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under natural assumptions (motivated by potential theory), we prove a theorem where
a comparison between the two Hilbert spaces is made via a specific selfadjoint semi-
bounded operator. Applications include physical Hamiltonians, both continuous and
discrete (infinite network models), and the operator theory of reflection positivity.
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1 Introduction

When realized in quantized physical systems, quantum-mechanical observables (such
as Hamiltonians, momentum operators etc.) take the form of selfadjoint operators. The
case of positive measurements dictate semibounded and selfadjoint realization. For
this to work, two requirements must be addressed: (i) choice of appropriate Hilbert
space(s); and (ii) choice of selfadjoint extension. However from the context from
physics, the candidates for observables may only be formally selfadjoint (also called
Hermitian), and this necessitates the second question (ii). Even if the initial Hermitian
operator has a lower bound, a lower bounds for its selfadjoint extensions is not auto-
matic. There are choices, and these choices dictate the physics (and conversely). Now,
there are families of selfadjoint extensions which preserve the initial lower bound.
This is the extension theory of Friedrichs and Krein; see e.g. [1,27]. Examples include
free particles on an interval, particles in a number of potential fields including delta-
like potentials, the one-dimensional Calogero problem, the Aharonov–Bohm problem
(see e.g. [7,11,31,33]), and the relativistic Coulomb problem; and precise solutions to
quantization problemsmust flesh out the spectral resolutions of the physical selfadjoint
operators.

The setting for our main theorem (Sect. 4) is a given pair: two fixed Hilbert spaces,
such that their intersection contains a fixed vector space D . In many applications,
when feasible, it is of interest to make a precise linking between such two Hilbert
spaces when it is assumed that D is dense in one of the two; but not necessarily in
the other. In the case when the two Hilbert spaces are given as L2 (μi ) spaces, the
natural means of comparison is of course via relative absolute continuity for the two
measures; and then the Radon-Nikodym derivative serves the purpose, Sect. 5.

Rather, the setting for our main result below is the axioms of Hilbert space, and
the theory of unbounded operators. In this generality, we will prove theorems where a
comparison between the two is made instead with a specific selfadjoint semibounded
operator, as opposed to a Radon-Nikodym derivative. Of course the conclusions in L2

spaces will arise as special cases.
Our motivation comes from any one of a host of diverse applications where the

initial pairs of Hilbert spaces are not given as L2 spaces, rather they may be Dirichlet
spaces, Sobolev spaces, reproducing kernel Hilbert spaces (RKHSs), perhaps relative
RKHSs; or energy-Hilbert spaces derived from infinite networks of prescribed resis-
tors; or they may arise from a host of non-commutative analysis settings, e.g. from
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von Neumann algebras, Voiculescu’s free probability theory [6,41], and more. In [23],
some applications are developed for Tomita-Takesaki theory (from the theory of von
Neumann algebras) and for the Malliavin derivative (from the theory of stochastic
calculus).

A particular, but important, special casewhere the comparison of twoHilbert spaces
arises is in the theory of reflection positivity in physics. There again, the two Hilbert
spaces are linked by a common subspace, dense in the first. The setting of reflection
positivity, see e.g. [10,13], lies at the crossroads of the theory of representations of
Lie groups, on the one hand, and constructive quantum field theory on the other; here
“reflection positivity” links quantum fields with associated stochastic (Euclidean) pro-
cesses. In physics, it comes from the desire to unify quantummechanics and relativity,
two of the dominating physical theories in the last century.

In themathematical physics community, it is believed that Euclidean quantumfields
are easier to understand than relativistic quantum fields. A subsequent transition from
the Euclidean theory to quantum field theory is then provided by reflection positivity,
moving from real to imaginary time, and linking operator theory on one side to that of
the other. An important tool in the correspondence between the Euclidean side, and the
side of quantum fields is a functorial correspondence between properties of operators
on one side with their counterparts on the other. A benefit of the study of reflection is
that it allows one to take advantage of associatedGaussianmeasures on suitable spaces
of distributions; hence the reflection positive Osterwalder-Schrader path spaces and
associated Markov processes; see [10]. Other applications to mathematical physics
include [26,30,32], and to Gaussian processes with singular covariance density [2,3].

Our paper is organized as follows. Section 2 spells out the setting, and establishes
notation. In Sect. 3, we study the projection onto the closure of graph (T ), where
T is an operator between two Hilbert spaces. We show among other things that, if
T is closed, then the corresponding block matrix has vanishing Schur complements
(Corollary 1). We further give a decomposition for general T into a closable and a
singular part (Theorem 4). Section 4 continues the study of general operators between
two Hilbert spaces; Theorem 5 is a structure theorem which applies to this general
context and Theorem 6 shows how theHilbert spacesmay be linked via an intertwining
unitary operator. Diverse applications are given in the remaining four sections, start-
ing with Noncommutative Radon-Nikodym derivatives in Sect. 5, and ending with
applications to discrete analysis, graph Laplacians on infinite network-graphs with
assigned conductance functions.

2 The setting

In this section we recall general facts about unbounded operators from [37], and at the
same time we introduce notation to be used later.

Our setting is a fixed separable infinite-dimensionalHilbert space. The inner product
inH is denoted 〈·, ·〉, and we are assuming that 〈·, ·〉 is linear in the second variable. If
there is more than one Hilbert space, sayHi , i = 1, 2, involved, we shall use subscript
notation in the respective inner products, so 〈·, ·〉i is the inner product inHi .
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Let H1 and H2 be complex Hilbert spaces. If H1
T−→ H2 represents a linear

operator from H1 intoH2, we shall denote

dom (T ) = {ϕ ∈ H1 | Tϕ is well-defined} , (2.1)

the domain of T , and
ran (T ) = {Tϕ | ϕ ∈ dom (T )} , (2.2)

the range of T . The closure of ran (T ) will be denoted ran (T ), and it is called the
closed range.

Remark 1 When dom (T ) is dense in H1 (as we standardly assume), then we write

T : H1 → H2 orH1
T−→ H2 with the tacit understanding that T is only defined for

ϕ ∈ dom (T ).

Definition 1 Let T : H1 → H2 be a densely defined operator, and consider the
subspace dom (T ∗) ⊂ H2 defined as follows:

dom(T ∗) =
{
h2 ∈ H2 | ∃C = Ch2 < ∞, s.t.

∣∣〈h2, Tϕ〉2
∣∣ ≤ C ‖ϕ‖1

holds for ∀ϕ ∈ dom (T )
}
. (2.3)

Then by Riesz’ theorem, there is a unique η ∈ H1 for which

〈η, ϕ〉1 = 〈h2, Tϕ〉2 , h2 ∈ dom(T ∗), ϕ ∈ dom (T ) , (2.4)

and we define the adjoint operator by T ∗h2 = η.
It is clear that T ∗ is an operator from H2 intoH1:

H1

T

H2

T ∗

Definition 2 The direct sum spaceH1⊕H2 is a Hilbert space under the natural inner
product 〈[

ϕ1
ϕ2

]
,

[
ψ1
ψ2

]〉
:= 〈ϕ1, ψ1〉H1

+ 〈ϕ2, ψ2〉H2
, (2.5)

and the graph of T is

GT :=
{[

ϕ

Tϕ

]
| ϕ ∈ dom (T )

}
⊂ H1 ⊕H2. (2.6)

Definition 3 Let T : H1 → H2 be a linear operator.

(1) T is closed iff the graph GT in (2.6) is closed inH1 ⊕H2.
(2) T is closable iff GT is the graph of an operator.
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(3) If (2) holds, the operator corresponding to GT , denoted T , is called the closure,
i.e.,

GT = GT . (2.7)

Remark 2 It follows from (2.6) that T is closable iff dom(T ∗) is dense in H2, see

Theorem 1. It is not hard to construct examples of operators H1
T−→ H2 with dense

domain inH1 which are not closable [35]. For systematic accounts of closable oper-
ators and their applications, see [15,39].

Definition 4 Let V be the unitary operator on H ×H , given by

V

[
ϕ

ψ

]
=

[−ψ

ϕ

]
.

Note that V 2 = −I , so that any subspace is invariant under V 2.

The following two results may be found in [35] or [37]; see also [38].

Lemma 1 If dom (T ) is dense, then GT ∗ = (VGT )⊥.

Proof Direct computation:
[
ϕ

ψ

]
∈ GT ∗ ⇐⇒ 〈Tη, ϕ〉 = 〈η,ψ〉 , ∀η ∈ dom (T )

⇐⇒
〈[

ϕ

ψ

]
,

[−Tη

η

]〉
= 0, ∀η ∈ dom (T )

⇐⇒
[
ϕ

ψ

]
∈ (VGT )⊥ .

Theorem 1 If dom (T ) is dense, then

(1) T ∗ is closed.
(2) T is closable⇐⇒ dom (T ∗) is dense.
(3) T is closable �⇒ (T )∗ = T ∗. ��
Proof (1) This is immediate from Lemma 1, since U⊥ is closed for any U .

For (2), closability gives

GT = GT =
(
G⊥

T

)⊥ =
(
V 2G⊥

T

)⊥
V 2 = I

=
(
V (VGT )⊥

)⊥
V is unitary

= (VGT ∗)⊥ part (1) .

If dom(T ∗) is dense, then (1) applies again to give GT = GT ∗∗ .
For (3), we use (1), then (2) again:

T ∗ = T ∗ = (
T ∗)∗∗ = (

T ∗∗)∗ = (
T
)∗

.

��
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Definition 5 An operator T : H1 → H2 is bounded iff dom (T ) = H1 and there is
C < ∞ for which ‖Tϕ‖2 ≤ C ‖ϕ‖1, ∀ϕ ∈ H1. In this case, the norm of T is

‖T ‖ := inf
{
C | ‖Tϕ‖2 ≤ C ‖ϕ‖1 , ∀ ∈ H1

}
, (2.8)

and it satisfies
‖T ‖ = ∥∥T ∗∥∥ = ∥∥T ∗T

∥∥1/2 . (2.9)

Sometimes,weclarify thenotationwith a subscript, e.g.‖T ‖H1→H2 and‖T ∗‖H2→H1 .

Theorem 2 (von Neumann [37,40]) LetHi , i = 1, 2, be two Hilbert spaces, and let
T be a closed operator from H1 into H2 having dense domain in H1; then T ∗T is
selfadjoint in H1, T T ∗ is selfadjoint in H2, both with dense domains; and there is a
partial isometry J from H1 intoH2 such that

T = J
(
T ∗T

) 1
2 = (

T T ∗) 1
2 J (2.10)

holds on dom (T ). (Equation (2.10) is called the polar decomposition of T .)

3 The characteristic projection

While a given linear operator between a pair of Hilbert spaces, say T , may in general
have subtle features (dictated by the particular application at hand), the closure of
graph(T ) will be a closed subspace of the direct sum-Hilbert space, and hence the
orthogonal projection onto this subspace will be a block matrix, i.e., this projection is
a 2 × 2 matrix with entries which are bounded operators. Stone suggested the name
“characteristic projection”. Theorem 4 shows how the characteristic projection can
be used to compute the maximal closable part of T . We further show (Corollary 1)
that every closed operators T has vanishing Schur-complements for its characteristic
block-matrix.

The characteristic projection was introduced and studied by Marshall Stone in [39]
as a means of understanding an operator via its graph. For more background, see
[15,38].

IfHi , i = 1, 2, 3 are Hilbert spaces with operatorsH1
A−→ H2

B−→ H3, then the
domain of BA is

dom (BA) := {ϕ ∈ dom (A) | Aϕ ∈ dom (B)} ,

and for x ∈ dom (BA), we have (BA) x = B (Ax). In general, dom (BA) may be
{0}, even if A and B are densely defined; see Example 2.

Definition 6 (Characteristic projection) For a densely defined linear operatorH1
T−→

H2, the characteristic projection E = ET of T is the projection in H1 ⊕H2 onto
GT , where

E =
[
E11 E12
E21 E22

]
, (3.1)
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and the components are bounded operators

Ei j : H j −→ Hi , i, j = 1, 2. (3.2)

Remark 3 Since E is a projection, we have E = E∗ = E2, where E = E∗ implies

E11 = E∗
11 ≥ 0, E12 = E∗

21, E21 = E∗
12, E22 = E∗

22 ≥ 0, (3.3)

where the ordering refers to the natural order on selfadjoint operators, and also E = E2

implies
Ei j = Ei1E1 j + Ei2E2 j , i, j = 1, 2. (3.4)

Lemma 2 If U is any unitary operator on H and K ⊂ H is a subspace, then the
orthogonal projection to (UK )⊥ is given by

proj
[
(UK )⊥

]
= I −U PU∗, (3.5)

where P = PK is the projection toK .

Proof It is obvious that (3.5) is selfadjoint and easy to check that it is idempotent. It
is also easy to check that 〈(I −U PU∗) ϕ,Uψ〉 = 0 whenever ψ ∈ K . ��
Lemma 3 Let E = ET be the characteristic projection of a closable operator T .

In terms of the components (3.2), the characteristic projection of H2
T ∗−−→ H1 in

H2 ⊕H1 is given by

ET ∗ =
[
I − E22 E21
E12 I − E11

]
. (3.6)

Proof Since T is closable, we know dom (T ∗) is dense (Theorem 1). Then (3.6)
follows from the identity GT ∗ = (VGT )⊥ of Lemma 1, which indicates that ET ∗ =
I − V EV ∗. ��
Remark 4 Since the action of T can be described in terms of (3.2) as the mapping

[
E11ϕ

E12ψ

]
T−→

[
E21ϕ

E22ψ

]
(3.7)

it is clear that
T E11 = E21 and T E12 = E22, (3.8)

for example, by putting ϕ = 0 or ψ = 0 in (3.8); cf. Fig. 1. Similarly, (3.6) yields

T ∗ (I − E22) = E12 and T ∗E21 = I − E11. (3.9)

Theorem 3 ([39, Thm. 4]) The entries of E = ET are given in terms of T by

E =
[

(I + T ∗T )−1 T ∗ (I + T T ∗)−1

T (I + T ∗T )−1 T T ∗ (I + T T ∗)−1

]
. (3.10)
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Fig. 1 A diagram indicating
why T E11 = E21; see (3.7) and
(3.8)

Proof Applying T ∗ to (3.8) and then using (3.9) gives T ∗T E11 = T ∗E21 = I − E11,
which can be solved for E11 as E11 = (I + T ∗T )−1, whence another application of
T [and (3.8)] gives E21 = T (I + T ∗T )−1.

Now applying T to (3.9) and then using (3.8) gives T T ∗ (I − E22) = T E12 = E22,
whence I−E22 = (I + T T ∗)−1 �⇒ E12 = T ∗ (I + T T ∗)−1, by (3.9), and applying
T to this last one gives E22 = T T ∗ (I + T T ∗)−1. ��

Remark 5 Manymore identities can be recovered from (3.7) in this way. For example,
applying T ∗ to (3.8) and then using (3.9) also gives T ∗T E12 = T ∗E22 = T ∗ − E12,
which can be solved these for E12 to give

E12 =
(
I + T ∗T

)−1
T ∗. (3.11)

Now applying T to (3.9) and then using (3.8) gives

T T ∗E21 = T (I − E11) = T − E21, and

T T ∗ (I − E22) = T E12 = E22.

Solving these for E22 and E21, respectively, gives

E21 =
(
I + T T ∗)−1

T, E22 =
(
I + T T ∗)−1

T T ∗. (3.12)

On the other hand, applying (3.8) to (3.11) gives E22 = T (I + T ∗T )−1 T ∗, and
applying (3.9) to (3.12) yields

I − E11 = T ∗T
(
I + T ∗T

)−1
,

I − E22 = I − (
I + T T ∗)−1

T T ∗,

E11 = I − T ∗T
(
1+ T ∗T

)−1
,

E12 = T ∗ − T ∗ (
I + T T ∗)−1

T T ∗.
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A summary of the above:

E11 =
(
I + T ∗T

)−1 = I − T ∗T
(
1+ T ∗T

)−1
,

E12 =
(
I + T ∗T

)−1
T ∗ = T ∗ (

I + T T ∗)−1 = T ∗ − T ∗ (
I + T T ∗)−1

T T ∗,

E21 =
(
I + T T ∗)−1

T = T
(
I + T ∗T

)−1
,

E22 =
(
I + T T ∗)−1

T T ∗ = T T ∗ (
I + T T ∗)−1 = I − (

I + T T ∗)−1
T T ∗.

Definition 7 For a matrix X with block decomposition

X =
[
A B
C D

]
,

the Schur complements (see [42]) are

X/A := D − CA−1B and X/D := A − BD−1C. (3.13)

Corollary 1 A closed operator T has Schur complements

ET /E11 = ET /E22 = 0.

Proof Computing directly from (3.10) substituted into (3.13), we have

ET /E11 = T T ∗ (
I + T T ∗)−1 − T

(
I + T ∗T

)−1
((

I + T ∗T
)−1

)−1
T ∗ (

I + T T ∗)−1

= T T ∗ (
I + T T ∗)−1 − T

(
I + T ∗T

)−1 (
I + T ∗T

)
T ∗ (

I + T T ∗)−1

= T T ∗ (
I + T T ∗)−1 − T T ∗ (

I + T T ∗)−1 = 0, and

ET /E22 =
(
I + T ∗T

)−1 − T ∗ (
I + T T ∗)−1

(
T T ∗ (

I + T T ∗)−1
)−1

T
(
I + T ∗T

)−1

= (
I + T ∗T

)−1 − T ∗ (
I + T T ∗)−1 (

I + T T ∗) (T ∗)−1
T−1T

(
I + T ∗T

)−1

= (
I + T ∗T

)−1 − (
I + T ∗T

)−1 = 0.

��
Lemma 4 ([39, Thm. 2]) Let T be a densely defined linear operator and let E = ET

be its characteristic projection, with components
(
Ei j

)2
i, j=1 as in (3.2). Then T is

closable if and only if ker (I − E22) = 0, i.e., iff

∀ψ ∈ H2, E22ψ = ψ �⇒ ψ = 0.

Proof Note that E fixes GT by definition, so

[
0
ψ

]
∈ GT is equivalent to

[
0
ψ

]
=

[
E11 E12
E21 E22

] [
0
ψ

]
=

[
E12ψ

E22ψ

]
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which is equivalent to ψ ∈ ker (E12)∩ ker (I − E22). However, from (3.9), we have

T ∗ (ψ − E22ψ) = E12ψ, ∀ψ ∈ H2,

and this shows that ker (I − E22) ⊂ ker (E12), whereby

[
0
ψ

]
∈ GT iff ψ ∈

ker (I − E22). It is clear that T is closable iff such a ψ must be 0. ��
Theorem 4 ([15, Thm. 3.1]) Let T : H1 → H2 be a densely defined linear operator
(not assumed closable) with characteristic projection ET as in Definition 6. Then T
has a maximal closable part Tclo, defined on the domain dom (Tclo) := dom (T ), and
given by

Tclox := lim
n→∞

1

n + 1

∞∑
k=1

k En−k
22 E21x, x ∈ dom (Tclo) . (3.14)

Let Q be the projection onto (I − E22)H2 = ker (I − E22)
⊥. Then the characteristic

projection of Tclo is given by

ETclo =
[

E11 E12Q
QE21 E22Q

]
. (3.15)

Proof An application of ergodicYosida’s theorem and the associated theCesaromean,
see [15]. ��

4 A duality theorem

In this section we return to the setting where a pair of Hilbert spaces H1 and H2
with the following property, there is a common subspace D which in turn defines an
operator from H1 toH2. Its properties are given in Theorem 5 below.

Theorem 5 LetHi be Hilbert spaces with inner products 〈·, ·〉i , i = 1, 2. LetD be a
vector space s.t. D ⊂ H1 ∩H2, and suppose

D is dense inH1. (4.1)

Set D∗ ⊂ H2,

D∗ = {
h ∈ H2 | ∃Ch < ∞ s.t.

∣∣〈ϕ, h〉2
∣∣ ≤ Ch ‖ϕ‖1 , ∀ϕ ∈ D

} ; (4.2)

then the following two conditions (i)–(ii) are equivalent:

(i) D∗ is dense inH2; and
(ii) there is a selfadjoint operator Δ with dense domain inH1 s.t.D ⊂ dom (Δ), and

〈ϕ,Δϕ〉1 = ‖ϕ‖22 , ∀ϕ ∈ D . (4.3)
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Proof (i)�⇒(ii) Assume D∗ is dense inH2; then by (4.2), the inclusion operator

J : H1 −→ H2, Jϕ = ϕ, ∀ϕ ∈ D (4.4)

has D∗ ⊂ dom(J ∗); so by (i), J ∗ has dense domain in H2, and J is closable. By
von Neumann’s theorem (see Theorem 2), Δ := J ∗ J is selfadjoint in H1; clearly
D ⊂ dom (Δ); and for ϕ ∈ D ,

LHS(4.3) =
〈
ϕ, J ∗ Jϕ

〉
1 = 〈Jϕ, Jϕ〉2 =

by(4.4)
‖ϕ‖22 = RHS(4.3).

(Note that J ∗∗ = J .) ��

Claim D∗ = dom(J ∗), D ⊂ H1

J

H2 ⊃ D∗

J∗

Proof h ∈ dom(J ∗) ⇐⇒ ∃C = Ch < ∞ s.t.

|〈 Jϕ︸︷︷︸
=ϕ

, h〉2| ≤ C ‖ϕ‖1 , ∀ϕ ∈ D ⇐⇒ h ∈ D∗, by definition (4.2) .

Since dom(J ∗) is dense, J is closable, and by von Neumann’s theorem Δ := J ∗ J is
selfadjoint inH1. ��

(ii)�⇒(i)Assume (ii); thenwe get awell-defined partial isometry K : H1 −→ H2,
by

KΔ
1
2 ϕ = ϕ, ∀ϕ ∈ D . (4.5)

Indeed, (4.3) reads:

‖Δ 1
2 ϕ‖21 = 〈ϕ,Δϕ〉1 = ‖ϕ‖22 , ϕ ∈ D,

which means that K in (4.5) is a partial isometry with dom (K ) = K ∗K = ran(Δ
1
2 );

and we set K = 0 on the complement inH1.
Then the following inclusion holds:

{
h ∈ H2 | K ∗h ∈ dom(Δ

1
2 )

}
⊆ D∗. (4.6)

We claim that LHS in (4.6) is dense in H2; and so (i) is satisfied. To see that (4.6)
holds, suppose K ∗h ∈ dom(Δ

1
2 ); then for all ϕ ∈ D , we have

∣∣〈h, ϕ〉2
∣∣ =

∣∣∣〈h, KΔ
1
2 ϕ〉2

∣∣∣
=

∣∣∣〈K ∗h,Δ
1
2 ϕ〉1

∣∣∣ (by (4.5))

=
∣∣∣〈Δ 1

2 K ∗h, ϕ〉1
∣∣∣ ≤ ‖Δ 1

2 K ∗h‖1‖ϕ‖1,

where we used the Schwarz inequality for 〈·, ·〉1 in the last step. ��
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Corollary 2 Let D ⊂ H1 ∩ H2 be as in the statement of Theorem 5, and let J :
H1 −→ H2 be the associated closable operator; see (4.4). Then the complement

H2 �D = {
h ∈ H2 | 〈ϕ, h〉2 = 0, ∀ϕ ∈ D

}

satisfies H2 �D = ker(J ∗).

Proof Immediate from the theorem. ��
The following result is motivated by the operator-correspondence for the case of

two Hilbert spaces Hi , i = 1, 2, when the second H2 results as a reflection-positive
version of H1; see [13] for more details.

Theorem 6 Let D ⊂ H1 ∩H2 satisfying the condition(s) in Theorem 5, and let Δ

be the associated selfadjoint operator from (4.3). Let U be a unitary operator in H1
which maps D into dom (Δ), and s.t.

ΔUϕ = U−1Δϕ
(= U∗Δϕ

)
(4.7)

holds for all ϕ ∈ D .
Then there is a selfadjoint and contractive operator Û on H2 such that

〈Ûϕ,ψ〉2 = 〈ΔUϕ,ψ〉1
= 〈Uϕ,Δψ〉1 , ∀ϕ,ψ ∈ D . (4.8)

Proof Step 1. We first determine Ûϕ ∈ H2. We show that the following estimate
holds for the term on the RHS in (4.8): For ϕ,ψ ∈ D , we have

∣∣〈ΔUϕ,ψ〉1
∣∣ = ∣∣〈U∗Δϕ,ψ

〉
1

∣∣ (by (4.7))

= ∣∣〈Δϕ,Uψ〉1
∣∣ = ∣∣〈ϕ,ΔUψ〉1

∣∣ = ∣∣〈ϕ,Uψ〉2
∣∣ ≤ ‖Uψ‖2 ‖ϕ‖2

since Uψ ∈ dom (Δ) by the assumption. Now fix ϕ ∈ D , then by Riesz, there is
therefore a h2 ∈ H2 such that 〈ΔUϕ,ψ〉1 = 〈ϕ, h2〉2, and we set Ûψ = h2.

Step 2. Relative to the H2-inner product 〈·, ·〉2, we have

〈Ûϕ,ψ〉2 = 〈ϕ, Ûψ〉2, ∀ϕ,ψ ∈ D . (4.9)

��
Proof of (4.9):

LHS(4.9) = 〈ΔUϕ,ψ〉2
= 〈

U∗Δϕ,ψ
〉
1 (by (4.7))

= 〈Δϕ,Uψ〉1 = 〈ϕ,ΔUψ〉1 = 〈ϕ, Ûψ〉2 = RHS(4.9)

Hence Û∗ = Û , where ∗ here refers to 〈·, ·〉2.
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Step 3. Û is contractive in H2. Let ϕ ∈ D , and estimate the absolute values as
follows:

∣∣〈Ûϕ, ϕ〉2
∣∣ = ∣∣〈Uϕ,Δϕ〉1

∣∣

≤ 〈Uϕ,ΔUϕ〉
1
2
1 〈ϕ,Δϕ〉

1
2
1 (by Schwarz)

=
〈
U 2ϕ,Δϕ

〉 1
2

1
〈ϕ,Δϕ〉

1
2
1

≤
〈
U 4ϕ,Δϕ

〉 1
4

1
〈ϕ,Δϕ〉

1
2+ 1

4
1 (by Schwarz)

≤ · · · (by induction)

≤ 〈U 2nϕ,Δϕ〉
1
2n

1 〈ϕ,Δϕ〉
1
2+ 1

4+···+ 1
2n

1 .

Taking the limit n −→ ∞, we get |〈Ûϕ, ϕ〉2| ≤ ‖ϕ‖22, since ‖ϕ‖22 = 〈ϕ,Δϕ〉1 by
the theorem. Since Û∗ = Û by Step 2, we conclude that

‖Ûϕ‖2 ≤ ‖ϕ‖2 , ∀ϕ ∈ D . (4.10)

Step 4. To get contractivity also onH2, we finally extend Û , defined initially only
on the closure of D inH2. By Corollary 2, we may set Û = 0 on ker(J ∗) inH2. ��
Corollary 3 Let D ⊂ H1 ∩ H2, and suppose the condition(s) in Theorem 5 are
satisfied. SetΔ1 = J ∗ J , andΔ2 = J J ∗, i.e., the two selfadjoint operators associated
to the closed operator J from Claim 4. Let K be the partial isometry in (4.5); then

‖ϕ‖22 = 〈Kϕ,Δ2Kϕ〉2 , ∀ϕ ∈ D . (4.11)

Proof We shall apply Theorem 2 to the closed operator J . By Theorem 5 (ii), we have

‖ϕ‖22 = 〈ϕ,Δ1ϕ〉1 = ‖Jϕ‖22
= ‖Δ

1
2
2 Kϕ‖22 (by Thm. 2)

= 〈Kϕ,Δ2Kϕ〉2
which is the desired conclusion (4.11). ��

5 Noncommutative Lebesgue-Radon-Nikodym decomposition

The following Examples illustrate that Theorem 5 may be considered a non-
commutative Radon-Nikodym theorem. (Also see [22].)

Example 1 (μ2 � μ1) Let (X,B) be a σ -compact measure space. Let μi , i = 1, 2,
be two regular positive measures defined on (X,B). Let Hi := L2 (μi ), i = 1, 2,
and set D := Cc (X). Then the conditions in Theorem 5 hold if and only if μ2 � μ1
(relative absolute continuity).
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In the affirmative case, let f = dμ2/dμ1 be the corresponding Radon-Nikodym
derivative, and set Δ := the operator in L2 (μ1) of multiplication by f (= dμ2/dμ1),
and (4.3) from the theorem reads as follows:

〈ϕ,Δϕ〉1 =
∫

X
|ϕ|2 f dμ1 =

∫

X
|ϕ|2 dμ2 = ‖ϕ‖22 , ∀ϕ ∈ Cc (X) .

The link between Example 1 and the setting in Theorem 5 (the general case) is as
follows.

Theorem 7 Assume the hypotheses of Theorem 5. Then, for every ϕ ∈ D , there is a
Borel measure μϕ on [0,∞) such that

‖ϕ‖21 = μϕ ([0,∞)) , and (5.1)

‖ϕ‖22 =
∫ ∞

0
λ dμϕ (λ) . (5.2)

Proof By Theorem 5, there is a selfadjoint operator Δ = J ∗ J satisfying (4.3). Let

EΔ : B ([0,∞)) −→ projections inH1

be the associated projection-valued measure (i.e., Δ = ∫∞
0 λ EΔ (dλ)), and set

dμϕ (λ) = ‖EΔ (dλ) ϕ‖21 . (5.3)

Then it follows from the Spectral Theorem that the conclusions in (5.1) and (5.2) hold
for μϕ in (5.3). ��
Example 2 (μ2 ⊥ μ1) Let X = [0, 1], and consider L2 (X, μ) for measures λ and
μ which are mutually singular. For concreteness, let λ be Lebesgue measure, and let
μ be the classical singular continuous Cantor measure. Then the support of μ is the
middle-thirds Cantor set, which we denote by K , so thatμ (K ) = 1 and λ (X\K ) = 1.
The continuous functionsC (X) are a dense subspace of both L2 (X, λ) and L2 (X, μ)

(see, e.g. [36, Ch. 2]). Define the “inclusion” operator1 J to be the operator with dense
domain C (X) and

J : C (X) ⊂ L2 (X, λ) −→ L2 (X, μ) by Jϕ = ϕ. (5.4)

We will show that dom (J ∗) = {0}, so suppose f ∈ dom (J ∗). Without loss of
generality, one can assume f ≥ 0 by replacing f with | f |, if necessary. By definition,
f ∈ dom (J ∗) iff there exists g ∈ L2 (X, λ) for which

〈Jϕ, f 〉μ =
∫

X
ϕ f dμ =

∫

X
ϕg dλ = 〈ϕ, g〉λ , ∀ϕ ∈ C (X) . (5.5)

1 As a map between sets, J is the inclusion map C (X) ↪→ L2 (X, μ). However, we are considering
C (X) ⊂ L2 (X, λ) here, and so J is not an inclusion map between Hilbert spaces because the inner
products are different. Perhaps “pseudoinclusion” would be a better term.
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Fig. 2 A sequence (ϕn)∞n=1 ⊂ C (X) for which ϕn
∣∣
K = 1 and limn→∞

∫
X ϕndλ = 0. See Example 2

One can choose (ϕn)
∞
n=1 ⊂ C (X) so that ϕn

∣∣
K = 1 and limn→∞

∫
X ϕndλ = 0 by

considering the appropriate piecewise linear modifications of the constant function 1.
For example, see Fig. 2. Now we have

〈
ϕn, J

∗ f
〉
λ
= 〈ϕn, f 〉μ = 〈1, f 〉μ =

∫

X
| f | dμ, ∀n ∈ N, (5.6)

but limn→∞
∫
X ϕng dλ = 0 for any continuous g ∈ L2 (X, λ). Thus

∫
X | f | dμ = 0,

so that f = 0 μ-a.e. In other words, f = 0 ∈ L2 (X, μ) and hence dom (J ∗) = {0},
which is certainly not dense! Thus, one can interpret the adjoint of the inclusion
as multiplication by a Radon-Nikodym derivative (“J ∗ f = f dμ

dλ
”), which must be

trivial when the measures are mutually singular. This comment is made more precise
in Example 1 and Theorem 7. As a consequence of this extreme situation, the inclusion
operator in (5.4) is not closable.

Remark 6 Using the theory of iterated function systems (IFS), it can be shown that
for Example 2, the inclusion in (2.6) is actually an equality, i.e.,

GT = L2 (λ) ⊕ L2 (μ) .

Note that λ and μ are both attractors of IFSs, in the sense of Hutchinson [12]. Indeed,
the respective IFSs on [0, 1] are both given by

{
S1 (x) = x

r + 1
, S2 (x) = x + r

r + 1

}
,

where r = 1 for Lebesgue measure and r = 2 for the Cantor measure.

6 General symmetric pairs

In this sectionwe consider general symmetric pairs (A, B), andwe show that, for every
symmetric pair (A, B), there is a canonically associated single Hermitian symmetric
operator L in the direct sum-Hilbert space, and we show that L has equal deficiency
indices. The deficiency spaces for L are computed directly from (A, B).

Given H1

A

H2
B

, both linear, and assume that dom (A) is dense in H1, and

dom (B) is dense inH2. Assume further that

〈Au, v〉2 = 〈u, Bv〉1 , ∀u ∈ dom (A) , v ∈ dom (B) . (6.1)
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Theorem 8 On K := H1 ⊕H2, set

L

[
x
y

]
=

[
By
Ax

]
, ∀x ∈ dom (A) , ∀y ∈ dom (B) , (6.2)

then L is symmetric (i.e., L ⊂ L∗) with equal deficiency indices, i.e.,

〈Lξ, η〉K = 〈ξ, Lη〉K , (6.3)

for all ξ, η ∈ dom (L) = dom (A) ⊕ dom (B).

Proof The non-trivial part concerns the claim that L in (6.2) has equal deficiency
indices, i.e., the two dimensions

dim
{
ξ± ∈ dom

(
L∗

) | L∗ξ± = ±iξ±
}

(6.4)

equal; we say d+ = d−.
Let u ∈ H1, v ∈ H2; then by Sect. 2, we have

[
u
v

]
∈ dom

(
L∗

) ⇐⇒ [
u ∈ dom

(
B∗) , v ∈ dom

(
A∗

)] ;

and then

L∗
[
u
v

]
=

[
A∗v
B∗u

]
. (6.5)

Now consider the following subspace inK ,

DEF :=
{ [

u
v

]
∈K | u ∈ dom

(
A∗B∗) , v ∈ dom

(
B∗A∗

)
, and

A∗B∗u = −u, B∗A∗v = −v
}
. (6.6)

We now prove the following claim: The vectors in (6.4) both agree with dim (DEF),

see (6.6). To see this, let

[
u
v

]
∈ DEF, and note the following equations must then

hold:

L∗
[

u
i B∗u

]
=

by
(
6.5

)
[
A∗ (i B∗u)

B∗u

]
=

by (6.6)

[−iu
B∗u

]
= −i

[
u

i B∗u

]
; (6.7)

and similarly,

L∗
[

u
−i B∗u

]
= i

[
u

−i B∗u

]
. (6.8)

The conclusions reverse, and we have proved that L is densely defined and symmetric
with deficiency indices

(d+, d−) = (dim (DEF) , dim (DEF)) .
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Since L has equal deficiency indices we know that it has selfadjoint extensions;
see [9,40]. Moreover, the selfadjoint extensions of L are determined uniquely by
associated partial isometries C between the respective deficiency spaces. Since we
know these deficiency spaces, see (6.7) & (6.8), we get the following:

Corollary 4 Let A, B, H1,H2, and L be as above, then TFAE:

(i) L is essentially selfadjoint,
(ii) {h1 ∈ dom (A∗B∗) | A∗B∗h1 = −h1} = 0,
(iii) {h2 ∈ dom (B∗A∗) | B∗A∗h2 = −h2} = 0.

Example 3 (Defects (d+, d−) �= (0, 0)) Let J be a finite open interval, D := C2
c (J ),

i.e., compact support inside J , H1 = L2 (J ), and

H2 :=
{
functions f on J/ {constants} s.t. ‖ f ‖2H2

:=
∫

J

∣∣ f ′ (x)∣∣2 dx < ∞
}
;

and H2 is the Hilbert space obtained by completion w.r.t. ‖·‖H2 .

On D � ϕ, set Aϕ := ϕ mod constants; and B f := − f ′′ = − d2 f
dx2

for f

such that f ′′ ∈ L2 and f ′ ∈ L2 (the derivatives in the sense of distribution.)
Then 〈Aϕ, f 〉H2

= 〈ϕ, B f 〉H1
holds. So (A, B,H1,H2) is a symmetric pair, and

L =
[
0 B
A 0

]
is Hermitian symmetric with dense domain in K =

[
l2⊕
HE

]
. One checks

that the exponential function ex is in dom (A∗B∗), and that A∗B∗ex = −ex .
Conclusion, the operator L has deficiency indices (d+, d−) �= (0, 0). In fact,

(d+, d−) = (2, 2).

Remark 7 If the finite interval J is replaced by (−∞,∞), then the associated operator

L =
[
0 B
A 0

]
will instead have indices (d+, d−) = (0, 0).

Definition 8 Let L =
[
0 B
A 0

]
be as in (6.2) acting inK = H1⊕H2. The deficiency

spaces Ni and N−i are as follows:

Ni
(
L∗

) = {
ξ ∈ dom

(
L∗

) | L∗ξ = iξ
}

(6.9)

N−i
(
L∗

) = {
η ∈ dom

(
L∗

) | L∗η = −iη
}
. (6.10)

We also set
N−1

(
A∗B∗) = {

h ∈ dom
(
A∗B∗) | A∗B∗h = −h

}
. (6.11)

Lemma 5 The mapping ϕ : N−1 (A∗B∗) −→ N−i (L∗) by

ϕ (h) =
[

h
i B∗h

]
, ∀h ∈ N−1

(
A∗B∗) , (6.12)

defines a linear isomorphism.
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Similarly, ψ : N−1 (A∗B∗) −→ Ni (L∗), by

ψ (h) =
[

h
−i B∗h

]
, ∀h ∈ N−1

(
A∗B∗) (6.13)

is a linear isomorphism from N−1 (A∗B∗) onto Ni (L∗).
Thus the two isomorphisms are both onto:

N−1 (A∗B∗)
ϕ ψ

N−i (L∗) Ni (L∗)

Proof Let h ∈ N−1 (A∗B∗), and compute

L∗
[

h
i B∗h

]
=

[
0 A∗
B∗ 0

] [
h

i B∗h

]
=

[−ih
B∗h

]
= −i

[
h

i B∗h

]
.

So ϕ (N−1 (A∗B∗)) ⊂ N−i (L∗). But ϕ is also onto, since

[
h1
h2

]
∈ N−i

(
L∗

) ⇐⇒
[
0 A∗
B∗ 0

] [
h1
h2

]
= −i

[
h1
h2

]

or equivalently,

{
A∗h2 = −ih1
B∗h1 = −ih2

}
.

So we get A∗B∗h1 = −h1, and h2 = i B∗h1. Thus,

[
h1
h2

]
=

[
h1

i B∗h1

]
∈ ϕ

(
N−1

(
A∗B∗))

which is the claim in (6.12). The proof of (6.13) is similar.

Remark 8 By von Neumann’s formulae (see [9]), we have

dom
(
L∗

) = dom (L)+ Ni
(
L∗

)+ N−i
(
L∗

)
, (6.14)

and there is a bijection between selfadjoint extensionsM , i.e.,M ⊂ L ⊂ L∗,M = M∗,
and partial isometries C : Ni (L∗) → N−i (L∗), such that M = LC has

dom (LC ) = {
ϕ + ψ+ + Cψ+ | ϕ ∈ dom (L) , ψ ∈ Ni

(
L∗

)}
. (6.15)
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N−1 (A∗B∗)
Q=C

ψ

N−1 (A∗B∗)

Ni (L∗)
C

N−i (L∗)

ϕ−1

u
C

ψ

C
Cu

ϕ

u
−iB∗u C

Cu

iB∗Cu

Fig. 3 The linear operator C̃ in N−1
(
A∗B∗

)
induced by C : Ni

(
L∗

) → N−i
(
L∗

)

Remark 9 Note that if f = ϕ + ψ+ + ψ− ∈ dom (L∗), with ϕ ∈ dom (L), ψ± ∈
N±i (L∗), then

1

2i

(〈
f, L∗ f

〉− 〈
L∗ f, f

〉) = ‖ψ+‖2 − ‖ψ−‖2 , (6.16)

where the RHS of (6.16) can be seen as a generalized boundary condition. So the
extensions M of L correspond to partial isometries C : Ni (L∗) → N−i (L∗).

Corollary 5 A partial isometry

C =
[
C11 C12
C21 C22

]
(6.17)

inH1 ⊕H2 which determines a selfadjoint extension of L satisfies

C22C
−1
12 (C11 − Q) + C−1

12 (C11 − Q) Q = C21 (6.18)

where Q : ker (A∗B∗ + IH1

) −→ ker
(
A∗B∗ + IH1

)
is a linear automorphism. (See

the diagram in Fig. 3.)

Proof By Lemma 5, the two deficiency spaces of L are

N±i
(
L∗

) :=
{[

u
∓i B∗u

]
| u ∈ ker

(
A∗B∗ + 1

)}
.
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Indeed, one checks that

L∗
[

u
−i B∗u

]
=

[
0 A∗
B∗ 0

] [
u

−i B∗u

]
= i

[
u

−i B∗u

]
,

and so

[
u

−i B∗u

]
∈ Ni (L∗), with u satisfying A∗B∗u = −u. The verification for

N−i (L∗) is similar.
By the general theory of von Neumann (see [9] and Remark 8), the selfadjoint

extensions LC ⊃ L are determined by partial isometries C : Ni (L∗) → N−i (L∗),
equivalently, C induces a linear operator Q : ker (A∗B∗ + 1) → ker (A∗B∗ + 1).

Use (6.6), (6.7) and (6.8) we see that every partial isometry C = (
Ci j

)2
i j=1 as in

(6.17) must satisfy

[
C11 C12
C21 C22

] [
u

−i B∗u

]
=

[
Qu

i B∗Qu

]

�
C11u − C12i B

∗u = Qu

C21u − C22i B
∗u = i B∗Qu

It follows that C12i B∗ = C11 − Q, and C22i B∗ + i B∗Q = C21. Hence

C22C
−1
12 (C11 − Q)+ C−1

12 (C11 − Q) Q = C21,

which is the assertion in (6.18). ��
Remark 10 Let C : Ni (L∗) → N−i (L∗) be a partial isometry w.r.t. the K norm,
i.e., ‖·‖2K = ‖·‖21 + ‖·‖22. We conclude that

‖u‖21 +
∥∥B∗u

∥∥2
2 = ‖Qu‖21 +

∥∥B∗Qu
∥∥2
1 , ∀u ∈ N−1

(
A∗B∗) , (6.19)

where Q := C̃ .
It may occur that A and B are not closed; if not, refer to the corresponding closures.

Recall that A
∗ = A∗, B∗ = B∗. Then (6.19) takes the equivalent form

I1 + BB∗ = Q∗Q + Q∗BB∗Q (6.20)

as an operator identity in N−1 (A∗B∗). Equivalently (the norm preserving property)

I1 + BB∗ = Q∗ (
I + BB∗) Q, (6.21)

and so this is the property of Q which is equivalent to the partial isometric property
of C .
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Corollary 6 Fix L =
[
0 B
A 0

]
, then the selfadjoint extensions LQ of L are determined

by all operator solutions Q to (6.21).

Moreover,

dom
(
LQ

) =
{[

x
y

]
+

[
u

−i B∗u

]
+

[
v

−i B∗v

]}
(6.22)

where

[
x
y

]
∈ dom (L), u, v ∈ N−1 (A∗B∗), and v = Qu; and

LQ

[
x + u + v

y − i B∗u + i B∗v

]
=

[
By + iu − iv

Ax + B∗u − B∗v

]
. (6.23)

Proof On the domain

dom (LC ) = {
ϕ + ψ+ + Cψ+ | ϕ ∈ dom (L) , ψ+ ∈ Ni

(
L∗

)}
, (6.24)

we have
LC (ϕ + ψ+ + Cψ+) = Lϕ + iψ+ − iCψ+. (6.25)

Now apply this (6.22)–(6.23). Also see [9], and Remark 8. ��

7 Selfadjoint extensions of semibounded operators

Many“naïve” treatments of linear operators in the physics literature are based on analo-
gies to finite dimensions. They often result in paradoxes and inaccuracies as they miss
some key issues intrinsic to unbounded operators, questions dealing with domains,
closability, graphs, deficiency indices, and in the symmetric case, the distinction
between formally Hermitian and selfadjoint, issues all inherent in infinite-dimensional
analysis of unbounded operators and their extensions. Only when these questions are
resolved for the particular application at hand, dowe arrive at a rigorous spectral analy-
sis, and get reliable predictions of scattering (from vonNeumann’s Spectral Theorem);
see e.g. [14,24]. Sincemeasurements of the underlying observables, in prepared states,
come from the projection valued measures, which are dictated by choices (i)–(ii) (see
Sect. 1), these choices have direct physical significance.

LetH be a complex Hilbert space. Let A be an operator inH with dom (A) = D ,
dense inH , such that

‖ϕ‖2A := 〈ϕ, Aϕ〉 ≥ ‖ϕ‖2 , ∀ϕ ∈ D . (7.1)

The completion of D with respect to the ‖·‖A-norm yields a Hilbert space HA. Let

J : HA −→ H , Jϕ = ϕ,

be the inclusion map. It follows from (7.1) that

‖Jϕ‖ = ‖ϕ‖ ≤ ‖ϕ‖A , (7.2)
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thus J is contractive, and so are J ∗ J and J J ∗.

Remark 11 The inner product inHA is denoted by 〈·, ·〉A with subscript A, as opposed
to 〈·, ·〉 for the original Hilbert space H . That is,

〈 f, g〉A := 〈 f, Ag〉 , ∀ f, g ∈ D . (7.3)

Recall the adjoint operator J ∗ : H −→ HA, by

〈h, Jg〉 = 〈
J ∗h, g

〉
A , ∀h ∈ H , g ∈ HA. (7.4)

Theorem 9 The operator (J J ∗)−1 is unbounded, and is a selfadjoint extension of A,
i.e., (

J J ∗
)−1 ⊇ A. (7.5)

Moreover, it coincides with the Friedrichs extension [9]. (See the diagram below.)

HA

J

J∗ J H

J∗

J J∗

Proof (7.5)⇐⇒
(
J J ∗

)−1
ϕ = Aϕ, ∀ϕ ∈ D,

�
ϕ =J J ∗Aϕ, ∀ϕ ∈ D,

�
〈ψ, ϕ〉 = 〈

ψ, J J ∗Aϕ
〉
, ∀ψ, ϕ ∈ D . (7.6)

For a pair ψ, ϕ ∈ D as in (7.6), we have

RHS(7.6) =
〈
J ∗ψ, J ∗Aϕ

〉
A by (7.4)

= 〈
J J ∗ψ, Aϕ

〉
by (7.4)

= 〈
J ∗ψ, ϕ

〉
A by (7.3) , and J ∗∗ = J from general theory

= 〈ψ, Jϕ〉
= 〈ψ, ϕ〉 = LHS(7.6)

That (J J ∗)−1 is selfadjoint follows from a general theorem of von Neumann (The-
orem 2). See, e.g. [9]. (J J ∗)−1 is the Friedrichs extension of A. ��
Let q be a sesquilinear form on Q ⊂ H (linear in the second variable) such that:

(i) Q is a dense subspace inH .
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(ii) q (ϕ, ϕ) ≥ ‖ϕ‖2, for all ϕ ∈ Q.
(iii) q is closed, i.e.,Q is a Hilbert space w.r.t.

〈ϕ,ψ〉q := q (ϕ, ψ) , and

‖ϕ‖2q := q (ϕ, ϕ) , ∀ϕ,ψ ∈ Q.

Corollary 7 There is a bijection between sesquilinear forms q onQ ⊂ H satisfying
(i)–(iii), and selfadjoint operators A inH s.t. A ≥ 1. Specifically, the correspondence
is as follows:

(1) Given A, set Q := dom(A
1
2 ), and

q (ϕ, ψ) :=
〈
A

1
2 ϕ, A

1
2 ψ

〉
, ∀ϕ,ψ ∈ dom(A

1
2 ). (7.7)

(2) Conversely, if q satisfies (i)–(iii), let J : Q → H be the inclusion map, and set
A := (J J ∗)−1; then q is determined by the RHS of (7.7).

Proof The non-trivial part (2)⇒ (1) follows from the proof of Theorem 9. ��
Lemma 6 Let A be a semibounded operator as in (7.1), then A is essentially self-
adjoint iff AD is dense in H , i.e., ran(A) = H . (Contrast, A = A∗∗ denotes the
closure of A.)

Proof Follows from von Neumann’s deficiency index theory, and the assumption that
A ≥ 1 (see (7.1).) ��
By Lemma 6, if A is not essentially selfadjoint, then

C : Aϕ −→ ϕ (7.8)

is contractive in ran (A) (proper subspace inH , i.e., not dense inH .)
Proof that (7.8) is contractive: By (7.1), we have

‖ϕ‖2 ≤
(Schwarz)

〈ϕ, Aϕ〉 ≤ ‖ϕ‖ ‖Aϕ‖

which implies ‖ϕ‖ ≤ ‖Aϕ‖, for all ϕ ∈ D .
We have proved that CAϕ = ϕ holds, and C is s.a. and contractive.

Theorem 10 (Krein [5,28,29]) We introduce the set

BA :={
B | B∗ = B, dom (B) = H , ‖Bh‖ ≤ ‖h‖ , ∀h ∈ H , (7.9)

and C ⊂ B i.e., C Aϕ = BAϕ, ∀ϕ ∈ D; see (7.8)
}
,

then BA �= ∅.
Corollary 8 For all B ∈ BA, we have A ⊂ B−1 so B−1 is an unbounded selfadjoint
extension of A.

Remark 12 Krein studiedBA as an order lattice. Define B1 ≤ B2 meaning 〈h, B1h〉 ≤
〈h, B2h〉, ∀h ∈ H . In the previous discussions we proved that J J ∗ ∈ BA.
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8 Application to graph Laplacians, infinite networks

We now turn to a family of semibounded operators from mathematical physics. They
arose first in the study of large (infinite) networks; and in these studies entail important
choices of Hilbert spaces, and of selfadjoint realizations. The best known instance
is perhaps systems of resistors on infinite graphs, see e.g. [4,8,17,18,20,21]. An
early paper is [34] which uses an harmonic analysis of infinite systems of resistors in
dealing with spin correlations of states of finite energy of the isotropic ferromagnetic
Heisenberg model.

For the discussion of the graph LaplacianΔ, we first introduce the following setting
of infinite networks:

– V : the vertex set, a given infinite countable discrete set.
– E ⊂ V × V \ {diagonal} the edges, such that (xy) ∈ E ⇐⇒ (yx) ∈ E , and for
all x ∈ V , # {y ∼ x} < ∞, where x ∼ y means (xy) ∈ E .

– c : E → R+ a given conductance function.
– Set

(Δu) (x) :=
∑
y∼x

cxy (u (x) − u (y)) , (8.1)

defined for all functions u on V , and let

c (x) =
∑
y∼x

cxy, x ∈ V . (8.2)

– HE will be the Hilbert space of finite-energy functions on V ; more precisely,

u ∈ HE ⇐⇒
Def.

‖u‖2HE
= 1

2

∑
(xy)∈E

cxy |u (x) − u (y)|2 < ∞. (8.3)

Set

〈u, v〉HE
= 1

2

∑
(xy)∈E

cxy(u (x) − u (y)) (v (x) − v (y)) . (8.4)

– We assume that (V, E, c) is connected: For all pairs x, y ∈ V , ∃ (xi )ni=0 ⊂ V s.t.
x0 = x , (xi xi+1) ∈ E , xn = y.

Lemma 7 Fix a base-point o ∈ V . Then for all x ∈ V , there is a unique vx ∈ HE

such that
f (x) − f (o) = 〈vx , f 〉HE

, ∀ f ∈ HE ; (8.5)

The vertex vx is called a dipole.

Proof see [20,25]. ��
Lemma 8 InHE , we have δx = c (x) vx −∑

y∼x cxyvy , and

∣∣〈ϕ, vx 〉HE

∣∣ = |ϕ (x) − ϕ (o)| ≤ √
2 ‖ϕ‖l2 , ∀ϕ ∈ D .
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Proof See [17]. ��
Remark 13 LetH = l2 (V ),D = span {δx | x ∈ V }. Define the graph Laplacian Δ

by (8.1). LetHE be the energy-Hilbert space in (8.3). Then (7.1), (7.3) translate into:

〈δx ,Δδx 〉2 = c (x) = ‖δx‖2HE
, and (8.6)〈

δx ,Δδy
〉
2 = −cxy =

〈
δx , δy

〉
HE

, ∀ (xy) ∈ E, x �= y. (8.7)

Let HΔ be the completion of D = span {δx } with respect to 〈ϕ,Δϕ〉l2 , ϕ ∈ D . (We
have 〈ϕ,Δϕ〉l2 = ‖ϕ‖2HE

, valid for ∀ϕ ∈ D .)

Conclusion. HΔ ↪→ HE is an isometric inclusion, but as a subspace. The closure is
Fin = HE � Harm, where Harm is the subspace of Harmonic functions h ∈ HE ,
i.e., Δh = 0.

Definition 9 (Two unbounded closable operators)
The graph Laplacian is denoted byΔ2, as an operator in l2; and byΔE when acting

inHE . In both cases, Δ is given by (8.1), defined for all functions u on V .

Definition 10 Let (V, E, c) be as before. Fix a base-point o ∈ V , and let vx = vxo =
dipole (see Lemma 7). Let

D2 = span {δx } ⊂ l2 (8.8)

DE = span {vx }x∈V \{o} ⊂ HE . (8.9)

Set

l2 ⊃ D2
K−−→ HE , K (δx ) = δx , (8.10)

HE ⊃ DE
L−→ l2, L(vx ) = δx − δo. (8.11)

Lemma 9 We have

〈Kϕ, h〉HE
= 〈ϕ, Lh〉l2 , ∀ϕ ∈ D2,∀h ∈ DE . (8.12)

Proof Note K : l2 → HE has dense domain D2 in l2; and J : HE → l2 has dense
domain inHE . Moreover, it follows from (8.12) that

(i) K ⊂ L∗, hence dom(L∗) is dense in l2; and
(ii) L ⊂ K ∗, so dom(K ∗) is dense in HE . Also, both K and L are closable. See

Fig. 4.

Proof of (8.12): Use (8.1) and linearity to see that it is enough to consider the special
case when ϕ = δx , h = vy , so we must prove that the following holds (x, y ∈ V ):

〈
K δx , vy

〉
HE

= 〈
δx , Lvy

〉
2 . (8.13)
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Fig. 4 dom (K ) = D2,
dom (L) = DE , K ⊂ L∗, and
L ⊂ K ∗

Note that

LHS(8.13) =
〈
δx , vy

〉
HE

by (8.10)

= δx (y) − δx (o) using the dipole property ofvy
= δxy − δxo;

RHS(8.13) =
〈
δx , δy − δo

〉
2 by (8.11)

= δxy − δxo.

Thus (8.13) holds. ��
The authors gratefully acknowledge the contributions of Daniel Lenz to the state-

ment and proof of Corollary 9, which is crucial for the sequel.

Corollary 9 The two operators below are well-defined, and selfadjoint:

K ∗K is s.a. in l2, and (8.14)

L∗L is s.a. inHE , (8.15)

and both with dense domains. Here, · refers to the respective graph closures, and ∗
to adjoint operators, i.e., K ∗ : HE −→ l2, and L∗ : l2 −→ HE; both operators with
dense domains, by (8.12).

Moreover, (8.14)–(8.15) are selfadjoint extensions

Δ2 ⊂ K ∗K in l2, and ΔE ⊂ L∗L inHE . (8.16)

In fact, Δ2 = K ∗K (non-trivial; see [16,19]), and L∗L is the Krein extension of ΔE .

Proof Conclusions (8.14)–(8.15) follow from general theory; see Theorem 2. To show

ΔE ⊂ L∗L (8.17)

we must prove that

L∗Lvx = δx − δo (= ΔEvx ) , ∀x ∈ V \ {o} . (8.18)

We havemore: K = L∗, and L = K ∗, but this is because we have thatΔ2 is essentially
selfadjoint.
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To establish (8.18), we must prove that the following equation holds:

〈
vy, L

∗Lvx
〉
HE

= 〈
vy, δx − δo

〉
HE

, y �= o. (8.19)

Note that

LHS(8.19) =
〈
Lvy, Lvx

〉
2

= 〈
δy − δo, δx − δo

〉
2 (by (8.11))

= δxy − δxo − δyo + δoo = δxy + 1,

RHS(8.19) = (δx − δo) (y) − (δx − δo) (o) = δxy + 1.

Now, using J = K ∗, we can show that Harm ⊂ dom
(
L∗L

) = dom (L∗K ∗), and
L∗Lh = 0, which means that L∗L is the Krein extension of ΔE . ��

Application of Theorem 5.

Set H1 = l2 (V ),H2 = HE , and let

D := D2 = span {δx }x∈V , and

D∗ := DE = span {vx }x∈V \{o} ;

see (8.8) & (8.9). Then the axioms (i)⇐⇒(ii) in Theorem 5 hold. Note the only non-
trivial part is the dense subspace D∗ ⊂ H2 (= HE ).

Claim The condition in (4.2) holds; i.e., for all h = vx ∈ DE , there exists Cx < ∞
s.t. ∣∣〈ϕ, vx 〉HE

∣∣ ≤ Cx ‖ϕ‖l2 , ∀ϕ ∈ D . (8.20)

Proof (Proof of (8.20)) We have

LHS(8.20) =
∣∣〈ϕ, vx 〉HE

∣∣
= |ϕ (x) − ϕ (o)| by (8.5)

= ∣∣〈ϕ, δx − δo〉l2
∣∣

≤ ‖ϕ‖l2 ‖δx − δo‖l2 by Schwarz’ inequality

= √
2 ‖ϕ‖l2 , ∀ϕ ∈ D,

and so we may take Cx =
√
2. ��

Remark 14 For the setting in Theorem 5 withD ⊂ H1 ∩H2, note that the respective
norms ‖·‖i onHi , i = 1, 2, induce norms ‖·‖i onD . It is important that the conclusion
in Theorem 5 is valid even when the two norms are not comparable; i.e., in general
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there are no finite constants C , D (< ∞) such that

‖ϕ‖1 ≤ C ‖ϕ‖2 , ∀ϕ ∈ D; or (8.21)

‖ϕ‖2 ≤ D ‖ϕ‖1 , ∀ϕ ∈ D . (8.22)

For the application above in Corollary 9, the two Hilbert spaces are:

– H1 = l2 (V )

– H2 = HE (the energyHilbert space determined fromafixed conductance function
c), with D = span {δx | x ∈ V }.

Indeed, let x #→ c (x) be the total conductance; see (8.2), then

‖δx‖2HE
= c (x) and ‖δx‖2l2 = 1,

so (8.22) does not hold when c (·) is unbounded on V . (To see this, take ϕ = δx .)
From the analysis above, and [19,25] there are many examples such that

specl2 (Δ2) = [0,∞). One checks that in these examples, the estimate (8.21) also
will not hold for any finite constant C , i.e., ‖·‖1 = ‖·‖l2 , and ‖·‖2 = ‖·‖HE

.

Application of Theorem 8

We apply the general symmetric pair (A, B) to (V, E, c):

H1

A

H2

B

l2 (V )

A

B∗ HE

B

A∗

Notation:

– D = span {δx | x ∈ V \ {o}} = finitely supported functions on V \ {o}
– l2 := l2 (V \ {o})
– HE = the corresponding energy Hilbert space
– K = l2 ⊕HE (= H1 ⊕H2)

The pair (A, B) is maximal, where A and B are defined as follows:

l2 � δx
A−→ δx = c (x) vx −

∑
y∼x

cxyvy ∈ HE (Lemma.8) ; (8.23)

HE � vx
B−→ δx − δo ∈ l2, i.e., B = Δ. (8.24)

Then D ⊂ l2 ∩HE , and both inclusions are isometric.
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Define L =
[
0 B
A 0

]
on K = l2 ⊕HE , where

dom (L) :=
{[

ϕ

f

]
| ϕ ∈ D, f ∈ dom (Δ)

}
, and (8.25)

L

[
ϕ

f

]
:=

[
B f
Aϕ

]
=

[
Δ f
ϕ

]
, ∀

[
ϕ

f

]
∈ dom (L) . (8.26)

It follows that L is a Hermitian symmetric operator in K , i.e., L ⊆ L∗, but we
must have:

Theorem 11 The operator L in (8.26) is essentially selfadjoint in the Hilbert space
K , i.e., it has deficiency indices (d+, d−) = (0, 0).

Proof Step 1. We have

〈Aϕ, f 〉HE
= 〈ϕ, B f 〉l2 , ∀ϕ, f ∈ D, (8.27)

so that A ⊆ B∗ and B ⊆ A∗.
Step 2. Define L as in (8.25)–(8.26). For the adjoint operator, set L∗ =

[
0 A∗
B∗ 0

]
,

with

dom
(
L∗

) =
[
dom (B∗)
dom (A∗)

]
, and (8.28)

L∗
[
h1
h2

]
=

[
A∗h2
B∗h1

]
, h1 ∈ l2, h2 ∈ HE . (8.29)

So we must be precise about A∗ and B∗, and we shall need the following: ��

Lemma 10 The domains of A∗ and B∗are as follows:

dom
(
A∗

) =
{
f ∈ HE | ∃C f < ∞ s.t.
∣∣〈ϕ, f 〉HE

∣∣2 ≤ C f ‖ϕ‖22 = C f

∑
x

|ϕx |2
}
; (8.30)

and

dom
(
B∗) =

{
ϕ ∈ l2 | ∃Cϕ < ∞ s.t.
∣∣〈ϕ,Δ f 〉l2

∣∣2 ≤ Cϕ ‖ f ‖2HE
, ∀ f ∈ HE s.t. Δ f ∈ l2

}
. (8.31)

Proof See the definitions and (8.27). ��
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Remark 15 It is convenient to useΔ to act on all functions, and later to adjoint domains.
See the definition in (8.1), i.e.,

(Δu) (x) :=
∑
y∼x

cxy (u (x) − u (y)) , f ∈ F (V ) (= all functions) . (8.32)

Proof of Theorem 11 continued Step3.Recall thatdom (A∗) ⊂ HE , anddom (B∗) ⊂
l2: l2

B∗ HE
A∗

. It follows from Lemma 10, that

(
A∗ f

)
(x) = (Δ f ) (x) , ∀ f ∈ dom

(
A∗

)
, x ∈ V, and (8.33)

B∗ ϕ︸︷︷︸
in l2

= ϕ ∈ HE , ∀ϕ ∈ dom
(
B∗) . (8.34)

Both sides of (8.34) are interpreted as functions on V . Also, the condition on ϕ ∈
dom (B∗) requires

∑∑
(xy)∈E

ccy (ϕ (x) − ϕ (y))2 < ∞, and
∑

x ϕ2
x < ∞.

Step 4. Now consider Δ (in (8.32), see Remark 15), then the two eigenvalue prob-
lems: {

B∗A∗ f = − f
A∗B∗ϕ = −ϕ

}
⇐⇒

{
Δ f = − f
Δϕ = −ϕ

}
(8.35)

where f ∈ HE , Δ f ∈ l2, and ϕ ∈ l2 ∩HE .
Apply the two isomorphisms from the general theory (see (6.6)). But (8.35) only

has the solution ϕ = 0 in l2. The fact that (8.35) does not have non-zero solutions
follows from [16,19]. So we have that L = [

0 B
A 0

]
is essentially selfadjoint. Indeed,

this holds in the general case.
Step 5. The deficiency indices of the operator L . With the definitions,

L =
[
0 B
A 0

]
, L

[
ϕ

f

]
=

[
B f
Aϕ

]
=

[
Δ f
ϕ

]

where ϕ ∈ l2, f ∈ HE are in the suitable domains s.t.

∥∥∥∥L
[
ϕ

f

]∥∥∥∥
2

l2⊕
H E

= ‖Δ f ‖2l2 + ‖ϕ‖2HE
< ∞. (8.36)

So ϕ ∈ l2 ∩ HE , f ∈ HE , Δ f ∈ l2 defines the domain of L as an operator in

K =
[

l2⊕
HE

]
, and we proved that L is selfadjoint, so indices (0, 0). ��

Corollary 10 Viewing L as a selfadjoint operator, it follows from (8.36) that

dom (L) =
{[

ϕ

f

]
∈

[
l2⊕
HE

]
| ϕ ∈ l2 ∩HE , Δ f ∈ l2

}
.
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