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Abstract This paper is devoted to the construction of solutions for one-dimensional
wave equations with Dirichlet or Neumann boundary conditions by means of a Nash-
Moser iteration scheme, for a large set of frequencies.
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1 Introduction

We consider one-dimensional nonlinear wave equations like

utt − uxx + mu = εg(x, ωt, u), x ∈ [0, π ], t ∈ R, (1)

where g(x, ·, u) is a time-periodic external forcing with period 2π , g(x, t, u) ∈
Cκ([0, π ]×R×R; R) for some κ large enough, and g(x, t, 0) = 0; the massm ∈ R

+;
ε > 0 is a small amplitude parameter; ω is a frequency parameter; and the displace-
ment u : [0, π ] × R → R is the unknown. In the present paper we want to consider
both Dirichlet boundary conditions

u(0, t) = u(π, t) = 0, t ∈ R, (2)
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and Neumann boundary conditions

ux (0, t) = ux (π, t) = 0, t ∈ R. (3)

The existence of Cantor families of periodic solutions of the nonlinear wave
equations have been studied by many authors, for example, see [2,3,7–13] and the
references therein. Recently, Berti and Bolle [11] have proved the existence of Cantor
families of spatial periodic solutions for nonlinear wave equations in higher spatial
dimensions with periodic boundary conditions of the form

{
utt − �u + mu = εF(ωt, x, u),

u(t, x) = u(t, x + 2πk), ∀k ∈ Z
d .

Biasco and Gregorio [13] have studied the periodic in time solutions of the
one-dimensional autonomous nonlinear wave equation with Dirichlet boundary con-
ditions:

{
utt − uxx + μu + f (u) = 0,

u(t, 0) = u(t, π) = 0,

where μ > 0 is the mass and the nonlinearity f is an odd, real analytic function with
f ′(0) = 0, f ′′′(0) �= 0.
In addition, there aremany other references, but most of them studied on the nonlin-

ear wave equations with Dirichlet boundary conditions. The proofs of all above results
rely on the use of the Nash-Moser implicit function theorem, to overcome unavoid-
able losses of derivatives coming from the small divisors appearing when inverting
the linear part of the equation. In order to construct the existence of periodic and
quasi-periodic solutions to nonlinear wave equations, this main difficulty, namely the
presence of small divisors in the expansion series of the solutions, can be handled by
KAM theory (see, e.g., [5,6,14,20]), Lindstedt series method (see, e.g., [15–18]), and
Nash-Moser iteration (see, e.g., [1–3,7–11]).

The principle objective here is to look for small amplitude, 2π/ω-periodic in time
solutions of Eq. (1) under Dirichlet boundary conditions (2) or Neumann boundary
conditions (3) for all frequenciesω in some set of positive measure. The small divisors
problem is overcome thanks to employing Nash-Moser iteration techniques.

The organization of the paper is described as follows. The next section states the
main theorem on existence of Cantor families of time-periodic solutions of the system
(1)–(2) or (1)–(3). In Sect. 3, we construct the solutions to the systems by making use
of suitable Nash-Moser iteration scheme, and give the proof of theorem afterward in
Sect. 4. The last section is devoted to showing the invertibility of linearized problem
via the eigenvalues technique.
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2 Statement of the main theorem

We denote by

{λi |0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · }

and

{λ̃ j |0 < λ̃1 < λ̃2 ≤ · · · ≤ λ̃k ≤ · · · }

respectively, the eigenvalues of Dirichlet boundary problem

{−ϕ′′
i + mϕi = λ2i ϕi , x ∈ (0, π),

ϕi (0) = ϕi (π) = 0,
(4)

and the eigenvalues of Neumann boundary problem

{−ϕ̃′′
j + mϕ̃ j = λ̃2j ϕ̃ j , x ∈ (0, π),

ϕ̃′
j (0) = ϕ̃′

j (π) = 0,
(5)

where ϕi (x) and ϕ̃ j (x) are the corresponding eigenfunctions, respectively.
Normalizing the period to 2π , (1) can be written to

ω2utt − uxx + mu = εg(x, t, u), x ∈ [0, π ], t ∈ R. (6)

We look for periodic solutions of (1)–(2) in the Banach spaces

Xσ,s :=
⎧⎨
⎩u(x, t) =

∞∑
j=1

u j (t)ϕ j (x)

∣∣∣∣ u j ∈ H1(R, R),

‖u‖2σ,s =
∞∑
j=1

‖u j‖2H1 j
2se2σ j < +∞

⎫⎬
⎭ (7)

or look for periodic solutions of (1)–(3) in the Banach spaces as follows

X̃σ,s :=
⎧⎨
⎩u(x, t) =

∞∑
j=1

ũ j (t)ϕ̃ j (x)

∣∣∣∣ ũ j ∈ H1(R, R),

‖u‖2σ,s =
∞∑
j=1

‖ũ j‖2H1 j
2se2σ j < +∞

⎫⎬
⎭ (8)

where s > 1/2, σ ≥ 0.
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For convenience, the spaces Xσ,s and X̃σ,s , the eigenvalues λ and λ̃, the eigenfunc-
tions ϕ and ϕ̃, are unified into Xσ,s , λ, and ϕ, respectively. And we write Xσ,s for Xs ,
‖u‖σ,s for ‖u‖s . For s > 1/2, Xs is a multiplicative Banach algebra (the proof is as
in [4], Appendix 6.5), namely

∀u1, u2 ∈ Xs ⇒ u1u2 ∈ Xs, and ‖u1u2‖s ≤ C(s)‖u1‖s‖u2‖s .

For the two boundary value problems above, we can get the same conclusion as
follows.

Theorem 1 For the fixed0 < ω̄1 < ω̄2, there are s, κ ∈ N, such that∀g ∈ Cκ([0, π ]×
R×R), ∀γ ∈ (0, λ1), there exist ε0, K ,C > 0, a map ũ ∈ C1 ([0, ε0] × [ω̄1, ω̄2]; X0)

with

‖ũ‖0 ≤ εK

γ
, ‖Dεũ‖0 ≤ K

γ
, ‖Dωũ‖0 ≤ εK

γ 2 ,

and a Cantor like set A∞ ⊂ [0, ε0]×[ω̄1, ω̄2] such that ũ(ε, ω) is a solution of (1)–(2)
or (1)–(3).

Moreover, the set A∞ satisfies Lebesgue measure property:

|A∞| ≥ ε0(ω̄2 − ω̄1)(1 − Cγ ),

i.e. limγ→0 (|A∞|/ε0(ω̄2 − ω̄1)) = 1.

3 The Nash-Moser iteration scheme

Consider the orthogonal splitting Xs = X (n) ⊕ X (n)⊥, where

X (n) :=
{
u ∈ Xs

∣∣∣∣u(x, t) =
∑

λ j≤Nn

u j (t)ϕ j (x)

}
,

X (n)⊥ :=
{
u ∈ Xs

∣∣∣∣u(x, t) =
∑

λ j>Nn

u j (t)ϕ j (x)

}
,

with Nn := N02n, n ∈ N, and N0 ∈ N large enough.
The convergence of theNash-Moser scheme is based on properties (P1)–(P5) below.

The first three properties are standard for the composition operator f : Xs → Xs

defined by f (u)(x, t) := g(x, t, u(x, t)).

(P1) (Regularity) f ∈ C2(Xs; Xs) and f, D f , D2 f are bounded on {‖u‖s ≤ 1}.
(P2) (Tame) ∀s ≤ s′ ≤ k, ∀u ∈ Xs′ such that ‖u‖s ≤ 1, ‖ f (u)‖s′ ≤ C(s′)(1 +
‖u‖s′).
(P3) (Taylor Tame) ∀s ≤ s′ ≤ k − 2, ∀u, h ∈ Xs′ such that ‖u‖s, ‖h‖s ≤ 1,

‖ f (u + h) − f (u) − D f (u)[h]‖s′ ≤ C(s′)
(
‖u‖s′ ‖h‖2s + ‖h‖s‖h‖s′

)
,
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Where D f (u) = ∂ug(x, t, u(x, t)). In particular, for s′ = s,

‖ f (u + h) − f (u) − D f (u)[h]‖s ≤ C‖h‖2s .

We refer to the references [19,21] for the proof of (P2). Properties (P1) and (P3)
are obtained similarly.
We assume the existence of orthogonal projectors respectively onto X (n) and X (n)⊥
denoted by Pn : X → X (n) and P⊥

n : X → X (n)⊥.
(P4) (Smoothing) For all s, r > 0, ∀n ∈ N, there hold

‖Pnu‖s+r ≤ Nr
n‖u‖s, ∀u ∈ Xs, (9)

‖(I − Pn)u‖s ≤ N−r
n ‖u‖s+r , ∀u ∈ Xs+r , (10)

where I is the identity map.
The key property (P5), proved in Sect. 5, is an invertibility property for the lin-
earized operator

Ln (ε, ω, u(ε, ω)) [h] := Lωh − εPnD f (u(ε, ω))h, (11)

where Lω := ω2∂2t − ∂2x + m.
Denote Jn := { j ∈ N

∣∣ 1 < λ j ≤ Nn}, n = 0, 1, 2, . . . .
For γ ∈ (0, λ1), τ ≥ 3, we define

A0 :=
{
(ε, ω) ∈ [0, ε0] × [ω̄1, ω̄2] : |ωpl − λ j | >

γ

jτ
, ∀ j ∈ J0, l ∈ N

}
,

An+1 :=
{
(ε, ω) ∈ An : |ωpl − λ j | >

γ

jτ
, ∀ j ∈ Jn+1, l ∈ N

}

for every n = 0, 1, 2, . . ., where p2l (l ∈ N) are eigenvalues of the following
problem

{
y′′ + p2y = 0,

y(t) = y(t + π).
(12)

(P5) (Invertibility ofLn) Assume that u ∈ X (n), (ε, ω) ∈ An+1, there exist positive
constants δ0, K ′ such that ε/γ < δ0, then Ln is invertible and

‖L−1
n (ε, ω, u)h‖0 ≤ K ′

γ
N τ
n ‖h‖0, ∀h ∈ X (n+1). (13)

Proof The proof will be given in Sect. 5. ��
Lemma 1 (initialization) For (ε, ω) ∈ A0, there are positive constants K0, δ1 such
that ε/γ < δ1, then there exists a solution u0 := u0(ε, ω) ∈ X (0) of equation
Lωu = εP0 f (u) satisfying ‖u0‖0 ≤ εK0/γ .
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Proof Since the eigenvalues of Lω satisfy

|ωpl − λ j | >
γ

jτ
, ∀ j ∈ J0, l ∈ N,

so Lω is invertible on X (0) and, for some K1,

‖L−1
ω h‖0 ≤ K1N τ

0

γ
‖h‖0, ∀h ∈ X (0).

By the contraction mapping theorem, using the property (P1), for ε/γ small, there
exists a unique solution u0 := u0(ε, ω) of equation Lωu = εP0 f (u) satisfying
‖u0‖0 ≤ εK0/γ . ��

For (ε, ω) ∈ An, n ≥ 1, we construct a sequence {un}∞n=0 by

un+1 = un − Ln+1(un)
−1 [

Lωun − εPn+1 f (un)
]
, (14)

and let h0 = u0, hn+1 = un+1 − un, n = 0, 1, 2, . . ..

Lemma 2 (induction step) There exist K2, β := 4τ −2, and δ2 small enough. Assume
that hk ∈ X (k) for all k = 1, 2, . . . , n satisfy

‖hk‖0 <
εK2

γ
N−β
k−1;

and un defined in (14) solve Lωu = εPn f (u) for all n = 0, 1, 2, . . .. If (ε, ω) ∈ An+1
and ε/γ < δ2, then there exists hn+1 ∈ X (n+1) satisfying

‖hn+1‖0 <
εK2

γ
N−β
n . (15)

Proof Taking into account Lωun = εPn f (un), for hn+1, we have

Ln+1(un)hn+1 = ε(Pn+1 − Pn) f (un) + εPn+1Q(un, hn+1), (16)

where

Q(un, hn+1) = f (un + hn+1) − f (un) − D f (un)hn+1.

Consider the fixed point problem

hn+1 = εLn+1(un)
−1[(Pn+1 − Pn) f (un) + Pn+1Q] := G(hn+1)

for hn+1 ∈ X (n+1). We shall prove that G is a contraction. By (14) and the properties
(P1)–(P4),



Small amplitude periodic solutions in time for one-dimensional. . . 225

‖G(hn+1)‖0 ≤ εK ′

γ
(‖(Pn+1 − Pn) f (un)‖τ−1 + ‖Pn+1Q‖τ−1)

≤ εK ′

γ

(
N−β
n ‖Pn+1 f (un)‖τ−1+β + C1‖hn+1‖2τ−1

)

≤ εK ′

γ

(
N−β
n C2(1 + ‖un‖τ−1+β) + C1‖hn+1‖2τ−1

)

≤ εK ′

γ

(
N−β
n C3 + C1N

2(τ−1)
n+1 ‖hn+1‖20

)
.

If ‖hn+1‖0 < ρn+1 := (εK2/γ )N−β
n , then ‖G(hn+1)‖0 ≤ ρn+1 for ε/γ small enough,

i.e. G(Bn+1) ⊆ Bn+1 := {‖h‖0 < ρn+1}. Therefore the lemma follows from the
contraction mapping theorem. ��

4 Proof of Theorem

The goal of this section is to prove our main result based on Sect. 3.

Lemma 3 (existence of solution) Suppose that A∞ := ⋂
n≥0 An �= ∅. If (ε, ω) ∈

A∞ and ε/γ < δ3 small enough, then the sequence {un}∞n=0 converges in X0 to
u∞ := ∑

n≥0 hn. u∞ is a solution of the equation (6) and

‖u∞‖0 ≤ εK

γ
(17)

for some K .

Proof By Lemmas 1 and 2, the series
∑

n≥0 hn converges, un converges to u∞ in X0
and (17) holds true. ��

Lemma 4 Assume the hypotheses of Lemma 2, then there exists constant K3 such
that

‖∂2t h0‖0 ≤ εK3

γω2 , ‖∂2t hn+1‖0 ≤ εK ′
3

γω2 N
−β
n+1, n = 0, 1, 2, . . . .

Proof Note that h0 = u0 solves Lωu = εP0 f (u). It implies

ω2∂2t h0 + λ j h0 = εP0 f (u).

Thus ‖∂2t h0‖0 ≤ εK3/γω2 for some K3.
It follows from (11) and (14) that

ω2∂2t hn+1 = ε(Pn+1 − Pn) f (un) + ∂2x hn+1 − mhn+1 − εPn+1D f (un)hn+1.
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Hence, by (P2), (9) and (15), there exists some constant K ′
3 such that

ω2‖∂2t hn+1‖0 ≤ εN−β
n ‖Pn+1 f (un)‖β + N 2

n+1‖hn+1‖0 + ε‖D f (un)hn+1‖0
≤ εK ′

3

γ
N−β
n+1

for n = 0, 1, 2, . . .. It completes the proof. ��
Lemma 5 (estimate of the derivatives) Assume the hypotheses of Lemma 3, then
Dε,ωun converges to Dε,ωu∞ in X0 satisfying

‖Dεu∞‖0 ≤ K

γ
, ‖Dωu∞‖0 ≤ εK

γ 2 . (18)

Proof By the proof of Lemma 1 and the implicit function theorem, (ε, ω) �→ u0(ε, ω)

is in C1(A0, X0) and ‖Dε,ωu0‖0 ≤ K0/γ .
Next, assume by induction that hn(ε, ω) is a C1 map defined in An for every

n = 0, 1, 2, . . .. We shall prove that hn+1(ε, ω) is C1 too. Recall that hn+1 is defined
for (ε, ω) ∈ An+1 as a solution in X (n+1) of Eq. (16). We claim that the operator

Ln+1(un+1)[z] := Lωz − εPn+1D f (un + hn+1))[z] (19)

is invertible. In fact,

‖ [Ln+1(un+1) − Ln+1(un)
]
hn+1‖0 ≤ ε‖ f (un)hn+1‖0 ≤ ε2K ′

2

γ
N−β
n ,

which together with (13) gives

‖Ln+1(un)
−1 [Ln+1(un+1) − Ln+1(un)

] ‖0 ≤ ε2K ′K ′
2

γ 2 N τ−β
n .

Thus,

‖Ln+1(un+1)
−1 [Ln+1(un+1) − Ln+1(un)

] ‖0 ≤ 1

2

provided that ε/γ is appropriate small, while n is appropriate large enough. This shows
that Ln+1(wn+1) is invertible and

‖Ln+1(un+1)
−1‖0 ≤ 2K ′

γ
N τ
n+1.

As a consequence, by the implicit function theorem, the map (ε, ω) �→ hn+1(ε, ω) is
in C1(An+1, X (n+1)).
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By (16),

Lωhn+1 − εPn+1[ f (un + hn+1) − f (un)] − ε(Pn+1 − Pn) f (un) = 0. (20)

Differentiating the Eq. (20) with respect to ω and utilizing Ln+1(un+1)
−1, then taking

the norm ‖ · ‖0 on both sides, we obtain

∥∥∂ωhn+1
∥∥
0 ≤ 2K ′

γ
N τ
n+1

(
‖2ω(∂2t hn+1)‖0 + ‖ε(Pn+1 − Pn)D f (un)∂ωun‖0

+‖εPn+1
[
D f (un + hn+1) − D f (un)

]
∂ωun‖0

)

≤ 2εK ′

γ
N τ
n+1

(2K ′
3

γω
N−β
n+1+C4N

−β
n

n∑
i=0

‖∂ωhi‖0+C5ρn+1

n∑
i=0

‖∂ωhi‖0
)

≤ εK

γ 2 N τ
n+1N

−β
n .

Hence, we deduce ‖∂ωun+1‖0 ≤ εK/γ 2 which implies ‖Dωu∞‖0 ≤ εK/γ 2.
Similarly, differentiating the Eq. (20) with respect to ε gives

Ln+1(un+1)[∂εhn+1] = Pn f (un) − Pn+1 f (un+1)

+ εPnD f (un)∂εun − εPn+1D f (un+1)∂εun,

and then, we can obtain the estimate for ∂εhn+1 by using the same method as above.
��

Finally we can define, by means of a cut-off function, a C1-Whitney extension
ũn+1 ∈ C1(A0, X (n+1)) of un+1 as ũn+1 := ũn + h̃n+1 satisfying

‖ũ‖0 ≤ εK

γ
, ‖Dεũ‖0 ≤ K

γ
, ‖Dωũ‖0 ≤ εK

γ 2 ,

where ũn, h̃n+1 are obtained through the correspondingWhitney extensionprocedures.

Lemma 6 (measure estimate) For τ ≥ 3, there exists δ < min{δi , i = 0, 1, 2, 3}
such that the Cantor set A∞ has measure property: for every interval (ω̄1, ω̄2) with
0 < ω̄1 < ω̄2 < +∞, there is a constant C depending on (ω̄1, ω̄2) such that |A∞| ≥
ε0(ω̄2 − ω̄1)(1 − Cγ ).

Proof Given ε, we need to prove that the complementary set E := ⋃
l, j≥1 �l, j has

small measure, where

�l, j :=
{
ω ∈ (ω̄1, ω̄2) : |ωpl − λ j | ≤ γ

jτ

}
,

and �0, j = ∅ for all j ≥ 1.



228 Z. Liu

Note that l/4 < ∂ω(ωpl) < 2γ /jτ provided that ε/ω < δ small enough. In
addition,

ω̄1l − γ

jτ
< λ j < ω̄2l + γ

jτ
,

which implies

�{ j} = 1

�

(
(ω̄2 − ω̄1)l + 2γ

jτ

)
+ 1 < Kl(ω̄2 − ω̄1),

where � := inf{|λ j+1 − λ j | : j ≥ 1}.
For fixed 0 < ω̄1 < ω̄2 < +∞, if �l, j ∩ (ω̄1, ω̄2) is nonempty, then

|E | ≤
∞∑
j=1

8γ

l jτ
Kl(ω̄2 − ω̄1) ≤ Cγ (ω̄2 − ω̄1)

because the series
∑∞

j=1 1/j
τ converges. Thus

|A∞(ε) ∩ (ω̄1, ω̄2)| ≥ (ω̄2 − ω̄1)(1 − Cγ ).

Therefore

|A∞| ≥
∫ ε0

0
(ω̄2 − ω̄1)(1 − Cγ )dε = ε0(ω̄2 − ω̄1)(1 − Cγ ),

and we get the thesis. ��

5 Inversion of the linearized operator

In this section, we prove the key property on the inversion of the linearized operator
defined in (11). We also write the operator

Ln = D + εM

with

Dh := ω2htt − hxx + mh,

Mh := Pn(ah), a(x, t) := −∂ug(x, t, u(x, t)).

Next, it is easy to show the result below.

Lemma 7 Let p2l andψl (l ∈ N) be the eigenvalues and eigenfunctions of the problem
(12), then the eigenfunctionsψl form an orthonormal basis of H1([0, π ])with respect
to the product (u, v)H1 = ∫ π

0 [u′v′ + uv]dt .
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Lemma 8 (inversion of D) Let p2l (l ∈ N) be the eigenvalues of the problem (12).
For all j ∈ Jn+1, If (ε, ω) satisfies the conditions

∣∣ωpl(ε, ω) − λ j
∣∣ >

γ

jτ
, l ∈ N, (21)

then D is invertible, and

‖D−1h‖0 ≤ C

γ
‖h‖τ , ∀h ∈ X (n+1) (22)

for some positive constant C.

Proof We develop Dh = ∑
Djh j (t)ϕ j (x), where

Dj z = ω2z′′ + λ2j z =
∑
l∈N

(
λ2j − ω2 p2l

)
ẑlψl(t), z =

∑
l∈N

ẑlψl(t).

Thus, each Dj is the diagonal with respect to the basis ψl(t). By (21), ∀ j ∈ Jn+1, we
have Dj is invertible and

∥∥∥D−1
j z

∥∥∥
H1

=
∑
l∈N

1

|λ2j − ω2 p2l |
‖z‖H1 ≤ C jτ

γ
‖z‖H1 ,

so that

‖D−1h‖20 ≤ C2

γ 2 ‖h‖2τ

for some positive constant C . It implies (22) holds true. ��
Lemma 9 Assume the hypotheses of Lemma 8. Define |D|−1/2 : X (n) → X (n) obeys

|D|−1/2h :=
∑

1≤λ j≤Nn

|Dj |−1/2h j (t)ϕ j (x),

then

∥∥∥|D|−1/2h
∥∥∥

σ,s
≤ K4√

γ
‖h‖σ,s+ τ

2
≤ K4√

γ
N

τ
2
n ‖h‖σ,s, ∀h ∈ X (n). (23)

Proof Due to
∥∥∥|Dj |−1/2z

∥∥∥
H1

≤ (K ′
4/

√
α j )‖z‖H1 for some K ′

4, where

α j := min
l∈N

{|λ2j − ω2 p2l |} > 0,



230 Z. Liu

we have

∥∥∥|D|−1/2h
∥∥∥2

σ,s
≤

∑
1≤λ j≤Nn

K ′
4
2

α j
‖h j‖2H1 j

2se2σ j

≤
∑

1≤λ j≤Nn

K ′
4
2 jτ

γ
‖h j‖2H1 j

2se2σ j

≤ K ′
4
2

γ
‖h‖2

σ,s+ τ
2
, ∀h ∈ X (n)

whence (23) follows. In particular,

∥∥∥|D|−1/2h
∥∥∥
0

≤ K4√
γ

‖h‖ τ
2

≤ K4√
γ
N

τ
2
n ‖h‖0.

��

6 Proof of (P5)

Proof Let Ln(u) = |D|1/2(U + εR)|D|1/2, where

U := |D|−1/2D|D|−1/2, R := |D|−1/2M|D|−1/2.

It is easily to prove that ‖U‖σ := sup‖h‖σ ≤1 ‖Uh‖σ = 1.
Noting that

α j = min
l∈N

{
|ω2 p2l − λ2j |

}
≥ min

l∈N
{
λ j |ωpl − λ j |

} ≥ γ

jτ

for all j ≥ 1, we get αkαl ≥ γ 2/(kl)τ , k, l ≥ 1.
For h ∈ X (n),Rh = ∑

λk≤Nn
(Rh)keikt with

(Rh)k = |Dk |−1/2(M|D|−1/2h)k = |Dk |−1/2(Pna ∑
λl≤Nn

|Dl |−1/2hl
)
k,

we deduce

‖(Rh)k‖H1 ≤ C
∑

λl≤Nn

‖a‖H1√
αkαl

‖hl‖H1 ≤ C

γ
Sk,

where

Sk :=
∑

λl≤Nn

‖a‖H1

(
max{k, l}

)τ

‖hl‖H1 .
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Let S(t) := ∑
λk≤Nn

Skeikt , then

‖Rh‖2s =
∑

λk≤Nn

‖(Rh)k‖2H1k
2se2σk ≤ C2

γ 2

∑
λk≤Nn

S2k k
2se2σk = C2

γ 2 ‖S‖2s .

It turns out that S = Pn(bc) with

b(t) :=
∑
l∈N

‖a‖H1

(
max{k, l}

)τ

eilt

and

c(t) :=
∑

λl≤Nn

‖hl‖H1eilt .

Hence

‖εRh‖s ≤ εC

γ
‖b‖s‖c‖s ≤ εC

γ
‖a‖s+τ‖h‖s ≤ εC ′

γ
‖h‖s ≤ 1

2

∥∥h∥∥
s

provided that we take ε/γ small enough. Then Neumann series U + εR is invertible
in (X (n+1), ‖ · ‖s), and ‖(U + εR)−1h‖s < 2‖h‖s . Therefore

‖Ln(u)−1h‖0 =
∥∥∥∥|D|−1/2(U + εR)−1|D|−1/2h

∥∥∥∥
0

≤ K ′

γ
N τ
n ‖h‖0.

��
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