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Abstract This paper is devoted to the construction of solutions for one-dimensional
wave equations with Dirichlet or Neumann boundary conditions by means of a Nash-
Moser iteration scheme, for a large set of frequencies.
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1 Introduction
We consider one-dimensional nonlinear wave equations like

Uy — Uxx +mu =eg(x,wt,u), xecl0,m], tekR, (D
where g(x, -, u) is a time-periodic external forcing with period 27w, g(x,t,u) €
C¥([0, m] x R x R; R) for some « large enough, and g(x, ¢, 0) = 0; the massm € R™;
& > 0 1is a small amplitude parameter; w is a frequency parameter; and the displace-

ment u : [0, 7] Xx R — R is the unknown. In the present paper we want to consider
both Dirichlet boundary conditions

u(0,6) =u(r, 1) =0, ek, 2)
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and Neumann boundary conditions
uy(0,1) = uy(mw,t) =0, telR. 3)

The existence of Cantor families of periodic solutions of the nonlinear wave
equations have been studied by many authors, for example, see [2,3,7—-13] and the
references therein. Recently, Berti and Bolle [11] have proved the existence of Cantor
families of spatial periodic solutions for nonlinear wave equations in higher spatial
dimensions with periodic boundary conditions of the form

Uy — Au+mu = eF(wt, x, u),
u(t, x) = u(t, x +27k), Vk e 79

Biasco and Gregorio [13] have studied the periodic in time solutions of the
one-dimensional autonomous nonlinear wave equation with Dirichlet boundary con-
ditions:

Uy — uyx +pu+ f(u) =0,
u(t,0) =u(t,m)=0,

where i > 0 is the mass and the nonlinearity f is an odd, real analytic function with
J(0)=0, f"(0) #0.

In addition, there are many other references, but most of them studied on the nonlin-
ear wave equations with Dirichlet boundary conditions. The proofs of all above results
rely on the use of the Nash-Moser implicit function theorem, to overcome unavoid-
able losses of derivatives coming from the small divisors appearing when inverting
the linear part of the equation. In order to construct the existence of periodic and
quasi-periodic solutions to nonlinear wave equations, this main difficulty, namely the
presence of small divisors in the expansion series of the solutions, can be handled by
KAM theory (see, e.g., [5,6,14,20]), Lindstedt series method (see, e.g., [15-18]), and
Nash-Moser iteration (see, e.g., [1-3,7-11]).

The principle objective here is to look for small amplitude, 27 /w-periodic in time
solutions of Eq. (1) under Dirichlet boundary conditions (2) or Neumann boundary
conditions (3) for all frequencies w in some set of positive measure. The small divisors
problem is overcome thanks to employing Nash-Moser iteration techniques.

The organization of the paper is described as follows. The next section states the
main theorem on existence of Cantor families of time-periodic solutions of the system
(1)—(2) or (1)—(3). In Sect. 3, we construct the solutions to the systems by making use
of suitable Nash-Moser iteration scheme, and give the proof of theorem afterward in
Sect. 4. The last section is devoted to showing the invertibility of linearized problem
via the eigenvalues technique.
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2 Statement of the main theorem
We denote by
Ril0 <ty <ty =< S A <00}
and
Ajl0<iy<hp< - <h<---}
respectively, the eigenvalues of Dirichlet boundary problem
—¢] +mei =g, x€0,m), @
%i(0) = ¢i () =0,
and the eigenvalues of Neumann boundary problem
_¢;/+m¢j :X?(Z‘)], X € (0,7[), (5)
70) = §(m) = 0,
where ¢; (x) and @; (x) are the corresponding eigenfunctions, respectively.
Normalizing the period to 2, (1) can be written to
a)zu,, —Uyy +mu =¢eg(x,t,u), xel0,x], t eR. (6)
We look for periodic solutions of (1)—(2) in the Banach spaces
o0
Xos = Jux, 1) = > ujn)g;jx) | u;j € H' R, R),
j=1
e .
laell o =D llujli3 576> < +oo )
j=l1
or look for periodic solutions of (1)—(3) in the Banach spaces as follows
o0
Xos = Julx,0) =D a;j(0)¢;(x) |i; € H' (R, R),
j=l1
o
lully s = D Ml l5 5% e* < 400 ®)

j=1

where s > 1/2, 0 > 0.
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For convenience, the spaces X ¢ and X o.s» the eigenvalues A and X, the eigenfunc-
tions ¢ and @, are unified into X, g, A, and ¢, respectively. And we write X, s for Xj,
llullg,s for |lulls. For s > 1/2, X, is a multiplicative Banach algebra (the proof is as
in [4], Appendix 6.5), namely

Vuy,up € Xy = ujup € Xy, and |ujuzlly < C(s)|lupllslluzlls.

For the two boundary value problems above, we can get the same conclusion as
follows.

Theorem 1 Forthefixed0 < @, < @y, thereares, k € N, suchthatVg € C*([0, w]x
RxR),Vy € (0, A1), there existeg, K, C > 0,amap u € C! (10, g9] x [@w1, @2]; Xo)
with

- eK . K - ¢k
lllo < —,  |Deullo < —,  [Doillo < —,
Y Y Y

and a Cantor like set Aso C [0, 9] X [@1, @3] such that u(e, w) is a solution of (1)—(2)
or (1)-(3).
Moreover, the set A satisfies Lebesgue measure property:

[Aso| = €0(@2 — w1)(1 = Cy),

i.e. limy 0 (|Aool/e0(w2 — @1)) = 1.

3 The Nash-Moser iteration scheme

Consider the orthogonal splitting X; = X @ X+ where

X .= [u € Xy

u(x, )=y uj(t)wj(X)],

)thNn

XMWt = [u € X,

u(x,t)y= > uj<r><p,~(x>],

Aj>Ny

with N, := No2", n € N, and Ny € N large enough.

The convergence of the Nash-Moser scheme is based on properties (P1)—(P5) below.
The first three properties are standard for the composition operator f : X; — X
defined by f(u)(x,t) := g(x, t,u(x,1)).

(P1) (Regularity) f € C>(Xy; X) and f, D f, D? f are bounded on {|u|; < 1}.
(P2) (Tame) Vs < s’ < k, Vu € Xy such that |lu|y < 1, | f@)|y < C(s)(1 +
flaells).

(P3) (Taylor Tame) Vs < s’ < k —2,Vu, h € Xy such that ||u|s, |k]ls < 1,

1/ G+ 1) = f@) =Dl = €6 (1012 + WAl el )
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Where D f (1) = 9,g(x, t, u(x, t)). In particular, for s’ = s,
I f+h)— f) —Dflhll, < Clhl;.

We refer to the references [19,21] for the proof of (P2). Properties (P1) and (P3)
are obtained similarly.

We assume the existence of orthogonal projectors respectively onto X ) and X -+
denoted by P, : X — X® and Pt : X — XL,

(P4) (Smoothing) For all s, > 0, Vn € N, there hold

(7 = Po)ulls < Ny llullser, Vi € X, (10)

I Pautlls4r < Ny llulls, Vu € X, ©))

where [ is the identity map.
The key property (P5), proved in Sect. 5, is an invertibility property for the lin-

earized operator
Ly (e, w,u(e, w)) [h] := Lyh — eP,D f(u(e, w))h, (11
where L, := ©?3? — 82 + m.

Denote J,, := {j€N| I <Xj<Ny},n=0,12,....
For y € (0, A1), © > 3, we define

Ag = I(s, w) € [0, g0] x [@1, @2] : |wp; — A j| > Jlr VjeJo le N],

14 .~
Apyl = H(s, w) € Ay :|lowp; — Aj| > J_T VjeJnt, L e N}

for every n = 0, 1,2, ..., where 1’12 (I € N) are eigenvalues of the following
problem
" + 2y — 0,
y T p7y (12)
y(@) =yt +m).

(P5) (Invertibility of £,,) Assume thatu € X, (¢, w) € A, 41, there exist positive
constants 8y, K’ such that /Y < 8y, then L, is invertible and

K/
12, (&, 0, who < 7N,§ Ihllo, VA e XD, (13)
Proof The proof will be given in Sect. 5. O

Lemma 1 (initialization) For (e, w) € Ao, there are positive constants K, 81 such
that €y < 8, then there exists a solution ug = ug(e, w) € X of equation
Lyu = e Py f(u) satisfying |luollo < eKo/y.
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Proof Since the eigenvalues of L,, satisfy

lwpr — 2| > L, Vj €30, [ €N,
>

so L,, is invertible on X @ and, for some K|,

K\N{

1Ly hllo < hllo. VheXO,

By the contraction mapping theorem, using the property (P1), for £/y small, there
exists a unique solution ug := ug(e, ) of equation L,u = &Py f(u) satisfying
lluollo < eKo/y- o

For (¢, w) € Ay, n > 1, we construct a sequence {un},‘j‘;0 by

Unt1 = tn — L1 Wn) " [Lottn — & Pay1 fun)], (14)
and let ho = ug, hpy1 = tps1 — Uy, n=0,1,2,....

Lemma 2 (induction step) There exist K>, f := 4t —2, and 5> small enough. Assume
that hy € X(k)forallk =1,2,...,n satisfy

eKy _
Ihillo < =N

and u, defined in (14) solve L,u = e P, f (u) foralln =0, 1,2,...If (e, w) € Ay+1
and e]y < 8, then there exists h,y1 € X"V satisfying

Vsl < 22N, (15)
J/ n

Proof Taking into account Lyu, = eP, f (u,), for h,1, we have
L1 (up)hnpr = €(Ppi1t — Pp) f(un) + €Ppy1 Qun, hnt1), (16)
where
Qun, hnt1) = fun + hny1) — fun) =D fun)hpir.
Consider the fixed point problem
hint = €Lt )~ (Pt = Po) f (tn) + P Q1 := Glhny1)

for h, 11 € XD We shall prove that G is a contraction. By (14) and the properties
(P1)—(P4),
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K
1G )0 < Z== (I(Past = Pa) f @a)lle—1 + | Pus1 Qlle—1)

14
eK' (g )
= (NP1 Pust f @) o1 + Cilnsa 12 )
eK’ _p )
= - (MG 4 1) + Crllhaa )
eK’
=

(NP es+ Ny Ihal)

<

If||hnt1llo < pnt1 = (eKz/y)N,fﬁ,then G (hn+1)llo < pu+1 fore/y small enough,
ie. G(By+1) € But+1 = {llhllo < pu+1}- Therefore the lemma follows from the
contraction mapping theorem. O

4 Proof of Theorem

The goal of this section is to prove our main result based on Sect. 3.

Lemma 3 (existence of solution) Suppose that A = mnzo Ay # 2. If (e,w) €
Ax and ey < 83 small enough, then the sequence {u,},>, converges in Xg to
Uoo = ano hy,. ux is a solution of the equation (6) and

ek
lucollo = —

a7)

for some K.

Proof By Lemmas 1 and 2, the series Zn>0 h, converges, u, converges to s in Xg

and (17) holds true. O
Lemma 4 Assume the hypotheses of Lemma 2, then there exists constant K3 such
that
eKs3 eKL
192hollo < et 192 hns1ll0 < y—w;anl, n=01.2,....

Proof Note that hg = ug solves L,u = ¢ Py f (u). It implies
242 P
w0 ho + Ajhg = &Py f(u).

Thus ||8,2h0||0 < eK3/yw? for some K3.
It follows from (11) and (14) that

@97 hps1 = &(Pus1 — Po) f (n) + 05hnst — mhygy — € Pas1 D f ().
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Hence, by (P2), (9) and (15), there exists some constant Ké such that

@182 hns1llo < eNy Pl Pust fn)llp + N2 s llo + €D f ) hns1 llo

K5 -8
= y‘Nn+1

forn =0,1,2,.... It completes the proof. O

Lemma 5 (estimate of the derivatives) Assume the hypotheses of Lemma 3, then
D¢ oun converges to D, ,us in Xg satisfying

K e
[Detoollo < e [Douscllo < el (18)

Proof By the proof of Lemma 1 and the implicit function theorem, (g, ®) — ug(e, w)
is in C!(Ag, Xo) and | D¢ ouollo < Ko/y.

Next, assume by induction that &, (e, w) is a C! map defined in A, for every
n=0,1,2,.... We shall prove that 4,11 (e, w) is C! too. Recall that hp41 is defined
for (¢, w) € Apy1 as a solution in X+ of Eq. (16). We claim that the operator

£n+1(“n+1)[1] = Lwz — &Py 1D f(un + hpt1))[z] (19)

is invertible. In fact,

2/
K
NP,

I
I [Lns1@ng1) = Log1@n) | Bugillo < el f n)hnyillo <

which together with (13) gives

2 !
e“K'K
ILot1 () ™" [Logt Wng1) = L1 )] llo < v ZNEF.

Thus,

1Lns1 n D) ™" [ Lot 1) — Logr @a)] llo <

N =

provided that £ /y is appropriate small, while n is appropriate large enough. This shows
that £, 4+1(w,+1) is invertible and

!
-1
I Lns1(nt1)™ Mo < > 1

As a consequence, by the implicit function theorem, the map (¢, ) — hj,41(€, ) is
in C! (A1, XOHD).
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By (16),
Lohyyr — ePppilf (un + hpng1) — fun)] — e(Pog1 — Py) f(uy) = 0. (20)

Differentiating the Eq. (20) with respect to w and utilizing L, 41 (¢4,41 y~! then taking
the norm || - ||o on both sides, we obtain

/

[Bunrily = =Ny (120 @ harDllo + 16 Pust = PODf Wn)duttall

+lle Pt [Df @n + hs1) = D ()] dottnlo)
2¢K’ (ZKé

n n
wt (52N L+ CaN T S Nauhillo+Cspngt D 18 lo)
Y Y i=0 i=0
ek
—— N N5
2 "Yn+14"n
14

IA

=<

Hence, we deduce [|0,up+11]l0 < eK /y? which implies ||Dyuxllo < eK/y2.
Similarly, differentiating the Eq. (20) with respect to ¢ gives

Lot1UnyD)[0shng1] = Pu f(un) — Pog1 f (1)
+ ePyD f(un)0suy — & Pyp1D f(up41)0:up,

and then, we can obtain the estimate for d.%,1 by using the same method as above.
]

Finally we can define, by means of a cut-off function, a C!-Whitney extension
g1 € CH(Ag, X" DY of uyyq as iiyy1 = ity + hpy satisfying

- ek
s |Dettllo < —,

~ & ~
lallo = —.  [IDeitllo = —
Y Y Y

where i), h, 1 are obtained through the corresponding Whitney extension procedures.

Lemma 6 (measure estimate) For T > 3, there exists § < min{é;,i = 0, 1,2, 3}
such that the Cantor set Ax, has measure property: for every interval (@1, @) with
0 < ] < Wy < +09, there is a constant C depending on (w1, @) such that |Aso| >
go(@wr — @w1)(1 — Cy).

Proof Given ¢, we need to prove that the complementary set E := | J, j=1 € ; has
small measure, where

_ Y
Q= 1we (@1,m): |wPl_)Lj|§.—T],
J

and Qo ; = @ forall j > 1.
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Note that [/4 < 9,(wp;) < 2y/j* provided that ¢/w < & small enough. In
addition,

a_)]l—jlr < Aj <5)zl+jlr,
which implies
. 1 [ _ _ 2 _ _
8} = o ((wz — ol + J_)f/) +1 < Kl(wy — @1),

where ¢ :=inf{[A;41 —Aj|: j > 1}
For fixed 0 < @1 < w2 < +00,if € ; N (w1, @2) is nonempty, then

o
8
EEDY ZTZKI(J)Z —@1) < Cy (@ — @)
J=1
because the series Zjozl 1/j7 converges. Thus

[Aso(e) N (@1, @2)| = (w2 — w1)(1 = Cy).

Therefore
£0
Aol > / (@2 — @1)(1 — Cy)de = eo(@2 — n)(1 — C).
0
and we get the thesis. O

5 Inversion of the linearized operator

In this section, we prove the key property on the inversion of the linearized operator
defined in (11). We also write the operator

Ly=D+eM
with

Dh := w’hy — hyy + mh,
Mh := P,(ah), a(x,t):=—0,g8(x,t,u(x,t)).

Next, it is easy to show the result below.

Lemma 7 Let P12 and iy (I € N) be the eigenvalues and eigenfunctions of the problem
(12), then the eigenfunctions W, form an orthonormal basis of H' ([0, 7 1) with respect
to the product (u, v) g1 = fon [u'v' + uv]de.
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Lemma 8 (inversion of D) Let plz(l € N) be the eigenvalues of the problem (12).
Forall j € 3,41, If (g, w) satisfies the conditions

Y

|wpi(e.w) 4| > . LeN, @1
JT

then D is invertible, and
-1 ¢ (n+1)
1D~ hllo < ?”h”r, Vh e X (22)

for some positive constant C.
Proof We develop Dh =" D;h;(t)p;(x), where
Djz=0’"+2z=) (?»5 - wzpzz) (), 2= avi().
leN leN

Thus, each D; is the diagonal with respect to the basis ¥;(1). By (21),Vj € 3,41, we
have D; is invertible and

|o7'2),, = 2 el = i
iz = —— 5 lzllm Zll g
J 1 2 2.2 H' = H

" leN Mj @y |
so that

- c?
1D~ h1I3 < ﬁuhn%

for some positive constant C. It implies (22) holds true. O

Lemma 9 Assume the hypotheses of Lemma 8. Define |D|~V/2 : X — X ™ obeys

DI7Ph= D" DI (1)) (x),
lf)nijn

then

_ K4 Ky
P78 = Sl = N s, YREX.23)

V7 VY

—1/2
Proof Due to ”|Dj| / ZHHI < (Ky/Japlizll g for some K, where

. 2 2 2
o; ;= min{|A; — » > 0,
= min(125 — o pjl}
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we have
—12, || Ka/tz 2 25 20
2] B S VAV
o,s o
ISA-_/SNII J
K27 .
> i3, e
lijan
72
< —-hlGge YheX®
whence (23) follows. In particular,
_ K4 Ky ¢
[io20] < Sy = Z2nEinlo,
UG N/

6 Proof of (P5)
Proof Let L,(u) = |D|'?(U + ¢R)|D|'/?, where
U:= D"\ ?*DID|"?, R :=|DI"'*M|D|"V>.

It is easily to prove that ||| := sup, <1 IUAll = 1.
Noting that
: 2.2 2 : 14
j = min —A-}>mn Aj —Ajly = —=
% zelN{|wpl J] _zell\l{j|wpl j|}_jf

forall j > 1, we get agoy > yz/(kl)f, k,l > 1.
Forh e XM, Rh =3, _y (Rh);e with

(RRYk = Dkl ™ 2 (MIDI™ Py = 1Dkl ™2 (Paa D 11~ Py,

AI=<Np
we deduce
lall c
IRl <C D bl < =Sk,
AISNn iy V
where

Sk = Z ||a||H|(maX{k,l}) Al gt

A =Ny
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Let

S(t) = Zxkan Sie | then

c? c?
IRAIZ = D IR k¥ < = D" Stk¥e® = — 5|7
)\kSNn y )\kan y

It turns out that § = P, (bc) with

and

b(t) =D lalm (max{k, 1}) ell!

1eN

ct):= D lhllpe”.

A <Ny

Hence

eC eC eC’ 1
leRAlls < —blisliclls < —llalls4cllklls < —kls < || A,
Y Y Y 2

provided that we take ¢/y small enough. Then Neumann series U + ¢R is invertible
in (XD |- |ls), and |4 + eR)"Lh|ls < 2||h|ls. Therefore

_ _ T K’
1L ()~ Rllo = H'D' V22U +eR) D170 57N;||h||o.

0
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