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Abstract We introduce the concept of Engel manifold, as a manifold that resem-
bles locally the Engel group, and find the integrability conditions of the associated
sub-elliptic system Z1 f = a1, Z2 f = a2. These are given by Z2

1a2 = (Z1Z2 +
[Z1, Z2])a1, Z3

2a1 = (Z2
2 Z1 − Z2[Z1, Z2] − [Z2, [Z1, Z2]])a2. Then an explicit

construction of the solution involving an integral representation is provided, which
corresponds to a Poincaré-type lemma for the Engel’s distribution.
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1 Introduction

Integrability conditions for an elliptic systems of equations was well studied. In this
case the system of equations can be described locally as a set of m vector fields
X j = ∂x j on R

m , such that for given m smooth functions a j (x), we ask for finding a
function f satisfying

∂x1 f = a1(x)

· · · = · · · (1.1)

∂xm f = am(x).

Standard results of ODE systems state that the system (1.1) has a solution if and only
if the following integrability conditions hold

∂i a j (x) = ∂ j ai (x), 1 ≤ i, j ≤ m.

The necessity of this condition is mainly based on the vanishing commutator relations
[∂xi , ∂x j ] = 0, and the fact that the number of vector fields equals the dimension of
the space. None of these conditions do not hold in the case of sub-elliptic systems, as
will be made clear in the following.

A sub-elliptic system is a system of equations, where the number of equations is
less than the dimension of the space. The precise definition is given in the following.
Considern vector fields X1, . . . , Xn defined locally on amanifoldM ,withn < dim M .
The system

X1( f ) = a1
· · · = · · · (1.2)

Xn( f ) = an

with a j smooth functions on M is a sub-elliptic system. The problem of studying the
existence of solution f was asked for instance in [2, p. 51].

Tohaveuniqueness (up to an additive constant) for the solution f of the system (1.2),
we need to ask extra conditions on the vector fields X j . The uniqueness is equivalent
with the fact that the associated homogeneous system has a constant solution, i.e., if
Xi ( f ) = 0, i = 0, . . . ,m, then f = c, constant. This follows easily if the horizontal
distribution is bracket-generating, i.e., if the vector fields X j , together with finitely
many of their iterated brackets span the tangent space of the space M at each point.
This means that for each x ∈ M , there is an r > 1 such that

Xi , . . . , [Xi , X j ], . . . , [Xi , [X j , Xk]], . . . , [. . . [Xi1 , . . . , [Xir , Xir+1 ]] . . .]

span TxM .
The bracket generating condition implies also the regularity of solution f . Applying

the vector X j to the j th equation of system (1.2) and summing over j yields
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∑

j

X2
j ( f ) =

∑

j

Xi (ai ) ∈ F(M).

Assuming that the bracket generating condition holds, then by Hörmander’s theorem
(see [7]) the operator

∑
j X

2
j is hypoelliptic, and hence f must be smooth. Hence,

if a solution of the system (1.2) exists, then it is smooth; in fact all solutions are
C∞-smooth, since any two solutions differ by a constant.

Therefore, the only non trivial problem is the existence of a solution f for the system
(1.2). It turns out that this is equivalent with some integrability conditions satisfied
by the vector fields X j , and the integrability conditions depend on the vector fields.
Since Xi and X j do not commute, we cannot hope to obtain an integrability relation
as simple as Xia j = X jai .

The progress towards finding integrability conditions covers so far Heisenberg,
Grushin andMartinet distributions. The integrability conditions were found in the case
of Heisenberg vector fields onR3 in [2, p. 53], and then generalized to Heisenberg and
Grushin manifolds in the paper [5]. The article [4] uses symmetry reductions from the
Heisenberg and Engel distributions to provide integrability conditions for the Grushin
andMartinet distributions. A Poincaré lemma for the Heisenberg group is found in [6].
The present paper continues the idea of paper [5] to find the integrability conditions on
the Engel distribution and, in general, for Engel manifolds. The novelty of the study of
these manifolds is that they are of constant step 3, while the Heisenberg distributions
are on step 2.

The present paper provides a variant of Poincaré’s Lemma in the integral form for
the case of the Engel’s vector fields. This is a continuation of the work done in articles
[4] and [5] and [6]. The present paper produces an explicit integral formula for the
solution of the Engel’s sub-elliptic system. It is worth noting that the Engel’s group in
its matrix form was introduced in [8], while a different version of the Engel’s group
was studied in [1].

One good reason for investigating different versions of Poincaré’s Lemma on sub-
Riemannian manifolds is to understand how sub-elliptic systems of equations work
and how they are different or similar to the well studied elliptic systems. It is our hope
that a Poincaré Lemma can become in the sub-Riemannian context as powerful and
influential as its elliptical, classical, version.

The plan of the paper is as in the following. In Sect. 2 we review some basic
definitions useful in later sections. Section 3 deals with the construction of the Engel’s
group, the reduction of Engel’s vector fields, and the definition of Engel’s manifolds.
The main result is given and proved in Sect. 4. It is worth noting that even if Engel’s
distribution is in R

4, there are only two integrability conditions needed. Section 5
provides an explicit construction of the solution as the work done by a force along a
curve tangent to Engel’s distribution. The solution involves an integral representation
containing expressions of the integrability conditions.

2 Basic notions

In this sectionwe review a few notions from differential geometry, whichwill be useful
in later sections of the paper. Let (M, g) be a Riemannian manifold and let U be a
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vector field on M . The curl of U is the 2-covariant, antisymmetric tensor, A, defined
by

A(X,Y ) = Yg(U, X) − Xg(U,Y ) + g(U, [X,Y ]). (2.1)

A concurrent notation for the tensor A is curl U . We also note that A(X, X) = 0 and
A(X,Y ) = −A(Y, X).

The gradient of a smooth function f is a vector field, grad f , defined by

g(grad f,Y ) = Y ( f ), ∀Y ∈ X (M).

The vector field U is a gradient vector field on the manifold M if there is a smooth
function f defined on the manifold M such that grad f = X .

The relation between curl and gradient is given by curl(grad f ) = 0, for any smooth
function f on M . More precisely, the following result holds:

Let M be a connected and simply connected manifold. Then X is a gradient vector
field if and only if curl X = 0.

This result works on Riemannian manifolds. A proof of this result can be found in
Calin and Chang [3]. The goal of this paper is to study a similar problem on Engel
manifolds, which are particular cases of sub-Riemanain manifolds. Using the bracket
generating property we shall reduce the sub-Riemannian problem to a Riemannian
one and then apply the aforementioned result.

3 Engel’s group

3.1 Matrix version

We shall start with the matrix version of the Engel’s group. Consider the set of upper-
triangular matrices of the form

G =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

1 a c d
1 1 b 1

2b
2

0 0 1 b
0 0 0 1

⎞

⎟⎟⎠ ; (a, b, c, d) ∈ R
4

⎫
⎪⎪⎬

⎪⎪⎭
.

Since the matrix multiplication provides

⎛

⎜⎜⎝

1 a1 c1 d1
1 1 b1

1
2b

2
1

0 0 1 b1
0 0 0 1

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

1 a2 c2 d2
1 1 b2

1
2b

2
2

0 0 1 b2
0 0 0 1

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1 a1 + a2 c1 + c2 + a1b2 d1 + d2 + 1
2a1b

2
2 + c1b2

1 1 b1 + b2
1
2 (b1 + b2)2

0 0 1 b1 + b2
0 0 0 1

⎞

⎟⎟⎠
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it follows that G has a group structure. This group can be also considered as a group
on R4 with the following composition law

(x1, x2, x3, x4) ∗ (y1, y2, y3, y4) = (z1, z2, z3, z4), (3.1)

z1 = x1 + y1
z2 = x2 + y2
z3 = x3 + y3 + x1y2

z4 = x4 + y4 + 1

2
x1y

2
2 + x3y2.

It can be shown that the right invariant vector fields of this group are

X1 = ∂x1 + x2∂x3 + 1

2
x22∂x4

X2 = ∂x2

X3 = ∂x3 + x2∂x4
X4 = ∂x4 .

The only non-vanishing brackets are given by

[X2, X1] = X3, [X2, X3] = X4.

Swapping coordinates x1 and x2 provides the following version of the vector fields
on R4

Y1 = ∂x1

Y2 = ∂x2 + x1∂x3 + 1

2
x21∂x4

Y3 = ∂x3 + x1∂x4
Y4 = ∂x4 ,

with the commutation relations

[Y1,Y2] = Y3, [Y1,Y3] = Y4, [Y2,Y3] = 0.

It is worth noting that the vector fields Y1, Y2 are left invariant on the Lie group
(R4, ◦) with the composition rule given by (see [2, p. 315])

x ◦ y =
(
x1 + y1, x2 + y2, x3 + y3 + 1

2
(x1y2 − y1x2),

x4 + y4 + 1

2
(x1y3 − x3y1) + 1

12

(
x21 y2 − x1y1(x2 + y2) + x2y

2
1

))
.
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3.2 Engel’s distribution

The rank 2 distribution E generated on R
4 by the vector fields

Y1 = ∂x1 (3.2)

Y2 = ∂x2 + x1∂x3 + 1

2
x21∂x4 (3.3)

is called the Engel’s distribution. Since the vector fields Y1, Y2, Y3 = [Y1,Y2], Y4 =
[X1, [Y1,Y2]] are linearly independent at each point of R4, it follows that the step of
the distribution E is constant, equal to 3 everywhere.

On the other side, since [Y j , [Y1, [Y1,Y2]]] = 0, j = 1, 2, then the nilpotence class
of E at each point is also equal to 3 (nesting more than three brackets yields a zero
filed).

3.3 The reduced Engel vector fields

The vector field Y2 has a quadratic coefficient x21 . However, performing a transforma-
tion of coordinates, the quadratic coefficient reduces to a linear one. This will be done
in the following.

Consider the diffeomorphism ϕ : R4 → R
4, y = ϕ(x), given by

y1 = x2, y2 = x1, y3 = x1x2 − x3, y4 = 1

2
x21 x2 − x1x3 + x4.

This transforms the previous vector fields into vector fields with linear coefficients

Z1 = ϕ∗(Y1) = ∂y1 (3.4)

Z2 = ϕ∗(Y2) = ∂y2 + y1∂y3 + y3∂y4 . (3.5)

The corresponding commutation relations are

[Z1, Z2] = Z3 = ∂x3, [Z1, Z3] = 0, [Z2, Z3] = −∂y4 = Z4.

3.4 Engel pair of vector fields

Two vector fields Z1, Z2 on a 4-dimensional manifold M form an Engel pair if the
commutations relations are given by

[Z1, Z2] = Z3, [Z1, Z3] = 0, [Z2, Z3] = Z4, (3.6)

and all other iterated Lie brackets vanish.
For instance, the vector fields {Z1, Z2} given by (3.4) and (3.5) form an Engel pair

of vector fields. Also, the vector fields {Y2,Y1} given by (3.2) and (3.3) form an Engel
pair.
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3.5 Engel manifold

An Engel manifold is a manifold which resembles locally the Engel’s group. More
precisely, we have the following definition.

Definition 1 An Engel manifold is a 4-dimensional manifold M that is endowed with
a rank 2 distribution that is locally spanned by an Engel pair of vector fields.

In particular, R4 together with the distribution E = span{Y1,Y2} is an Engel man-
ifold.

The next section deals with integrability conditions on an Engel manifold. In par-
ticular, these also apply to the Engel’s group.

4 Integrability conditions

Thegoal of the present section is tofind integrability conditions for the sub-Riemannian
system

Z1 f = a1, (4.1)

Z2 f = a2, (4.2)

where {Z1, Z2} is an Engel pair. Since the distribution spanned by Z1 and Z2 is bracket
generating, the solution f is unique up to an additive constant.

Theorem 1 Let M be a 4-dimensional manifold, such that {Z1, Z2} is an Engel pair
of vector fields on M. For a pair of smooth functions a1 and a2 defined on M, we have

{
Z2
1a2 = (Z1Z2 + [Z1, Z2])a1

Z3
2a1 = (Z2

2 Z1 − Z2[Z1, Z2] − [Z2, [Z1, Z2]])a2

⇐⇒
{∃ a smooth function f

such that Z1 f = a1 and Z2 f = a2.

Proof “⇐�”(Closeness) Assume there is a smooth function f on M such that Z1 f =
a1, Z2 f = a2. We shall show that the integrability conditions are satisfied by a direct
computation.

For the first condition we have the following sequence of equivalences

Z2
1a2 = (Z1Z2 + [Z1, Z2])a1 ⇐⇒

Z2
1 Z2 f = (Z1Z2 + [Z1, Z2])Z1 f ⇐⇒

(Z2
1 Z2 − Z1Z2Z1) f = [Z1, Z2]Z1 f ⇐⇒

Z1(Z1Z2 − Z2Z1) f = [Z1, Z2]Z1 f ⇐⇒
Z1[Z1, Z2] f = [Z1, Z2]Z1 f ⇐⇒

[Z1, [Z1, Z2]] f = 0 ⇐⇒
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[Z1, Z3] f = 0,

which holds true for any smooth function f . This implies that the first integrability
condition is satisfied.

The second integrability condition can be written equivalently as

Z3
2a1 = (Z2

2 Z1 − Z2[Z1, Z2] − [Z2, [Z1, Z2]])a2 ⇐⇒
Z3
2a1 = (Z2

2 Z1 − Z2Z3 − [Z2, Z3])a2 ⇐⇒
Z3
2a1 − Z2

2 Z1a2 = −Z2Z3a2 − Z2Z3a2 + Z3Z2a2 ⇐⇒
Z2
2(Z2a1 − Z1a2) = −Z2Z3a2 − Z4a2 ⇐⇒

Z2
2(Z2Z1 − Z1Z2) f = −Z2Z3Z2 f − Z4Z2 f ⇐⇒

−Z2
2 Z3 f = −Z2Z3Z2 f − Z4Z2 f ⇐⇒

(Z2Z3Z2 − Z2Z2Z3) f = −Z4Z2 f ⇐⇒
Z2[Z3, Z2] f = −Z4Z2 f ⇐⇒

−Z2Z4 f = −Z4Z2 f ⇐⇒
[Z4, Z2] f = 0,

which holds true for any smooth function f , since Z2 and Z4 commute. This implies
that the second integrability condition holds true.

“�⇒”(Exactness) Assume the integrability conditions

Z2
1a2 =(Z1Z2 + [Z1, Z2])a1

Z3
2a1 =(Z2

2 Z1 − Z2[Z1, Z2] − [Z2, [Z1, Z2]])a2

are satisfied. We shall show that exists a smooth function f such that Z1 f = a1,
Z2 f = a2.

Let Z3 and Z4 be the vector fields defined by relation (3.6). Since {Z1, Z2, Z3, Z4}
form a basis of the tangent space toM , we can consider the Riemannian metric g on M
with respect to which {Z j } j is an orthonormal basis at each point. Then the gradient
of any smooth function f on M can be written as

grad f =
4∑

j=1

Z j ( f )Z j .

Let

a3 =[Z1, Z2] f = Z1a2 − Z2a1 (4.3)

a4 =[Z2, Z3] f = Z2a3 − Z3a2 (4.4)

be smooth functions and consider the vector field U = ∑
j a j Z j on M . Using the

following sequence of equivalences we shall complete to a 4-dimensional problem
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{
Z1 f = a1
Z2 f = a2

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

Z1 f = a1
Z2 f = a2
Z3 f = a3
Z4 f = a4

⇐⇒ grad f = U ⇐⇒ curl U = 0,

where the operators grad and curl are taken with respect to the aforementioned metric
g. Since the tensor A = curl U is zero if and only if it vanishes on a basis, then

curl U = 0 ⇐⇒
{
A(Z1, Z2) = 0, A(Z1, Z3) = 0, A(Z1, Z4) = 0
A(Z2, Z3) = 0, A(Z2, Z4) = 0, A(Z3, Z4) = 0.

(4.5)

Hence, it suffices to show the identities on the right side of (4.5). We shall do this
considering each identity at a time.

(i) Showing A(Z1, Z2) = 0. From the curl’s formula (2.1) we have

A(Z1, Z2) = Z2g(U, Z1) − Z1g(U, Z2) + g(U, [Z1, Z2]︸ ︷︷ ︸
=Z3

)

= Z2a1 − Z1a2 + a3
= 0,

by equation (4.3).
(ii) Showing A(Z2, Z3) = 0. From the curl’s formula (2.1) we have

A(Z2, Z3) = Z3g(U, Z2) − Z2g(U, Z3) + g(U, [Z2, Z3]︸ ︷︷ ︸
=Z4

)

= Z3a2 − Z2a3 + a4
= 0,

by equation (4.4).
(iii) Showing A(Z1, Z3) = 0.

From the curl’s formula (2.1) we have

A(Z1, Z3) = Z3g(U, Z1) − Z1g(U, Z3) + g(U, [Z1, Z3]︸ ︷︷ ︸
=0

)

= Z3a1 − Z1a3
= [Z1, Z2]a1 − Z1(Z1a2 − Z2a1)

= ([Z1, Z2] − Z1Z2)a1 − Z2
1a2

= 0,

by the first integrability condition.
(iv) Showing A(Z2, Z4) = 0.
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From the curl’s formula (2.1)

A(Z2, Z4) = Z4g(U, Z2) − Z2g(U, Z4) + g(U, [Z2, Z4]︸ ︷︷ ︸
=0

)

= Z4a2 − Z2a4
= [Z2, Z3]a2 − Z2(Z2a3 − Z3a2)

= [Z2, Z3]a2 − Z2
2a3 + Z2Z3a2

= [Z2, Z3]a2 − Z2
2(Z1a2 − Z2a1) + Z2Z3a2

= Z3
2a1 − (Z2

2 Z1 − Z2Z3 + [Z3, Z2])a2
= 0,

by the second integrability condition.
(v) Showing A(Z1, Z4) = 0. From the curl’s formula (2.1)

A(Z1, Z4) = Z4g(U, Z1) − Z1g(U, Z4) + g(U, [Z1, Z4]︸ ︷︷ ︸
=0

)

= Z4a1 − Z1a4. (4.6)

It suffices to show that Z4a1 = Z1a4. Recall from cases (iii) and (iv) that

Z1a3 = Z3a1, Z2a4 = Z4a2.

Using that Z1 and Z3 commute, we have

Z1a4 = Z1(Z2a3 − Z3a2)

= Z1Z2a3 − Z1Z3a2
= Z1Z2a3 − Z3Z1a2. (4.7)

and

Z4a1 = [Z2, Z3]a1 = Z2Z3a1 − Z3Z2a1
= Z2Z1a3 − Z3Z2a1. (4.8)

Using (4.7) and (4.8) we have the following sequence of equivalences

Z1a4 = Z4a1 ⇐⇒
Z1Z2a3 − Z3Z1a2 = Z2Z1a3 − Z3Z2a1 ⇐⇒
(Z1Z2 − Z2Z1)a3 = Z3Z1a2 − Z3Z2a1 ⇐⇒

[Z1, Z2]a3 = Z3(Z1a2 − Z2a1) ⇐⇒
Z3a3 = Z3a3,

which holds true. Therefore Z4a1 = Z1a4 and hence from (4.6) it follows that
A(Z1, Z4) = 0.
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(vi) Showing A(Z3, Z4) = 0.
From the curl’s formula (2.1)

A(Z3, Z4) = Z4g(U, Z3) − Z3g(U, Z4) + g(U, [Z3, Z4]︸ ︷︷ ︸
=0

)

= Z4a3 − Z3a4. (4.9)

Since [Z1, Z4] = [Z2, Z4] = 0, then Z4 commutes with Z1 and Z2. Recall from
(v) that Z4a1 = Z1a4. Therefore

Z4a3 = Z4(Z1a2 − Z2a1) = Z4Z1a2 − Z4Z2a1
= Z1Z4a2 − Z2Z4a1
= Z1Z2a4 − Z2Z1a4
= (Z1Z2 − Z2Z1)a4 = [Z1, Z2]a4 = Z3a4.

Substituting in (4.9) yields A(Z3, Z4) = 0.

Since A(Zi , Z j ) = 0, then from (4.5) it follows that curlU = 0, which leads to the
desired relation. �

5 Solution construction

Section 4 provides necessary and sufficient integrability conditions for the existence
of the solutions of the sub-Riemannian system (4.1 and 4.2). The bracket generating
condition of the Engel vector fields implies both the uniqueness and smoothness (via
Hörmander’s theorem) of the solution. This section deals with an explicit construction
of the solution f of the system (4.1 and 4.2).

We shall construct the solution f preserving the remarkable physical significance
as in the classical version of the Poincaré lemma in dimension 2. We shall briefly
recall this construction. Consider a and b continuous functions defined on the open
and contractible setU inR2. Let r(t) = t (x, y) = (t x, t y) = (

x(t), y(t)
)
, 0 ≤ t ≤ 1,

be the straight line segment from the origin to the point (x, y). Then the work done
by the 1-form ω = adx + bdy from the origin to the point (x, y) along the curve r(t)
is given by

f (x, y) =
∫ 1

0
a(t x, t y)x + b(t x, t y)y dt.

A straightforward computation provides

(
∂x f (x, y)
∂y f (x, y)

)
=

(
a(x, y)
b(x, y)

)
+

∫ 1

0

(
t y

−t x

)( ∂b

∂x
− ∂a

∂y

)
dt. (5.1)
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Obviously, if the condition

∂a

∂y
= ∂b

∂x

is satisfied, then f (x, y) satisfies the system ∂x f = a, ∂y f = b.
We shall work out a relation of type (5.1) in the case of the Engel vector fields (3.4

and 3.5). Recall first the equivalences

{
Z1 f = a1
Z2 f = a2

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

Z1 f = a1
Z2 f = a2
Z3 f = a3
Z4 f = a4

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

∂y1 f = a1
∂y2 f + y1∂y3 f + y3∂y4 f = a2
∂y3 f = a3 = Z1a2 − Z2a1
−∂y4 f = a4 = Z2a3 − Z3a2

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

∂y1 f = a1
∂y2 f = a2 − y1a3 + y3a4
∂y3 f = a3
∂y4 f = −a4

⇐⇒ ∇ f = V,

where the components of V are

V1 = a1, V2 = a2 − y1a3 + y3a4, V3 = a3, V4 = −a4. (5.2)

Theorem 2 Let Z1 = ∂y1 , Z2 = ∂y2 + y1∂y3 + y3∂y4 be the Engel vector fields on R
4

and consider

f (r) =
∫ 1

0
V (tr) · r dt, (5.3)

where r = (y1, y2, y3, y4). Define the expressions

C1 = Z2
1a2 − (Z1Z2 + [Z1, Z2])a1

C2 = Z3
2a1 − (Z2

2 Z1 − Z2[Z1, Z2] − [Z2, [Z1, Z2]])a2

Then

(Z1 f )(r) = a1(r) +
∫ 1

0

(
(y3 − y1y2)C1 − (y4 − y2y3)Z2C1

)
(tr) dt

(Z2 f )(r) = a2(r) +
∫ 1

0

(
(y4 − y2y3)C2

)
(tr) dt.

Proof Define the 4 × 4 skew-symmetric matrix

�i j = ∂Vj

∂yi
− ∂Vi

∂y j
.
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We start by computing the partial derivatives of f (r). A straightforward computation
involving the product and chain rules provides

∂

∂y1
f (r) = ∂

∂y1

∫ 1

0

4∑

i=1

Vi (tr)yi dt =
∫ 1

0

(
V1(tr) +

4∑

i=1

∂Vi
∂yi

(tr)
)
dt

=
∫ 1

0

(∂(tV1(tr))
∂t

−
4∑

j=2

t
∂V1
∂y j

(tr)y j +
4∑

j=2

∂Vj

∂y1
(tr)t y j

)
dt

= V1(r) +
∫ 1

0

4∑

j=1

� j1(tr)t y j dt.

Similarly, we have

∂

∂yi
f (r) = Vi (r) +

∫ 1

0

4∑

j=1

� j i (tr)t y j dt, ∀i = 1, . . . , 4,

which can be written as

∇ f (r) = V (r) +
∫ 1

0
�(tr) · (tr) dt. (5.4)

Multiplying by the matrix A =
(
1 0 0 0
0 1 y1 y3

)
on the left of the relation (5.4) we obtain

A∇ f (r) = AV (r) +
∫ 1

0
A(�(tr) · (tr)) dt ⇐⇒

(
Z1 f
Z2 f

)
(r) =

(
a1
a2

)
(r) +

∫ 1

0
A(�(tr) · (tr)) dt

The relation

A(�(tr) · (tr)) =
(

(y3 − y1y2)C1 − (y4 − y2y3)Z2C1
(y4 − y2y3)C2

)

is lengthy to be calculated by hand, but can be directly verified by MATHEMATICA
software. �

In the following we shall provide a sub-Riemannian description for the solution
f (r). LetH = span{Z1, Z2}. Then p → Hp ⊂ R

4 is a rank 2 distribution of constant
step, equal to 3 everywhere. The Riemannian metric gp : Hp ×Hp → Rwith respect
to which {Z1, Z2} are orthonormal, i.e., g(Zi , Z j ) = δi j , is unique and called the sub-
Riemannian metric defined by Zi . The metric g can be used to measure magnitudes
of vectors inH as well as lengths of curves tangent toH.
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Let γ (t) = (
y1(t), y2(t), y3(t), y4(t)

)
be a smooth curve in R

4. We would like to
find the constraints satisfied by γ such that γ̇ (t) ∈ Hγ (t). The velocity can be written
as

γ̇ (t) = ẏ1(t)∂y1 + ẏ2(t)∂y2 + ẏ3(t)∂y3 + ẏ4(t)∂y4
= ẏ1Z1 + ẏ2Z2 + (ẏ3 − y1 ẏ2)Z3 − (ẏ4 − y3 ẏ2)Z4.

Hence, the condition γ̇ (t) ∈ Hγ (t) is equivalent to the non-holonomic constraints

ẏ3 − y1 ẏ2 = 0, ẏ4 − y3 ẏ2 = 0. (5.5)

In this case γ̇ = ẏ1Z1+ ẏ2Z2 and thus g(γ̇ , γ̇ ) = ẏ21 + ẏ22 , and the length of the curve

γ (t), 0 ≤ t ≤ 1 is given by �(γ ) =
∫ 1

0
dγ =

∫ 1

0

√
ẏ21 (t) + ẏ22 (t) dt .

Using the fundamental theorem of calculus

∫

c
Y · dc =

∫ 1

0
〈Y, c′(t)〉 dt = f

(
c(1)

) − f
(
c(0)

)
,

it follows that the integral

f (r) =
∫ 1

0
V (tr) · r dt (5.6)

depends only on the end points of the curve c(t) = tr. Hence, we have the freedom
of choosing any curve, in particular a curve γ (t) tangent to the distributionH.

Let U = a1Z1 + a2Z2 be the vector field associated with our system Z1 f = a1,
Z2 f = a2. Then using (5.2) and the constraints (5.5) we have

∫ 1

0
〈V, γ ′(t)〉 dt =

∫ 1

0
(V1 ẏ1 + V2 ẏ2 + V3 ẏ3 + V4 ẏ4) dt

=
∫ 1

0
(a1 ẏ1 + a2 ẏ2) dt +

∫ 1

0
a3(ẏ3 − y1 ẏ2) dt

−
∫ 1

0
a4(ẏ4 − y3 ẏ2) dt

=
∫ 1

0
(a1 ẏ1 + a2 ẏ2) dt =

∫ 1

0
g(a1Z1 + a2Z2, ẏ1Z1 + ẏ2Z2) dt

=
∫ 1

0
g(U, γ̇ ) dt.

Therefore the solution can be written as

f (r) =
∫ 1

0
g(Uγ (t), γ̇ (t)) dt,
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where γ (t) is a curve tangent to the distribution H with γ (0) = 0 and γ (1) = r =
(y1, y2, y3, y4). This is the work done by the forceU along the curve γ (t) joining the
origin and r. We conclude with the following consequence of Theorem 2:

Corollary 1 If integrability conditions C1 = 0, C2 = 0 hold, then the unique (up to
an additive constant) solution of the system

Z1 f = a1, Z2 f = a2

is given by

f (r) =
∫ 1

0
g(Uγ (t), γ̇ (t)) dt.
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