2

)
a
)

+ O
(1
k

)
= κk .

According to Lemma 1, the functional systems in (15) are Riesz bases in L2(0, π −a).

Find the functions W0(x), W1(x) ∈ L2(0, π − a) by the formulae

W0(x) =
∞∑
n=0

βn,0c
∗
n(x), W1(x) =

∞∑
n=1

βn,1s
∗
n (x), (22)

where {c∗
n(x)}n≥0 and {s∗

n (x)}n≥1 are Riesz bases that are biorthogonal to the bases
{cn(x)}n≥0 and {sn(x)}n≥1, respectively. Construct the function q(x) by the formula

q(x) = 2

⎧
⎪⎪⎨
⎪⎪⎩

0, 0 < x < a,

W0(π + a − 2x) − W1(π + a − 2x), a < x <
π + a

2
,

W0(2x − π − a) + W1(2x − π − a),
π + a

2
< x < π.

(23)

It remains to show that the sequences {λnk ,0}k≥1 and {λnk ,1}k≥1 are subspectra
of the boundary value problems L0(q) and L1(q), respectively. In other words, one
needs to prove that these sequences with account of multiplicities of their elements
are subsequences of zeros of the corresponding characteristic functions, i.e.

�
(ν)
0 (0) = 0, ν = 0,m0,0 − 2, �

(ν)
0 (λnk ,0) = 0, k ∈ S0\{0},

ν = 0,mk,0 − 1,

�
(ν)
1 (λnk ,1) = 0, k ∈ S1, ν = 0,mk,1 − 1, (24)

where mk, j and S j are determined in Sect. 2.
Indeed, the functions �0(λ) and �1(λ) have the forms (7) and (8) with w0(x),

w1(x) determined in (9), (10). Substituting (23) into (9) and (10) we get w j (x) =
Wj (x), j = 0, 1, a.e. on (0, π − a), and hence

�0(λ) = sin ρπ

ρ
− ω

cos ρ(π − a)

λ
+ 1

λ

∫ π−a

0
W0(x) cos ρx dx,

�1(λ) = cos ρπ + ω sin ρ(π − a)

ρ
+ 1

ρ

∫ π−a

0
W1(x) sin ρx dx . (25)
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For j = 0, 1 and k ∈ S j differentiating ν = 0,mk, j − 1 times the functions
λ1− j� j (λ) using (25) and afterwards substituting λ = λnk , j into the obtained deriva-
tives, we arrive at

λnk ,0�
(ν)
0 (λnk ,0) + ν�

(ν−1)
0 (λnk ,0)

= −βk+ν,0 +
∫ π−a

0
W0(x)ck+ν(x) dx, k ∈ S0, ν = 0,mk,0 − 1,

λ�
(ν)
1 (λnk ,1) = −βk+ν,1 +

∫ π−a

0
W0(x)sk+ν(x) dx, k ∈ S1, ν = 0,mk,1 − 1.

(26)

Further, by (22) we have

βn,0 =
∫ π−a

0
W0(t)cn(t) dt, n ≥ 0, βn,1 =

∫ π−a

0
W1(t)sn(t) dt, n ≥ 1,

which along with (26) give (24). ��
Theproof ofTheorem3 is constructive and gives the following algorithm for solving

Inverse Problem 1.

Algorithm 1 Let the subspectra {λnk , j }k≥1, j = 0, 1, be given. Then:

(i) Find ω by formula (13) or (14);
(ii) Construct the sequences {βn, j }n≥ j ∈ l2, j = 0, 1, by formulae (21);
(iii) Find the functions W0(x), W1(x) ∈ L2(0, π − a) by the formulae (22);
(iv) Construct the function q(x) by the formula (23).

While Theorem 3 gives only sufficient conditions for the solvability of Inverse
Problem 1, in some cases using it one can obtain necessary and sufficient conditions
for the solvability. Let us illustrate this for the situation when a = π/2 and the so-
called even subspectra are used, i.e. those consisting of eigenvalues with even indices.

Theorem 4 Let a = π/2. For arbitrary sequences of complex numbers {μk,0}k≥1
and {μk,1}k≥1 to be even subspectra of boundary value problems L0(q) and L1(q),

respectively, it is necessary and sufficient to have the asymptotics

μk, j =
(
2k − j

2
+ ω cos(2k − j/2)a

2πk
+ κk

k

)2
, {κk}k≥1 ∈ l2.

Proof According to Theorem 3, it is sufficient to show that {cos 2kx}k≥0 and {sin(2k−
1/2)x}k≥1 are Riesz bases in L2(0, π/2). It is well-known that {cos 2kx}k≥0 is even
an orthogonal bases in L2(0, π/2), while the Riesz basisness of {sin(2k − 1/2)x}k≥1
has been proven in [25]. ��

The following uniqueness theorem is a direct corollary of Theorem 2.

Theorem 5 The specification of even subspectra {λ2k,0}k≥1 and {λ2k,1}k≥1 uniquely
determines the potential q(x).
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16. Vladičić, V., Pikula, M.: An inverse problem for Sturm–Liouville-type differential equation with a
constant delay. Sarajevo J. Math. 12(24) no. 1, 83–88 (2016)

17. Buterin, S.A., Pikula, M., Yurko, V.A.: Sturm-Liouville differential operators with deviating argument.
Tamkang J. Math. 48(1), 61–71 (2017)

18. YurkoV.A.:An inverse problem for integro-differential operators.Mat. Zametki, 50(5), 134–146 (1991)
(Russian); English transl. in Math. Notes 50(5–6), 1188–1197 (1991)

19. Buterin, S.A.: On an inverse spectral problem for a convolution integro-differential operator. Res.
Math. 50(3-4), 73–181 (2007)

20. Kuryshova, Ju.V.: Inverse spectral problem for integro-differential operators. Mat. Zametki 81(6),
855–866 (2007) (Russian); English transl. in Math. Notes 81(6), 767–777 (2007)

21. Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm–Liouville operator
from the spectrum. Diff. Uravn. 46, 146–149 (Russian). English transl. in Diff. Eqns. 46, 150–154
(2010)

22. Yurko, V.A.: An inverse spectral problems for integro-differential operators. Far East J. Math. Sci.
92(2), 247–261 (2014)

23. Buterin, S.A., Rivero, Choque A.E.: On inverse problem for a convolution integro-differential operator
with Robin boundary conditions. Appl. Math. Lett. 48, 150–155 (2015)

24. Bondarenko, N.P., Buterin, S.A.: On recovering the Dirac operator with an integral delay from the
spectrum. Res. Math. 71(3), 1521–1529 (2017). doi:10.1007/s00025-016-0568-1

25. Shkalikov, A.A.: Properties of a part of the eigen- and associated elements of selfadjoint quadratic
operator pencils. Dokl. Akad. Nauk SSSR 283(5), 1100–1106 (1985)

http://dx.doi.org/10.1007/s00025-016-0568-1

	An inverse spectral problem for Sturm–Liouville operators with a large constant delay
	Abstract
	1 Introduction
	2 Preliminary information
	3 Solution of the inverse problem
	Acknowledgements
	References




