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Abstract We study the non-selfadjoint Dirac system on a finite interval having non-
integrable regular singularities in interior points with additional matching conditions
at these points. Properties of spectral characteristics are established, and the inverse
spectral problem is investigated. We provide a constructive procedure for the solution
of the inverse problem, and prove its uniqueness. Moreover, necessary and sufficient
conditions for the global solvability of this nonlinear inverse problem are obtained.
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1 Introduction

Consider the boundary value problem L = L(Qω(x), Q(x), α, β) for theDirac system
on a finite interval with N regular singularities inside the interval:

BY ′ +
(
Qω(x) + Q(x)

)
Y = λY, 0 < x < π, (1)

(cosα, sin α)Y (0) = (cosβ, sin β)Y (π) = 0, (2)

where

Y (x) =
(
y1(x)
y2(x)

)
, B =

(
0 1
−1 0

)
, Q(x) =

(
q1(x) q2(x)
q2(x) −q1(x)

)
,
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Qω(x) = Q〈k〉
ω (x) = μk

x − γk

(
sin 2ηk cos 2ηk
cos 2ηk sin 2ηk

)
for x ∈ ωk+1/2∪γk+1/2, k = 1, N .

Here 0 < γ1 < γ2 < · · · < γN < π, ωp = (γp, γp+1), γk+1/2 = (γk+1 +
γk)/2, k = 1, N − 1, γ1/2 = γ0 = 0, γN+1/2 = γN+1 = π , q j (x) are complex-
valued functions, and μk are complex numbers. Let for definiteness, α, β, ηk ∈
[−π/2, π/2], Reμk > 0, μk + 1/2 /∈ N. Let q j (x) be absolutely continuous on
[0, π ] and |q j (x)| ∏N

k=1 |x−γk |−2Reμk ∈ L(0, π). If Qω(x), Q(x), α, β satisfy these
conditions, we will say that L ∈ W.

In this paper we establish properties of spectral characteristics and investigate the
inverse spectral problem of recovering L from the given spectral data. We provide a
constructive procedure for the solution of the inverse problem, and prove its unique-
ness. Moreover, necessary and sufficient conditions for the global solvability of this
nonlinear inverse problem are obtained.

Differential equations with singularities inside the interval play an important role in
various areas of mathematics as well as in applications. Moreover, a wide class of dif-
ferential equations with turning points can be reduced to equations with singularities.
For example, such problems appear in electronics for constructing parameters of het-
erogeneous electronic lines with desirable technical characteristics [1–3]. Boundary
value problems with discontinuities in an interior point appear in geophysical models
for oscillations of the Earth [4]. Differential equations with turning points arise in
various physical and technical problems; see [5] where further references and links to
applications can be found. We also note that in different problems of natural sciences
we face different kind of matching conditions in singular points.

The case when a singular point lies at the endpoint of the interval was investigated
fairly completely for various classes of differential equations in [6–10] and other
works. The presence of singularity inside the interval produces essential qualitative
modifications in the investigation (see [11]).

A few words on the structure of the paper. In Sect. 2 properties of spectral charac-
teristics are studied. For this we use the results from [12] where special fundamental
systems of solutions are constructed with prescribed analytic and asymptotic prop-
erties. In Sect. 3 we provide a constructive procedure for the solution of the inverse
problem, and prove its uniqueness. Necessary and sufficient conditions for the global
solvability of the inverse problem are presented in Sect. 4.

2 Properties of the spectrum

System (1) has non-integrable singularities at the points γk , hence it is necessary
to require additional matching conditions for solutions on the intervals ωk−1 and
ωk . We will do it as follows. It was shown in [12] that for x ∈ ωk−1 ∪ ωk there
exist a fundamental system of solutions S〈k〉(x, λ) = (S〈k〉

1 (x, λ), S〈k〉
2 (x, λ)) such

that

S〈k〉
1 (x, λ) ∼ (x − γk)

−μk

(
0
c01

)
, S〈k〉

2 (x, λ) ∼ (x − γk)
μk

(
c02
0

)
for x → γk .
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where c01c02 = 1. Let Y (x, λ) = a1(λ)S〈k〉
1 (x, λ) + a2(λ)S〈k〉

2 (x, λ) be a solution of
system (1) for x ∈ ωk−1. Then we put by definition

Y (x, λ) = a1(λ)S〈k〉
1 (x, λ)A〈k〉(λ) + a2(λ)S〈k〉

2 (x, λ)A〈k〉(λ),

for x ∈ ωk , where A〈k〉(λ) is a fixed given transition matrix for γk . For example, if
A〈k〉(λ) = I (I is the identity matrix) and Q(x) is analytic at γk , then this continuation
of the solution coincides with the analytic continuation through the upper half-plane

Imx > 0. If A〈k〉(λ) =
(

e2iπμk 0
0 e−2iπμk

)
, then it corresponds to the analytic contin-

uation through the lower half-plane Imx < 0.
Let S(x, λ) = (S1(x, λ), S2(x, λ)) be the fundamental matrix for system (1) with

the initial condition S(0, λ) = I and with the above mentioned matching conditions.
For definiteness, everywhere below A〈k〉(λ) = I, k = 1, N . The construction of this
fundamental matrix can be described as follows. If x ∈ ω0∪ω1, then we put S(x, λ) =
S〈1〉(x, λ)

(
S〈1〉(0, λ)

)−1
; moreover, if x ∈ ω1, then S(x, λ) = S〈2〉(x, λ)C 〈1〉(λ). Fix

x1 ∈ ω1. Then S〈1〉(x1, λ)
(
S〈1〉(0, λ)

)−1 = S〈2〉(x1, λ)C 〈1〉(λ), i.e.

S(x, λ) = S〈2〉(x, λ)
(
S〈2〉(x1, λ)

)−1
S〈1〉(x1, λ)

(
S〈1〉(0, λ)

)−1
, x ∈ ω1.

Analogously, one gets for x ∈ ωk :

S(x, λ)= S〈k+1〉(x, λ)

⎛
⎝

k∏
j=1

(
S〈 j+1〉(x j , λ)

)−1
S〈 j〉(x j , λ)

⎞
⎠ (S〈1〉(0, λ))−1, x j ∈ ω j .

(3)

Lemma 1 For x ∈ ωk and |λ(x − γk)| ≥ 1,

S(x, λ) = 1

2i

(
eiλx

[
i −1
1 i

]

〈k〉
+ e−iλx

[
i 1
−1 i

]

〈k〉

)

+
k∑
j=1

sin πμ j e
−ilλ(x−2γ j )+2ilη j

[ −i l
l i

]

〈k〉
,

[(
ai j

)n,m

i, j=1

]

〈k〉
:=

(
ai j + O

(
|λ(x − γk)|−ν

))n,m

i, j=1

, ν = min{1, 2Reμ1, 2Reμ2,

. . . , 2ReμN }, l =
{
1, arg λ ∈ 
−1 ∪ 
1,

−1, arg λ ∈ 
0,
, 
k =

{
λ

∣∣∣ arg λ ∈
(
π
5k − 3

6 − 2k
,

π
5k + 3

6 + 2k

]}
, k = 0, ±1.
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We prove the lemma by induction. According to [12], the matrix S〈k〉(x, λ) can be
represented by S〈k〉(x, λ) = E 〈k〉(x, λ)β〈k〉(λ), where E 〈k〉(x, λ) is the Birkhoff-type
fundamental matrix, and β〈k〉(λ) are Stockes multipliers.

Let x ∈ ω0. Then S(x, λ) = S〈1〉(x, λ)(S〈1〉(0, λ))−1 and (see [12])

S(x, λ) = 1

[2i]〈1〉
(
eiλx)[i]〈1〉 + e−iλx)[i]〈1〉 eiλx)[−1]〈1〉 + e−iλx)[1]〈1〉
eiλx)[1]〈1〉 + e−iλx)[−1]〈1〉 eiλx)[i]〈1〉 + e−iλx)[i]〈1〉

)
.

Suppose that the assertion of the lemma is true for x ∈ ωk−1. Let us prove it for
x ∈ ωk . It follows from (3) that for x ∈ ωk ,

S(x, λ) = S〈k〉(x, λ)(S〈k〉(xk−1, λ))−1S(xk−1, λ). (4)

We find the asymptotics for S〈k〉(x, λ)(S〈k〉(xk−1, λ))−1, using the asymptotics from
[12]. Denote l+ = l〈k〉, m+ = m〈k〉 for x > γk , and l− = l〈k〉, m− = m〈k〉 for
x < γk . One has

S〈k〉(x, λ)B
(
S〈k〉(xk−1, λ)

)T
BT

=
(
e−iλ(x−γk )+iηk

[ −i −i
1 1

]

〈k〉
+ eiλ(x−γk )−iηk

[
i −i
1 −1

]

〈k〉
H(eiπμkl+)

)

×H(e2iπμkm+
)H(λ−μk )β〈k〉Bβ〈k〉H(λ−μk )H(e2iπμkm−

)

×
(
e−iλ(xk−1−γk )+iηk

[ −i 1
−i 1

]

〈k〉

+ eiλ(xk−1−γk )−iηk H(eiπμkl−)

[
i 1
−i −1

]

〈k〉

)
BT ,

where H(z) =
(
z−1 0
0 z

)
, and T is the sign for the transposition. Since BH(z)BT =

H(z−1) and β〈k〉Bβ〈k〉BT = β
〈k〉
1 β

〈k〉
2 , it follows that

S〈k〉(x, λ)B
(
S〈k〉(xk−1, λ)

)T
BT

= β
〈k〉
1 β

〈k〉
2

(
e−iλ(x−γk )+iηk

[ −i −i
1 1

]

〈k〉
H(e2iπμk (m+−m−))

+ e2iλ(x−γk )−iηk

[
i −i
1 −1

]

〈k〉
H(eiπμk (l++2m+−2m−))

)

×
(
e−iλ(xk−1−γk )+iηk

[
1 i
−1 −i

]

〈k〉
+eiλ(xk−1−γk )−iηk H(e−iπμkl−)

[−1 i
−1 i

]

〈k〉

)
.
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Taking the relation β
〈k〉
1 β

〈k〉
2 = (4i cosπμk)

−1 into account, we calculate

S〈k〉(x, λ)
(
S〈k〉(xk−1, λ)

)−1

= 1

4i cosπμk
e−iλ(x+xk−1−2γk )+2iηk

[
2i sin

(
2πμk(m

− − m+)
) ( −i 1

1 i

)]

〈k〉

+ 1

4i cosπμk
e−iλ(x−xk−1)

[
2 cos

(
πμk(l

− + 2m− − 2m+)
) (

i 1
−1 i

)]

〈k〉

+ 1

4i cosπμk
eiλ(x−xk−1)

[
2 cos

(
πμk(l

+ + 2m+ − 2m−)
) (

i −1
1 i

)]

〈k〉

+ 1

4i cosπμk
eiλ(x+xk−1−2γk )−2iηk

×
[
2 sin

(
πμk(l

− − l+ + 2m− − 2m+)
) ( −i −1

−1 i

)]

〈k〉
.

Consider three cases:

1. If λ ∈ 
1, then m− = 1, m+ = 0, l− = −1, l+ = 1, and

S〈k〉(x, λ)
(
S〈k〉(xk−1, λ)

)−1

= sin(πμk)e
−iλ(x+xk−1−2γk )+2iηk

[ −i 1
1 i

]

〈k〉
+ 1

2i
e−iλ(x−xk−1)

[
i 1
−1 i

]

〈k〉

+ 1

2i
eiλ(x−xk−1)

[
i −1
1 i

]

〈k〉
+ eiλ(x+xk−1−2γk )−2iηk

[
0 0
0 0

]

〈k〉
.

2. If λ ∈ 
−1, then m− = 0,m+ = −1, l− = −1, l+ = 1, and

S〈k〉(x, λ)
(
S〈k〉(xk−1, λ)

)−1

= sin(πμk)e
−iλ(x+xk−1−2γk )+2iηk

[ −i 1
1 i

]

〈k〉
+ 1

2i
e−iλ(x−xk−1)

[
i 1
−1 i

]

〈k〉

+ 1

2i
eiλ(x−xk−1)

[
i −1
1 i

]

〈k〉
+ eiλ(x+xk−1−2γk )−2iηk

[
0 0
0 0

]

〈k〉
.

3. If λ ∈ 
0, then m− = 0,m+ = 0, l− = 1, l+ = −1, and

S〈k〉(x, λ)
(
S〈k〉(xk−1, λ)

)−1 = e−iλ(x+xk−1−2γk )+2iηk

[
0 0
0 0

]

〈k〉

+ 1

2i
e−iλ(x−xk−1)

[
i 1
−1 i

]

〈k〉

+ 1

2i
eiλ(x−xk−1)

[
i −1
1 i

]

〈k〉
+sin(πμk)e

iλ(x+xk−1−2γk )−2iηk

[−i −1
−1 i

]

〈k〉
.
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Since xk−1 < γk, x > γk , it follows that x+xk−1−2γk = x−xk−1+2(xk−1−γk) <

x − xk−1, x + xk−1 − 2γk = xk−1 − x + 2(x − γk) > xk−1 − x , and the exponentials
e±iλ(x+xk−1−2γk ) grow not faster than e±iλ(x−xk−1). Thus,

S〈k〉(x, λ)
(
S〈k〉(xk−1, λ)

)−1 = 1

2i
eiλ(x−xk−1)

[
i −1
1 i

]

〈k〉

+ 1

2i
e−iλ(x−xk−1)

[
i 1
−1 i

]

〈k〉
+ sin(πμk)e

−liλ(x+xk−1−2γk )+2liηk

[−i l
l i

]

〈k〉
.

Substituting this asymptotics into (4), we get

S(x, λ) =
(
1

2i
eiλ(x−xk−1)

[
i −1
1 i

]

〈k〉
+ 1

2i
e−iλ(x−xk−1)

[
i 1
−1 i

]

〈k〉

+ sin(πμk)e
−liλ(x+xk−1−2γk )+2liηk

[ −i l
l i

]

〈k〉

)

×
(
1

2i
eiλxk−1

[
i −1
1 i

]

〈k−1〉
+ 1

2i
e−iλxk−1

[
i 1
−1 i

]

〈k−1〉

+
k−1∑
j=1

sin πμ j e
−ilλ(xk−1−2γ j )+2ilη j

[ −i l
l i

]

〈k−1〉

⎞
⎠ .

Since 0 < xk−1 < x, it follows that 0 < 2xk−1 < 2x, −x < 2xk−1 − x < x, and
e±iλ(2xk−1−x) grow not faster than e±iλx . Therefore

S(x, λ) = 1

2i
eiλx

[
i −1
1 i

]

〈k〉
+ 1

2i
e−iλx

[
i 1
−1 i

]

〈k〉

+ 1

2i

k−1∑
j=1

sin(πμ j )e
iλ(x−xk−1)−liλ(xk−1−2γ j )+2liη j

[
(1 − l)

(
1 −i
−i −1

)]

〈k〉

+ 1

2i

k−1∑
j=1

sin(πμ j )e
−iλ(x−xk−1)−liλ(xk−1−2γ j )+2liη j

[
(1 + l)

(
1 i
i −1

)]

〈k〉

+ 1

2i
sin(πμk)e

iλxk−1−liλ(x+xk−1−2γk )+2liηk

[
(1 + l)

(
1 i
i −1

)]

〈k〉

+ 1

2i
sin(πμk)e

−iλxk−1−liλ(x+xk−1−2γk )+2liηk

[
(1 − l)

(
1 −i
−i −1

)]

〈k〉

+
k−1∑
j=1

sin(πμk) sin(πμ j )e
−liλ(x+2xk−1−2γk−2γ j )+4liη j

[
0 0
0 0

]

〈k〉
.
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Let l = −1. Then

S(x, λ) = 1

2i
eiλx

[
i −1
1 i

]

〈k〉
+ 1

2i
e−iλx

[
i 1
−1 i

]

〈k〉

+
k−1∑
j=1

sin(πμ j )e
iλx−2iλγ j−2iη j

[ −i −1
−1 i

]

〈k〉

+
k−1∑
j=1

sin(πμ j )e
−iλx+2iλxk−1−2iλγ j−2iη j

[
0 0
0 0

]

〈k〉

+ e2iλxk−1+iλx−2iλγk−2iηk

[
0 0
0 0

]

〈k〉

+ sin(πμk)e
iλx−2iλγk−2iηk

[
1 −i
−i −1

]

〈k〉

+
k−1∑
j=1

sin(πμk) sin(πμ j )e
iλ(x+2xk−1−2γk−2γ j )−4iη j

[
0 0
0 0

]

〈k〉
.

This yields

S(x, λ) = 1

2i

(
eiλx

[
i −1
1 i

]

〈k〉
+ e−iλx

[
i 1
−1 i

]

〈k〉

)

+
k∑
j=1

sin(πμ j )e
iλx−2iλγ j−2iη j

[ −i −1
−1 i

]

〈k〉
.

The case l = 1 is treated similarly. Lemma 1 is proved.
The following assertion is proved analogously.

Lemma 2 For x ∈ ωk and |λ(x − γk)| ≥ 1

∂

∂λ
S(x, λ) = x

2i

(
eiλx

[ −1 −i
i −1

]

〈k〉
+ e−iλx

[
1 −i
i 1

]

〈k〉

)

+
k∑
j=1

(x − 2γ j ) sin πμ j e
−ilλ(x−2γ j )+2ilη j

[ −l −i
−i l

]

〈k〉
.

Definition A function Y (x, λ) is called the solution of system (1), if there exist
constants C1(λ), C2(λ) such that Y (x, λ) = C1(λ)S1(x, λ) + C2(λ)S2(x, λ), x ∈
(0, π)\ ⋃N

k=1{γk}.
We introduce the functions

ϕ(x, λ) =
(
ϕ1(x, λ), ϕ2(x, λ)

)
= S(x, λ)V (α),

V (α) =
(
V1(α), V2(α)

)
=

(
cosα − sin α

sin α cosα

)
,
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(λ) =
(

11(λ) 12(λ)

21(λ) 22(λ)

)
= V T (β)S(π, λ)V (α),

ψ(x, λ) =
(
ψ1(x, λ), ψ2(x, λ)

)
= S(x, λ)S−1(π, λ)V (β).

Clearly, ϕ(x, λ), ψ(x, λ) are fundamental matrices for system (1). Denote 〈Y, Z〉 :=
Y T BZ . If Y (x, λ), Z(x, λ) are solutions of system (1), then 〈Y (x, λ), Z(x, λ)〉 :=
det{Y (x, λ), Z(x, λ)} is their Wronskian. Obviously,

〈ψ2(x, λ), ϕ2(x, λ)〉 = −12(λ). (5)

A number λ0 is called an eigenvalue of problem (1)–(2), if there exist constants A1, A2
(|A1| + |A2| > 0) such that the function A1S1(x, λ0) + A2S2(x, λ0) satisfies the
boundary conditions (2).

Lemma 3 Zeros of12(λ) coincide with the eigenvalues of the boundary value prob-
lem (1)–(2). If λ0 is an eigenvalue, then ϕ(x, λ0) and ψ(x, λ0) are eigenfunctions,
and ψ(x, λ0) = b0ϕ(x, λ0).

Proof 1. Let λ0 be a zero of 12(λ), i.e. V T
1 (β)S(π, λ0)V2(α) = 0. Therefore,

ϕ2(x, λ0) = S(x, λ0)V2(α) is an eigenfunction, and λ0 is an eigenvalue. It follows
from (5) that ϕ2(x, λ0) and ψ2(x, λ0) are linear dependent.
2. Let λ0 be an eigenvalue, and let Y0(x) be the corresponding eigenfunction. Since
ϕ1(x, λ), ϕ2(x, λ) form a fundamental system of solutions, it follows that Y0(x) =
D1ϕ1(x, λ0)+D2ϕ2(x, λ0).Substituting this relation into the first boundary condition,
we obtain D1V T

1 (α)V1(α) + D2V T
1 (α)V2(α) = 0, hence D1 = 0. Using the second

boundary condition, we find D2V T
1 (β)ϕ2(π, λ0) = 0. Since Y0(x) 
≡ 0, one has

D2 
= 0, i.e. V T
1 (β)ϕ2(π, λ0) = 0. Lemma 3 is proved.

We note that the functions  jk(λ), j, k = 1, 2, are the characteristic func-
tions for the boundary value problems L jk foe system (1) with boundary conditions.
V T
3−k(α)Y (0) = V T

j (β)Y (π) = 0. Denote

�(x, λ) =
(
�1(x, λ), �2(x, λ)

)
, �1(x, λ) = − 1

12(λ)
ψ2(x, λ),

�2(x, λ) = ϕ2(x, λ).

It follows from (5) that det�(x, λ) ≡ 1. The functions �1(x, λ), �2(x, λ) are called
the Weyl solutions, and the matrixM(λ) := V T

2 (λ)�1(0, λ) is called the Weyl matrix
for the problem (1)–(2).

Lemma 4 The following relations hold

�(x, λ) = ϕ(x, λ)M(λ), where M(λ) =
(

1 0
M(λ) 1

)
, M(λ) = −11(λ)

12(λ)
.
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Only formula for�1(x, λ) is needed to be proved. Let�1(x, λ) = D1(λ)ϕ1(x, λ)+
D2(λ)ϕ2(x, λ). Then

− (12(λ))−1ψ2(0, λ) = D1(λ)V1(α) + D2(λ)V2(α). (6)

Multiplying (6) by V T
1 (α), we infer −(12(λ))−1V T

1 (α)ψ2(0, λ) = D1(λ). Since

V T
1 (α)ψ2(0, λ) = V T

1 (α)BT ST (π, λ)BV2(β),

it follows that V T
1 (α)ψ2(0, λ) = −V T

1 (β)S(π, λ)V2(α) = −12(λ), i.e. D1(λ) = 1.
Multiplying (6) by V T

2 (α), we find D2(λ) = V T
2 (α)�1(0, λ) = M(λ). Taking the

relation V T
2 (α)ψ2(0, λ) = 11(λ) into account, we obtain the assertion of the lemma.

Thus, M(λ) is a meromorphic function; its poles coincide with the eigenvalues of
L , and its zeros coincide with the eigenvalues of L11.

Lemma 5 For x ∈ ωk and |λ(x − γk)| ≥ 1, |λ(x − γk+1)| ≥ 1, one has

ϕ(x, λ) = 1

2i

(
eiλx+iα

[
i −1
1 i

]

〈k〉
+ e−iλx−iα

[
i 1
−1 i

]

〈k〉

)

+
k∑
j=1

sin πμ j e
−ilλ(x−2γ j )+2ilη j−ilα

[ −i l
l i

]

〈k〉
, (7)

ψ(x, λ) = − 1

2i

(
eiλ(π−x)−iβ

[
i 1
−1 i

]

〈k+1〉
+ e−iλ(π−x)+iβ

[
i −1
1 i

]

〈k+1〉

)

−
N∑

j=k+1

sin πμ j e
−ilλ(x+π−2γ j )+2ilη j−ilβ

[ −i −l
−l i

]

〈k+1〉
. (8)

Indeed, since ϕ(x, λ) = S(x, λ)V (α), relation (7) follows fromLemma 1. To prove
(8) we make the substitution x → π − x and repeat the arguments.

Taking the relation (λ) = V (β)ϕ(π, λ) into account we arrive at the following
assertion.

Corollary 1 For the characteristic function 12(λ), the following asymptotics holds

12(λ) = 1

2i
e−i(λπ+α−β)[1] − 1

2i
ei(λπ+α−β)[1]

+
N∑
j=1

sin πμ j e
−ilλ(π−2γ j )+il(2η j−α−β)[l], (9)

where
[(
akj

)n,m
k, j=1

]
:=

(
akj + O

(|λ|−ν
) )n,m

k, j=1
for |λ| → ∞.

By the well-known method (see for example [13–15]) one obtains the following
properties:
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1. 12(λ) = O(eπ |Imλ|).
2. All eigenvalues λk, k ∈ Z of the problem (1)–(2) lie in the strip |Imλ| ≤ h.

3. Let Na be a number of eigenvalues in the rectangle{
λ | Reλ ∈ [a, a + 1), |Imλ| ≤ h

}
. Then Na is uniformly bounded.

4. Denote Gδ = {λ : |λ − λk | ≥ δ ∀ k}. Then |12(λ)| ≥ Cδeπ |Imλ| for λ ∈ Gδ.

5. For sufficiently small δ, there exists a sequence Rn → ∞ such that the circles

�n =
{
λ : |λ| = Rn

}
lie in Gδ.

6. Let
{
λ0k

}∞
k=−∞ be zeros of the function

0
12(λ) = 1

2i
e−i(λπ+α−β) − 1

2i
ei(λπ+α−β)

+ l
N∑
j=1

sin πμ j e
−ilλ(π−2γ j )+il(2η j−α−β). (10)

Then λk = λ0k + O(|λ0k |−ν).

For simplicity, we confine ourselves to the case when all eigenvalues of L are
simple, i.e. the function 12(λ) has only simple zeros. In particular, it is always true
for the self-adjoint case. Denote ak := Resλ=λk M(λ). The data {ak, λk}+∞

k=−∞ are
called the spectral data for L . The inverse problem is formulated as follows.

Inverse Problem 1 Given {ak, λk}+∞
k=−∞, construct L , i.e. Q(x), Qω(x), α, β.

In Sects. 3 and 4 we give an algorithm for the global solution of this nonlinear
inverse problem and provide necessary and sufficient conditions for its solvability.

Lemma 6 LetM0(λ) be the Weyl function for the problem L0 of the form (1)–(2) but
with the zero potential Q(x) ≡ 0. Then

M(λ) = M0(λ) +
+∞∑

k=−∞

(
ak

λ − λk
− a0k

λ − λ0k

)
,

+∞∑
k=−∞

= lim
n→∞

∑

|λk |<Rn , |λ0k |<Rn

.

Proof Consider the integral Jn(λ) = 1
2π i

∫
�n

M(ξ)−M0(ξ)
ξ−λ

dξ , λ ∈ int�n . Using Lem-

mas 4–5 and Corollary 1, we obtain M(ξ) − M0(ξ) = O(|ξ |−ν) for ξ ∈ Gδ, and
consequently, Jn(λ) → 0 as n → ∞. On the other hand, by residue’s theorem,

Jn(λ) = Res
ξ=λ

M(ξ) − M0(ξ)

ξ − λ
+

∑

|λ|<Rn , |λ0k |<Rn

(
Res
ξ=λk

M(ξ)

ξ − λ
− Res

ξ=λ0k

M0(ξ)

ξ − λ

)
,

hence

Jn(λ) = M(λ) − M0(λ) +
∑

|λ|<Rn , |λ0k |<Rn

(
ak

λk − λ
− a0k

λ0k − λ

)
.

If n → ∞, we arrive at the assertion of the lemma.
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Together with L we consider a boundary value problem L̃ of the same form (1)–(2)
but with different Q̃(x), Q̃ω(x), α̃, β̃. We agree that if a certain symbol v denotes
an object related to L , then ṽ will denote an analogous object related to L̃.

Lemma 7 If λk = λ̃k for all k, then 12(λ) ≡ ̃12(λ).

Proof The functions 12(λ) and ̃12(λ) are entire in λ of exponential type. Using
Hadamard’s factorization theorem, we get 12(λ) = eaλ+b̃12(λ). Let us show that
a = 0, b = 0. In view of (9),

1

2i
e−i(λπ+α−β)[1] − 1

2i
ei(λπ+α−β)[1] +

N∑
j=1

sin πμ j e
−ilλ(π−2γ j )+il(2η j−α−β)[l]

= 1

2i
e−i(λπ+α̃−β̃)+aλ+b[1] − 1

2i
ei(λπ+α̃−β̃)+aλ+b[1]

+
N∑
j=1

sin πμ̃ j e
−ilλ(π−2γ̃ j )+il(2η̃ j−α̃−β̃)+aλ+b[l]. (11)

Let λ = σ + iτ. If τ = 0 and σ → +∞, then the right-hand side in (11) is bounded;
hence Re a ≤ 0; for τ = 0 and σ → −∞, we get Re a ≥ 0, i.e. Re a = 0.
Furthermore, the right-hand side in (11) is O(e−Imλτ ), but the left-hand side is
O(e−Imλτ−Im aImλ) for τ ≤ 0. For τ → −∞ we have Im a ≤ 0. If τ ≥ 0, then
it follows from (11) that O(eπτ ) = O(eπτ−Im aτ ). This means that Im a ≥ 0, i.e.
Im a = 0. Thus, a = 0. Similarly, one gets that b = 0. Lemma is proved.

Corollary 2 Ifλk = λ̃k for all k, then0
12(λ) ≡ ̃0

12(λ), i.e.α−β = α̃−β̃, γk = γ̃k,

sin πμkeil(2ηk−α−β) = sin πμ̃keil(2η̃k−α̃−β̃). Here 0
12(λ) is defined by (10).

Lemma 8 If α − α̃ = β − β̃ = η̃k − ηk, μk = μ̃k, γk = γ̃k, k = 1, N and
Q(x) = Q̃(x)V 2(̃α − α), then M(λ) = M̃(λ).

Proof Denote δ := α − α̃ = β − β̃ = η̃k − ηk . Let us show that if Y (x, λ) is a
solution of (1), then Ỹ (x, λ) = V (−δ)Y (x, λ) is a solution of (̃1). Indeed, substituting
V (δ)Ỹ (x, λ) into (1), we obtain

BV (δ)Ỹ ′(x, λ) +
(
Q(x) + Qω(x)

)
V (δ)Ỹ (x, λ) = λV (δ)Ỹ (x, λ).

Multiplying by V T (δ) = V (−δ) and taking the relation V T (δ)Q(x) = Q(x)V (δ)

into account, we get

BỸ ′(x, λ) +
(
Q(x) + Qω(x)

)
V 2(δ)Ỹ (x, λ) = λỸ (x, λ).

One has V (−δ)S(0, λ)V (δ) = I. Since the Cauchy problem has the unique solution,
we infer S̃(x, λ) = V (−δ)S(x, λ)V (δ).Then ̃(λ)=V T (β̃)V (−δ)S(π, λ)V (δ)V (̃α)

or
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̃(λ) = V T (β̃ + δ)S(π, λ)V (δ + α̃).

This yields ̃ jk(λ) =  jk(λ). Lemma is proved.

3 Solution of the inverse problem

Let us first prove the uniqueness theorem.

Theorem 1 If M(λ) = M̃(λ), then α − α̃ = β − β̃ = η̃k − ηk, μk = μ̃k, γk =
γ̃k, k = 1, N and Q(x) = Q̃(x)V 2(̃α − α).

Proof By virtue of Lemma 8, it is sufficient to prove the theorem for the case β̃ =
β = 0. Consider the function P(x, λ) = �(x, λ)�̃−1(x, λ).

Since M(λ) = M̃(λ), it follows that these functions have the same poles. In
view of Lemma 7, one gets 12(λ) = ̃12(λ). By Corollary 2, α̃ = α, γ̃k =
γk, sin πμkeil(2ηk−α) = sin πμ̃keil(2η̃k−α̃). This yields

ϕ(x, λ) − ϕ̃(x, λ)=O(e|Imλ|x |λ|−ν), ψ(x, λ) − ψ̃(x, λ) = O(e|Imλ|(π−x)|λ|−ν).

(12)

Since �1(x, λ) = −(12(λ))−1ψ2(x, λ), it follows that

�1(x, λ) = O(e−x |Imλ|), λ ∈ Gδ. (13)

Taking (12) into account, we infer

�1(x, λ) − �̃1(x, λ) = O(e−x |Imλ||λ|−ν), λ ∈ Gδ. (14)

Obviously, P(x, λ) − I = (�(x, λ) − �̃(x, λ))B�̃(x, λ)BT . Using (12)–(14), we
obtain for λ ∈ Gδ:

P(x, λ) − I =|λ|−ν

(
O(e−|Imλ|x ) O(e|Imλ|x )
O(e−|Imλ|x ) O(e|Imλ|x )

) (
O(e|Imλ|x ) O(e|Imλ|x )
O(e−|Imλ|x ) O(e−|Imλ|x )

)

= O(|λ|−ν). (15)

Since �(x, λ) = ϕ(x, λ)M(λ), we get P(x, λ) = ϕ(x, λ)M(λ)M̃−1(λ)ϕ̃−1(x, λ),

or P(x, λ) = ϕ(x, λ)ϕ̃−1(x, λ). Therefore, P(x, λ) is entire in λ. Using (15), max-
imum modulus principle and Liouville’s theorem, we conclude that P(x, λ) = I,
i.e. �̃(x, λ) = �(x, λ). Then Q(x) + Qω(x) = Q̃(x) + Q̃ω̃(x), and consequently,
Q(x) = Q̃(x), Qω(x) = Q̃ω̃(x). Theorem is proved.

Corollary 3 If ak = ãk, λk = λ̃k for all k, then L = L̃.

Corollary 4 If λ〈11〉
k = λ̃

〈11〉
k , λk = λ̃k for all k, then L = L̃.Here {λ〈11〉

k } and {̃λ〈11〉
k }

are eigenvalues of L11 and L̃11, respectively.
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Indeed, according to Lemma 7, 12(λ) = ̃12(λ). Analogously, we obtain
11(λ) = ̃11(λ). By Lemma 4, M(λ) = M̃(λ).

Let us now go on to constructing the solution of the nonlinear Inverse Problem 1.
The central role here is played by the so-called main equation of the inverse problem,
which is a linear equation in the corresponding Banach space. Let us derive the main
equation.

Let the problem L with a simple spectrum be given. We choose a model boundary
value problem L̃ with a simple spectrum such that ω = ω̃, Qω(x) = Q̃ω(x) and

� :=
+∞∑

k=−∞
|̃ak |ξk < ∞, ξk := |λk − λ̃k | + |̃a−1

k ak − 1|. (16)

For definiteness, we assume that α = α̃ = 0. Then β = β̃. Denote �ε := {x : x ∈
(0, π), |x − γk | ≥ ε, k = 1, N }, λk0 = λk, λk1 = λ̃k, ak0 = ak, ak1 = ãk ,

D̃〈l〉(x, λ, θ) :=
〈
�̃l(x, λ), ϕ̃2(x, θ)

〉

λ − θ
, l = 1, 2, D̃〈2〉

k j (x, λ) = D̃〈2〉(x, λ, λk j ),

P̃ni,k j (x) = D̃〈2〉(x, λni , λk j )akj , ϕ2,k j (x) = ϕ2(x, λk j ), ϕ̃2,k j (x) = ϕ̃2(x, λk j ),

where 〈Y, Z〉 := det(Y, Z) = Y T BZ . Analogously we define D〈l〉(x, λ, θ),

D〈2〉
k j (x, λ) and Pni,k j (x).

Lemma 9 For x ∈ �ε and λ on compact sets,

|ϕ̃(m)
2,k j (x)| ≤ C(1 + |λ0k |)m, |ϕ̃(m)

2,k1(x) − ϕ̃
(m)
2,k0(x)| ≤ Cξk(1+|λ0k |)m, m=0, 1,

(17)

|D̃〈2〉
k j (x, λ)| ≤ C

1 + |λ − λ0k |
, |D̃〈2〉

k0 (x, λ)ak0 − D̃〈2〉
k1 (x, λ)ak1| ≤ C |ak1|ξk

1+|λ−λ0k |
,

|(D̃〈2〉
k j (x, λ))′| ≤ C, |(D̃〈2〉

k0 (x, λ)ak0 − D̃〈2〉
k1 (x, λ)ak1)′| ≤ C |ak1|ξk .

⎫
⎪⎬
⎪⎭

.

(18)

The same estimates are valid for ϕ2,k j (x), D〈2〉
k j (x, λ).

In order to prove the lemma, we need the following generalization of Schwarz’s
lemma:

Let the function f (z) be analytic inside the circle |z − z0| ≤ R and continuous
in the whole circle. Moreover, | f (z)| ≤ C on the boundary, and f (z0) = 0. Then
| f (z)| ≤ C |z − z0|/R in the circle |z − z0| ≤ R.

1. It follows from (7) that

|ϕ̃2(x, λ)| ≤ Ce|Imλ|x , x ∈ �ε. (19)

The eigenvalues lie in the strip |Imλ| ≤ max{h, h̃}; it follows from (19) that
|ϕ̃(m)

2,k j (x)| ≤ C(1 + |λk j |)m . Using (10), we obtain the first estimate in (17) for
m = 0.
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Applying Schwarz’s lemma, we find |ϕ̃2(x, λ) − ϕ̃2,k1(x)| ≤ Ce|Imλ|x |λ − λk1|.
Hence the second estimate in (17) holds (17) form = 0. Form = 1, the arguments
are similar.

2. Since D̃〈2〉(x, λ, θ) = (λ − θ)−1(ϕ̃2(x, λ))T Bϕ̃2(x, θ), it follows from (19)
for λ 
= θ , |λ| ≤ R, |θ | ≤ R that |D̃(x, λ, θ)| ≤ C |λ − θ |−1. If λ = θ,

then D̃(x, λ, λ) = (ϕ̃2(x, λ))T B ˙̃ϕ2(x, λ), where ˙̃ϕ2(x, λ) = ∂

∂λ
ϕ̃2(x, λ). Using

Lemma 2, we obtain | ˙̃ϕ2(x, λ)| ≤ Cxe|Imλ|x for x ∈ �ε. Then |D̃(x, λ, λ)| ≤ C
for |λ| ≤ R. Thus,

|D̃(x, λ, θ)| ≤ C

1 + |λ − θ | , x ∈ �ε, |λ| ≤ R, |θ | ≤ R. (20)

Furthermore,
〈
�̃ j (x, λ), ϕ̃2(x, θ)

〉′ = (�̃T
j (x, λ))′Bϕ̃2(x, θ) + �̃T

j (x, λ)Bϕ̃ ′
2(x, θ).

Then

〈
�̃ j (x, λ), ϕ̃2(x, θ)

〉′ = −(B�̃′
j (x, λ))T ϕ̃2(x, θ) + �̃T

j (x, λ)Bϕ̃ ′
2(x, θ).

Since �̃ j , ϕ̃2 are solutions of the system, it follows that
〈
�̃ j (x, λ), ϕ̃2(x, θ)

〉′ = (θ −
λ)�̃T

j (x, λ)ϕ̃2(x, θ). This yields

(D̃〈 j〉(x, λ, θ))′ = −�̃T
j (x, λ)ϕ̃2(x, θ). (21)

Taking (21) and (19) into account, we arrive at the third estimate in (18).

UsingSchwarz’s lemmaand (20),we infer |D̃〈2〉
k0 (x, λ)−D̃〈2〉

k1 (x, λ)|≤ C |λk0−λk1|
1+|λ−λ0k |

.

Since

|D̃〈2〉
k0 (x, λ)ak0 − D̃〈2〉

k1 (x, λ)ak1| ≤ |D̃〈2〉
k0 (x, λ)(ak0 − ak1)|

+|(D̃〈2〉
k0 (x, λ) − D̃〈2〉

k1 (x, λ))ak1|,

one gets the second estimate in (18). Other estimates are obtained analogously. Lemma
is proved.

Similarly one can prove the following assertion.

Lemma 10 For x ∈ �ε and λ on compact sets,

|P̃ni,k j (x)| ≤ C |ak1|
1 + |λ0n − λ0k |

, |P̃ ′
ni,k j (x)| ≤ C |ak1|,

|P̃ni,k1(x) − P̃ni,k0(x)| ≤ C |ak1|ξk
1 + |λ0n − λ0k |

, |P̃ ′
ni,k1(x) − P̃ ′

ni,k0(x)| ≤ C |ak1|ξk,

|P̃n1,k j (x) − P̃n0,k j (x)| ≤ C |ak1|ξn
1 + |λ0n − λ0k |

, |P̃ ′
n1,k j (x) − P̃ ′

n0,k j (x)| ≤ C |ak1|ξn,
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|P̃n1,k1(x) − P̃n1,k0(x) − P̃n0,k1(x) + P̃n0,k0(x)| ≤ C |ak1|ξkξn
1 + |λ0n − λ0k |

,

|P̃ ′
n1,k1(x) − P̃ ′

n1,k0(x) − P̃ ′
n0,k1(x) + P̃ ′

n0,k0(x)| ≤ C |ak1|ξkξn .

Moreover, if λ ∈ Gδ =
{
λ : |λ − λ̃k | ≥ δ, k ∈ Z

}
, then

|D̃〈1〉
k j (x, λ)| ≤ Cδ

|λ − λk j | , |(D̃〈1〉
k j (x, λ))′| ≤ Cδ,

|D̃〈1〉
k0 (x, λ)ak0 − D̃〈1〉

k1 (x, λ)ak1| ≤ Cδ|ak1|ξk
(

1

|λ − λk0| + 1

|λ − λk1|
)

,

|(D̃〈1〉
k0 (x, λ)ak0 − D̃〈1〉

k1 (x, λ)ak1)
′| ≤ Cδ|ak1|ξk,

where C and Cδ depend on ε. The same estimates are valid for D〈l〉
k j (x, λ), Pni,k j (x).

Lemma 11 The following relations hold

� j (x, λ) = �̃ j (x, λ) +
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0ϕ2,k0(x) − D̃〈 j〉

k1 (x, λ)ak1ϕ2,k1(x)
)
,

j = 1, 2, (22)

the series converge absolutely and uniformly for x ∈ �ε and λ on compact sets without
the spectra of L and L̃.

Proof Consider the function P(x, λ) = �(x, λ)�̃−1(x, λ). Denote

Jn(x, λ) = 1

2π i

∫

�n

1

ξ − λ

(
P(x, ξ) − I

)
dξ, �n :=

{
λ : |λ| = Rn

}
.

The functions�(x, λ) and �̃(x, λ) have the samemain term in the asymptotics. There-
fore, for a fixed x 
= γk , one has P(x, ξ)−I = O(|ξ |−ν), and Jn(x, λ) → 0 asn → ∞
uniformly in λ on the compact sets. Integration on �n is divided into integration on
the contours �

〈1〉
n = �

〈3〉
n

⋃
�

〈5〉
n , �〈2〉

n = �
〈4〉
n

⋃
�

〈5〉
n (with counterclockwise circuit),

where �
〈3〉
n = {λ : |Imλ| ≤ h} ⋂

�n , �
〈4〉
n = �n\�〈3〉

n = {λ : |Imλ| > h} ⋂
�n ,

�
〈5〉
n = {λ : |Imλ| = h} ⋂

int�n . Let λ ∈ int�〈2〉
n . By the Cauchy integral formula,

1

2π i

∫

�
〈2〉
n

1

ξ − λ

(
P(x, ξ) − I

)
dξ = P(x, λ) − I.

Clearly,

1

2π i

∫

�
〈1〉
n

1

ξ − λ
I dξ = 0.
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Then

P(x, λ) = I + 1

2π i

∫

�
〈1〉
n

1

λ − ξ
P(x, ξ)dξ − Jn(x, λ). (23)

Since �(x, λ) = ϕ(x, λ)M(λ), it follows that

P(x, ξ) = ϕ(x, ξ)M(ξ)M̃−1(ξ)ϕ̃−1(x, ξ)

= ϕ(x, ξ)ϕ̃−1(x, ξ) − (M(ξ) − M̃(ξ))ϕ(x, ξ)B〈1〉ϕ̃−1(x, ξ),

B〈1〉 =
(
0 0
−1 0

)
.

The function ϕ(x, ξ)ϕ̃−1(x, ξ) is entire in ξ. Therefore,

1

2π i

∫

�
〈1〉
n

ϕ(x, ξ)ϕ̃−1(x, ξ)
dξ

λ − ξ
= 0,

since λ is outside �
〈1〉
n . Thus, it follows from (23) that

P(x, λ) = I − 1

2π i

∫

�
〈1〉
n

(M(ξ) − M̃(ξ))ϕ(x, ξ)B〈1〉ϕ̃−1(x, ξ)
dξ

λ − ξ
− Jn(x, λ).

One has �(x, λ) = P(x, λ)�̃(x, λ), hence � j (x, λ) = P(x, λ)�̃ j (x, λ). Then

� j (x, λ) = �̃ j (x, λ)

− 1

2π i

∫

�
〈1〉
n

(M(ξ) − M̃(ξ))ϕ(x, ξ)B〈1〉ϕ̃−1(x, ξ)�̃ j (x, λ)
dξ

λ − ξ
+ εn(x, λ),

and εn(x, λ) → 0 as n → ∞ uniformly for x ∈ �ε. Furthermore,

B〈1〉ϕ̃−1(x, ξ)�̃ j (x, λ) =
(
ϕ̃12(x, ξ)�̃2 j (x, λ) − ϕ̃22(x, ξ)�̃1 j (x, λ)

) (
0
1

)
,

and consequently,

� j (x, λ)= �̃ j (x, λ) − 1

2π i

∫

�
〈1〉
n

(M(ξ) − M̃(ξ))
〈
�̃ j (x, λ), ϕ̃2(x, ξ)

〉
ϕ2(x, ξ)

dξ

λ − ξ

+εn(x, λ).

Calculating the integral by residue’s theorem and taking n → ∞, we arrive at (22).
Lemma is proved.
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Consider (22) for j = 2 and λ = λni :

ϕ̃m2,ni (x) = ϕm2,ni (x) −
+∞∑

k=−∞

(
P̃ni,k0(x)ϕm2,k0(x) − P̃ni,k1(x)ϕm2,k1(x)

)
,

m = 1, 2, (24)

where ϕ2,k j (x) =
(

ϕ12,k j (x)
ϕ22,k j (x)

)
. The last relation is not convenient for our purpose,

since the series converges only “with brackets”. We transform (24) as follows:

ϕ̃m2,n0(x) − ϕ̃m2,n1(x) = ϕm2,n0(x) − ϕm2,n1(x)

−
+∞∑

k=−∞

(
(P̃n0,k0(x) − P̃n1,k0(x))(ϕm2,k0(x) − ϕm2,k1(x))

+(P̃n0,k0(x) − P̃n1,k0(x) − P̃n0,k1(x) + P̃n1,k1(x))ϕm2,k1(x)
)
,

ϕ̃m2,n1(x) = ϕm2,n1(x) −
+∞∑

k=−∞

(
P̃n1,k0(x)(ϕm2,k0(x) − ϕm2,k1(x))

+(P̃n1,k0(x) − P̃n1,k1(x))ϕm2,k1(x)
)
.

Denote

�
〈m〉
n0 (x) = χn

(
ϕm2,n0(x) − ϕm2,n1(x)

)
,

χn =
{
0, ξn = 0,
ξ−1
n , ξn 
= 0,

�
〈m〉
n1 (x) = ϕm2,n1(x),

H̃n0,k0(x) = (P̃n0,k0(x) − P̃n1,k0(x))χnξk,

H̃n0,k1(x) = (P̃n0,k0(x) − P̃n1,k0(x) − P̃n0,k1(x) + P̃n1,k1(x))χn,

H̃n1,k0(x) = P̃n1,k0(x)ξk, H̃n1,k1(x) = P̃n1,k0(x) − P̃n1,k1(x).

Then

�̃
〈m〉
ni (x) = �

〈m〉
ni (x) −

+∞∑
k=−∞

(
H̃ni,k0(x)�

〈m〉
k0 (x) + H̃ni,k1(x)�

〈m〉
k1 (x)

)
. (25)

Using Lemmas 9 and 10, we obtain the estimates

|�̃〈m〉
ni (x)| ≤ C, |(�̃〈m〉

ni (x))′| ≤ C(1 + |λ0k |),
|H̃ni,k j (x)| ≤ C |ak1|ξk

1 + |λ0n − λ0k |
, |H̃ ′

ni,k j (x)| ≤ C |ak1|ξk .

⎫⎬
⎭ (26)



18 O. Gorbunov, V. Yurko

The same estimates are valid for �
〈m〉
ni (x), Hni,k j (x). Denote

�〈m〉(x) =
(

�
〈m〉
n0 (x)

�
〈m〉
n1 (x)

)+∞

n=−∞

=
(

. . . , �
〈m〉
−1,1(x), �

〈m〉
00 (x),�〈m〉

01 (x), �
〈m〉
10 (x), . . .

)T
.

Similarly we define the block-matrix

H̃(x) =
(
H̃n0,k0(x) H̃n0,k1(x)
H̃n1,k0(x) H̃n1,k1(x)

)+∞

n,k=−∞
.

Then we rewrite (25) as follows

�̃〈m〉(x) = (I − H̃(x))�〈m〉(x), m = 1, 2, (27)

where I is the identity operator. It follows from (26) that �〈m〉(x), �̃〈m〉(x) ∈ m for
each fixed x 
= γk, k = 1, N , where m is the Banach space of bounded sequences.
The operator H̃(x), acting fromm to m, is a linear bounded operator, and

‖H̃(x)‖m→m ≤ C sup
n

+∞∑
k=−∞

|ak1|ξk
1 + |λ0n − λ0k |

≤ C
+∞∑

k=−∞
|ak1|ξk < ∞.

For each fixed x, relation (27) is a linear equation inm with respect to �〈m〉(x). This
equation is called the main equation of the inverse problem.

Lemma 12 The following relation holds

Q(x) = Q̃(x) + Bæ(x) − æ(x)B, (28)

where

æ(x) =
+∞∑

k=−∞

(
ak0ϕ̃2,k0(x)ϕ

T
2,k0(x) − ak1ϕ̃2,k1(x)ϕ

T
2,k1(x)

)
, (29)

and the series converges uniformly for x ∈ �ε.

Proof Differentiating (22), we calculate

�′
j (x, λ) = �̃′

j (x, λ) +
+∞∑

k=−∞

(
(D̃〈 j〉

k0 (x, λ))′ak0ϕ2,k0(x) + D̃〈 j〉
k0 (x, λ)ak0ϕ

′
2,k0(x)

−(D̃〈 j〉
k1 (x, λ))′ak1ϕ2,k1(x) − D̃〈 j〉

k1 (x, λ)ak1ϕ
′
2,k1(x)

)
.



Inverse problem for dirac system with singularities 19

Multiplying this relation by B and using (21), we obtain

(
λI − Q(x) − Qω(x)

)
� j (x, λ) =

(
λI − Q̃(x) − Q̃ω(x)

)
�̃ j (x, λ)

+
+∞∑

k=−∞

(
− �̃T

j (x, λ)ϕ̃2,k0(x)ak0Bϕ2,k0(x)

+D̃〈 j〉
k0 (x, λ)ak0

(
λk0 I−Q(x)−Qω(x)

)
ϕ2,k0(x)+�̃T

j (x, λ)ϕ̃2,k1(x)ak1Bϕ2,k1(x)

−D̃〈 j〉
k1 (x, λ)ak1

(
λk1 I − Q(x) − Qω(x)

)
ϕ2,k1(x)

)
,

and consequently,

(Q(x) − Q̃(x))�̃ j (x, λ) +
+∞∑

k=−∞
(−�̃T

j (x, λ)ϕ̃2,k0(x)ak0Bϕ2,k0(x)

+D̃〈 j〉
k0 (x, λ)ak0(λk0 − λ)ϕ2,k0(x)

+�̃T
j (x, λ)ϕ̃2,k1(x)ak1Bϕ2,k1(x) − D̃〈 j〉

k1 (x, λ)ak1(λk1 − λ)ϕ2,k1(x)) = 0.

Since D̃〈 j〉
ni (x, λ) = �̃T

j (x, λ)Bϕ̃2,ni (x)

λ − λni
, it follows that

(Q(x) − Q̃(x))�̃ j (x, λ) +
+∞∑

k=−∞

(
− {�̃T

j (x, λ)ϕ̃2,k0(x)ak0}Bϕ2,k0(x)

−{�̃T
j (x, λ)Bϕ̃2,k0(x)ak0}ϕ2,k0(x) + {�̃T

j (x, λ)ϕ̃2,k1(x)ak1}Bϕ2,k1(x)

+{�̃T
j (x, λ)Bϕ̃2,k1(x)ak1}ϕ2,k1(x)

)
= 0.

The matrices Q(x) and Q̃(x) are symmetrical. Then

�̃T (x, λ)
{
Q(x) − Q̃(x) +

+∞∑
k=−∞

((
ak0ϕ̃2,k0(x)ϕ

T
2,k0(x) − ak1ϕ̃2,k1(x)ϕ

T
2,k1(x)

)
B

−B
(
ak0ϕ̃2,k0(x)ϕ

T
2,k0(x) − ak1ϕ̃2,k1(x)ϕ

T
2,k1(x)

))}
= 0.

Multiplying by (�̃T (x, λ))−1, we arrive at (28). It follows from the estimate

|ak0ϕ̃2,k0(x)ϕ
T
2,k0(x) − ak1ϕ̃2,k1(x)ϕ

T
2,k1(x)|

≤ |ϕ̃2,k0(x)ϕ
T
2,k0(x) − ϕ̃2,k1(x)ϕ

T
2,k1(x)| · |ak1|

+|ϕ̃2,k1(x)ϕ
T
2,k1(x)| · |ak0 − ak1| ≤ C |ak1|ξk

that the series in (29) converges uniformly. Lemma is proved.
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Let us now study the solvability of the main equation. For this purpose we need the
following assertion.

Lemma 13 The following relation holds

D〈2〉(x, λ, θ) = D̃〈2〉(x, λ, θ) +
+∞∑

k=−∞
(D̃〈2〉

k0 (x, λ)D〈2〉
k0 (x, θ)ak0

−D̃〈2〉
k1 (x, λ)D〈2〉

k1 (x, θ)ak1), (30)

and the series converges uniformly for x ∈ �ε and λ on compact sets.

Proof According to (23) we have for λ, θ ∈ �
〈2〉
n :

P(x, λ) − P(x, θ) = 1

2π i

∫

�
〈1〉
n

(
1

λ − ξ
− 1

θ − ξ

)
P(x, ξ)dξ + Jn(x, λ, θ),

where Jn(x, λ, θ) → 0 as n → ∞ uniformly for x ∈ �ε and λ, θ on compact sets.
Therefore,

1

λ − θ

(
PT (x, λ) − PT (x, θ)

)
= 1

2π i

∫

�
〈1〉
n

1

(λ − ξ)(ξ − θ)
PT (x, ξ)dξ

+J 1n (x, λ, θ). (31)

Since P(x, ξ) = �(x, ξ)�̃−1(x, ξ) = −�(x, λ)B�̃T (x, ξ)B, it follows that

ϕ̃T
2 (x, λ)PT (x, ξ)Bϕ2(x, θ) = −ϕ̃T

2 (x, λ)B�̃(x, ξ)B�T (x, ξ)Bϕ2(x, θ).

One has 〈y, z〉 = yT Bz, and consequently,

ϕ̃T
2 (x, λ)PT (x, ξ)Bϕ2(x, θ) = 〈ϕ̃2(x, λ), ϕ̃2(x, ξ)〉

〈
�1(x, ξ), ϕ2(x, θ)

〉

−〈
ϕ̃2(x, λ), �̃1(x, ξ)

〉〈ϕ2(x, ξ), ϕ2(x, θ)〉. (32)

Since
〈
�1(x, λ), ϕ2(x, λ)

〉
≡ 1,

〈
ϕ2(x, λ), ϕ2(x, λ)

〉
≡ 0, we infer

ϕ̃T
2 (x, λ)PT (x, λ)Bϕ2(x, θ) =

〈
ϕ2(x, λ), ϕ2(x, θ)

〉
,

ϕ̃T
2 (x, λ)PT (x, θ)Bϕ2(x, θ) =

〈
ϕ̃2(x, λ), ϕ̃2(x, θ)

〉
.

Multiplying (31) by ϕ̃T
2 (x, λ) from the left, and by Bϕ2(x, θ) from the right, and using

(32), we calculate
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〈
ϕ2(x, λ), ϕ2(x, θ)

〉

λ − θ
−

〈
ϕ̃2(x, λ), ϕ̃2(x, θ)

〉

λ − θ

= 1

2π i

∫

�
〈1〉
n

( 〈ϕ̃2(x, λ), ϕ̃2(x, ξ)〉
〈
�1(x, ξ), ϕ2(x, θ)

〉

(λ − ξ)(ξ − θ)

−
〈
ϕ̃2(x, λ), �̃1(x, ξ)

〉〈ϕ2(x, ξ), ϕ2(x, θ)〉
(λ − ξ)(ξ − θ)

)
dξ + J 2n (x, λ, θ).

By Lemma 4, �1(x, ξ) = ϕ1(x, ξ) + M(ξ)ϕ2(x, ξ). This yields

〈
ϕ2(x, λ), ϕ2(x, θ)

〉

λ − θ
−

〈
ϕ̃2(x, λ), ϕ̃2(x, θ)

〉

λ − θ

= 1

2π i

∫

�
〈1〉
n

〈
ϕ̃2(x, λ), ϕ̃2(x, ξ)

〉〈
ϕ2(x, ξ), ϕ2(x, θ)

〉

(λ − ξ)(ξ − θ)

(
M(ξ) − M̃(ξ)

)
dξ

+J 2n (x, λ, θ),

since the integrals from analytic functions are equal to zero. Calculating the integral
by residue’s theorem and taking n → ∞, we arrive at (30) firstly for |λ| ≥ h, and by
analytic continuation for all λ. Lemma is proved.

Taking λ = λni , θ = λl j in (30) and multiplying by al j , we obtain

Pni,l j (x) − P̃ni,l j (x) −
+∞∑

k=−∞

(
P̃ni,k0(x)Pk0,l j (x) − P̃ni,k1(x)Pk1,l j (x)

)
= 0. (33)

Symmetrically, one has

Pl j,ni (x) − P̃l j,ni (x) −
+∞∑

k=−∞

(
Pl j,k0(x)P̃k0,ni (x) − Pl j,k1(x)P̃k1,ni (x)

)
= 0. (34)

It follows from (33)–(34) that

Hni,l j (x) − H̃ni,l j (x)−
+∞∑

k=−∞

(
H̃ni,k0(x)Hk0,l j (x) − H̃ni,k1(x)Hk1,l j (x)

)
=0, (35)

Hni,l j (x) − H̃ni,l j (x)−
+∞∑

k=−∞

(
Hni,k0(x)H̃k0,l j (x) − Hni,k1(x)H̃k1,l j (x)

)
=0. (36)

We rewrite relations (35) and (36) in the matrix form

H(x) − H̃(x) − H̃(x)H(x) = 0, H(x) − H̃(x) − H(x)H̃(x) = 0
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or (I − H̃(x))(I + H(x)) = I, (I + H(x))(I − H̃(x)) = I. Thus, we have proved
the following assertion.

Theorem 2 For each fixed x (x 
= γk, k = 1, N ), the linear bounded operator
I− H̃(x), acting fromm tom, has the unique inverse operator, and the main equation
(27) is uniquely solvable in m.

The solution of Inverse Problem 1 can be constructed by the following algorithm.

Algorithm 1 Given the spectral data {λk, ak}+∞
k=−∞ of the problem L .

1. Choose a model boundary value problem L̃, for example, with the zero potential.
2. Construct �̃〈m〉(x) and H̃(x).
3. Solving the linear main Eq. (27), find �〈m〉(x), and then calculate ϕ2,k j (x).
4. Construct Q(x) by (28), and α = α̃, β = β̃.

4 Necessary and sufficient conditions for the solvability of the inverse problem

Theorem 3 For numbers {λk, ak}+∞
k=−∞, ak 
= 0, λk 
= λn, (k 
= n), to be the

spectral data for a certain problem L ∈ W, it is necessary and sufficient that the
following conditions hold

1. (Asymptotics): There exists L̃ ∈ W such that (16) holds;
2. (Condition S): For each fixed x 
= γk, k = 1, N , the linear bounded operator

I − H̃(x) has the unique inverse operator;
3. (Bæ(x) − æ(x)B)|x − γk |−2Reμk ∈ L(wk+1/2), where æ(x) is constructed by

(29).

Under these conditions the potential Q(x) is constructed by (28) and α = α̃, β = β̃.

The necessity part of the theorem was proved above. Let us prove the sufficiency.
Let numbers {λk, ak}+∞

k=−∞ be given such that ak 
= 0 and λk 
= λn, (k 
= n). Let

L̃ = L(Qω(x), Q̃(x), 0, β) ∈ W be chosen such that (16) holds. Let {�〈m〉
ni (x)} be

the solution of the main equation (25). The following assertion is proved in [14].

Lemma 14 Consider the equations

(I + A0)y0 = f0, (I + A)y = f,

in a Banach spaceB,where A0, A are linear bounded operators, acting fromB toB,

and I is the identity operator. Suppose that there exists the linear bounded operator
R0 := (I + A0)

−1. If ‖A − A0‖ ≤ (2‖R0‖)−1, then there exists the linear bounded
operator R = (I + A)−1, and ‖R‖ ≤ 2‖R0‖, ‖R − R0‖ ≤ 2‖R0‖2‖A − A0‖.
Lemma 15 The following relations hold

�
〈m〉
ni (x) ∈ C(�ε), |�〈m〉

ni (x)| ≤ Cε,

|�〈m〉
ni (x) − �̃

〈m〉
ni (x)| ≤ Cε�θn,

(37)
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θn =
( +∞∑
k=−∞

1

(1 + |λ0n − λ0k |)2(1 + |λ0k |)2
)1/2

, x ∈ �ε, (38)

|(�〈m〉
ni (x))′| ≤ Cε(1 + |λ0k |) x ∈ �ε,

|(�〈m〉
ni (x))′ − (�̃

〈m〉
ni (x))′| ≤ Cε�, x ∈ �ε. (39)

Proof Using (26), we infer

|H̃ni,k j (x)− H̃ni,k j (x0)| ≤ |H̃ ′
ni,k j (ξ)| |x − x0| ≤ Cε|ak1|ξk |x − x0|, x, x0, ξ ∈ �ε,

hence

‖H̃(x) − H̃(x0)‖ ≤ Cε

+∞∑
k=−∞

|ak1|ξk |x − x0| ≤ Cε�|x − x0|.

Choose δ0 > 0 such that ‖H̃(x) − H̃(x0)‖ ≤ (2‖R̃(x0)‖)−1 for |x − x0|δ0, where
R̃(x) = (I − H̃(x))−1. By Lemma 14, ‖R̃(x) − R̃(x0)‖ ≤ |R̃(x0)‖Cε|x − x0|, x ∈
�ε. Therefore, the function f (x) = ‖R̃(x)‖ is continuous and bounded on �ε. Then

‖R̃(x)‖ ≤ Cε, ‖R̃(x) − R̃(x0)‖ ≤ Cε|x − x0|, x ∈ �ε,

where the constant Cε does not depend on x, x0. Since �〈m〉(x) = R̃(x)�̃〈m〉(x), it
follows that ‖�〈m〉(x)‖ ≤ ‖R̃(x)‖ ‖�̃〈m〉(x)‖ ≤ Cε. Thus, (37) is proved.

Taking (25)–(26) into account, we obtain

|�〈m〉
ni (x) − �̃

〈m〉
ni (x)| ≤

+∞∑
k=−∞

1∑
j=0

|H̃ni,k j (x)| |�〈m〉
k j (x)| ≤ Cε

+∞∑
k=−∞

|ak1|ξk
1 + |λ0k − λ0n|

,

and consequently,

|�〈m〉
ni (x) − �̃

〈m〉
ni (x)| ≤ Cεθn

+∞∑
k=−∞

(
|ak1|ξk(1 + |λ0k |)

)2
,

i.e. (38) holds. Estimates (39) are proved similarly. Lemma is proved.

Construct the functions ϕ2,ni (x) =
(
ϕ12,ni (x), ϕ22,ni (x)

)T
by the formula

ϕm2,n0(x) = �
〈m〉
n0 (x)ξn + �

〈m〉
n1 (x), ϕm2,n1(x) = �

〈m〉
n1 (x), m = 1, 2. (40)

It follows from (40) and Lemma 15 that

|ϕ(m)
2,ni (x)| ≤ Cε(1+|λ0n|)m, |ϕ(m)

2,n0(x)−ϕ
(m)
2,n1(x)| ≤ Cεξn(1 + |λ0n|)m, m = 0, 1,

(41)

|ϕ̃2,ni (x) − ϕ2,ni (x)| ≤ Cε�θn, |ϕ̃ ′
2,ni (x) − ϕ ′

2,ni (x)| ≤ Cε�. (42)



24 O. Gorbunov, V. Yurko

Lemma 16 The function Q(x), constructed by (28), is absolutely continuous on
[0, π ].
Proof In view of (41), the series in (29) converges uniformly on �ε. According to
Lemma15, the functionsϕ2,ni (x) are continuous, and consequently,æ(x) is continuous
on �ε. One has

æ(x) = A1(x) + A2(x), A1(x) =
+∞∑

k=−∞
(ak0 − ak1)ϕ̃2,k0(x)ϕ

T
2,k0(x),

A2(x) =
+∞∑

k=−∞
ak1

(
ϕ̃2,k0(x)ϕ

T
2,k0(x) − ϕ̃2,k1(x)ϕ

T
2,k1(x)

)
.

Taking (41) and (17) into account, we infer |(ak0 − ak1)ϕ̃2,k0(x)ϕT
2,k0(x)| ≤

|ak1|ξkCε(1 + |λ0k |). This yields that the series for A1(x) converges uniformly on
�ε and A′

1(x) ∈ L(0, π). Since

(ϕ̃2,k0(x)ϕ
T
2,k0(x) − ϕ̃2,k1(x)ϕ

T
2,k1(x))

′ = (ϕ̃ ′
2,k0(x) − ϕ̃ ′

2,k1(x))ϕ
T
2,k0(x)

+ ϕ̃ ′
2,k1(x)(ϕ2,k0(x) − ϕ2,k1(x))

T + ϕ̃2,k0(x)(ϕ
′
2,k0(x) − ϕ ′

2,k1(x))
T

+ (ϕ̃2,k0(x) − ϕ̃2,k1(x))(ϕ
T
2,k1(x))

′,

it follows from (41) and (17) that |ak1(ϕ̃2,k0(x)ϕT
2,k0(x) − ϕ̃2,k1(x)ϕT

2,k1(x))
′| ≤

Cε|ak1|ξk(1 + |λ0k |). This yields A′
2(x) ∈ L(0, π). Thus, æ(x) is absolutely con-

tinuous on [0, π ] and æ′(x) ∈ L(0, π). Lemma is proved.
Let us now show that the given numbers {λk}+∞

k=−∞ are eigenvalues of the con-
structed boundary value problem L(Qω(x), Q(x), 0, β).

Lemma 17 The following relations hold

�ϕ2,k j (x) = λk jϕ2,k j (x), �� j (x, λ) = λ� j (x, λ), (43)

�2(0, λ) = V2(0), V T
1 (0)�1(0, λ) = 1, V T

1 (β)�1(π, λ) = 0, 12(λk)=0.

(44)

Proof 1. We construct � j (x, λ) by (22). In view of (41)–(42), the series in (22)
converges uniformly in �ε. Moreover, differentiating (22) and taking (21) into
account, we obtain

�′
j (x, λ)=�̃′

j (x, λ)+
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0ϕ

′
2,k0(x)− D̃〈 j〉

k1 (x, λ)ak1ϕ
′
2,k1(x)

)

−
+∞∑

k=−∞

(
�̃T

j (x, λ)ϕ̃2,k0(x)ak0ϕ2,k0(x) − �̃T
j (x, λ)ϕ̃2,k1(x)ak1ϕ2,k1(x)

)
,
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and consequently,

(�′
j (x, λ))T = (�̃′

j (x, λ))T − �̃T
j (x, λ)æ(x)

+
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0(ϕ

′
2,k0(x))

T − D̃〈 j〉
k1 (x, λ)ak1(ϕ

′
2,k1(x))

T
)
.

This yields

(
B�′

j (x, λ) + Q(x)� j (x, λ)
)T = (�̃′

j (x, λ))T + �̃T
j (x, λ)

(
Q(x) + æ(x)B

)

+
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0

(
Bϕ ′

2,k0(x) + Q(x)ϕ2,k0(x)
)T

−D̃〈 j〉
k1 (x, λ)ak1

(
Bϕ ′

2,k1(x) + Q(x)ϕ2,k1(x)
)T )

.

SinceQ(x) = Q̃(x)+Bæ(x)−æ(x)B, �̃T
j (x, λ)Bϕ̃2,ni (x) = D̃〈 j〉

ni (x, λ)(λ−λni ),
it follows that

�̃T
j (x, λ)Bæ(x) =

+∞∑
k=−∞

(
D̃〈 j〉
k0 (x, λ)(λ − λk0)ak0ϕ

T
2,k0(x)

−D̃〈 j〉
k1 (x, λ)(λ − λk1)ak1ϕ

T
2,k1(x)

)
,

hence

(
B�′

j (x, λ) + Q(x)� j (x, λ)
)T =

(
�̃′

j (x, λ) + Q̃(x)�̃ j (x, λ)
)T

+
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0

(
Bϕ ′

2,k0(x) + Q(x)ϕ2,k0(x) + (λ − λk0)ϕ2,k0(x))
)T

−D̃〈 j〉
k1 (x, λ)ak1

(
Bϕ ′

2,k1(x) + Q(x)ϕ2,k1(x) + (λ − λk1)ϕ2,k1(x)
)T )

.

Taking (22) into account, we calculate

�� j (x, λ) − λ� j (x, λ) =
+∞∑

k=−∞

(
D̃〈 j〉
k0 (x, λ)ak0

(
�ϕ2,k0(x) − λk0ϕ2,k0(x)

)

−D̃〈 j〉
k1 (x, λ)ak1

(
�ϕ2,k1(x) − λk1ϕ2,k1(x)

))
. (45)
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Consider (45) for j = 2 and λ = λni :

zni (x) −
+∞∑

k=−∞

(
P̃ni,k0(x)zk0(x) − P̃ni,k1(x)zk1(x)

)
= 0,

where zni (x) = �ϕ2,ni (x) − λniϕ2,ni (x), or

Z 〈m〉
ni (x) −

∑
k, j

H̃ni,k j (x)Z
〈m〉
k j (x) = 0, (46)

where Z 〈m〉
n0 =

(
zm,n0(x) − zm,n1(x)

)
χn, Z 〈m〉

n1 (x) = zm,n1(x), zni (x) =
(z1,ni (x), z2,ni (x))T , m = 1, 2. Taking (41) into account, we get |Z 〈m〉

ni (x)| ≤
Cε(1 + |λ0n|). Using (46) and (26), we infer

|Z 〈m〉
ni (x)| ≤ Cε

+∞∑
k=−∞

|ak1|ξk(|λ0k | + 1)

1 + |λ0n − λ0k |
≤ Cε�,

and consequently, {Z 〈m〉
ni (x)} ∈ m. Equation (46) has only trivial solution, i.e.

Z 〈m〉
ni (x) = 0, hence �ϕ2,ni (x)−λniϕ2,ni (x) = 0.The second relation (43) follows

now from (45).

2. Since D̃〈2〉
k j (x, λ) = 1

λ − λk j
det(ϕ̃2(x, λ), ϕ̃2,k j (x)), it follows that

D̃〈2〉
k j (0, λ) = 1

λ − λk j
det(V2(0), V2(0)) = 0.

Using (22), we find �2(0, λ) = �̃2(0, λ) = V2(0). Furthermore, taking j = 1,
x = 0 in (22) and multiplying by V T

1 (0), we calculate

V T
1 (0)�1(0, λ) = V T

1 (0)�̃1(0, λ)

+
+∞∑

k=−∞

(
D̃〈1〉
k0 (0, λ)ak0V

T
1 (0)ϕ2,k0(0) − D̃〈1〉

k1 (0, λ)ak1V
T
1 (0)ϕ2,k1(0)

)
.

Since V T
1 (0)ϕ2,k j (0) = V T

1 (0)V2(0) = 0, one gets V T
1 (0)�1(0, λ) = V T

1 (0)�̃1
(0, λ) = 1. Thus, �2(x, λ) = ϕ2(x, λ) is a solution of (1) with the initial condition
ϕ2(0, λ) = V2(0). Then 12(λ) = V T

1 (β)ϕ2(π, λ). Let us show that 12(λn0) = 0,
i.e. {λn}+∞

n=−∞ are eigenvalues of L . For this purpose we take j = 2, x = π in (22)
and multiply by V T

1 (β). This yields

12(λ) = ̃12(λ) +
+∞∑

k=−∞

(
D̃〈2〉
k0 (π, λ)ak012(λk0) − D̃〈2〉

k1 (π, λ)ak112(λk1)
)
,
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and consequently,

12(λni )=̃12(λni ) +
+∞∑

k=−∞

(
P̃ni,k0(π)12(λk0) − P̃ni,k1(π)12(λk1)

)
. (47)

By definition (λ) = V T (β)ϕ(π, λ), then det(λ) ≡ 1, or

11(λ)22(λ) − 12(λ)21(λ) ≡ 1. (48)

Furthermore,
〈
ϕ̃2(π, λ), ϕ̃2,k j (π)

〉 = ϕ̃T
2 (π, λ)Bϕ̃2,k j (π). Since V (β)V T (β) = I,

it follows that
〈
ϕ̃2(π, λ), ϕ̃2,k j (π)

〉
=

(
V T (β)ϕ2(π, λ)

)T
BV T (β)ϕ2(π, λk j ), and

consequently,

〈
ϕ̃2(π, λ), ϕ̃2,k j (π)

〉
= ̃12(λ)̃22(λk j ) − ̃12(λk j )̃22(λ).

Thus,

D̃〈2〉
k j (π, λ) = 1

λ − λk j

(
̃12(λ)̃22(λk j ) − ̃12(λk j )̃22(λ)

)
. (49)

From (49) for n 
= k, we find

P̃n1,k1(π) = ak1
λn1 − λk1

(
̃12(λn1)̃22(λk1) − ̃12(λk1)̃22(λn1)

)
= 0.

For n = k, one has P̃n1,n1(π) = an1 ˙̃12(λn1)̃22(λn1), where ˙̃12(λ) :=
d
dλ

̃12(λ). Since an1 = Resλ=λn1 M̃(λ) = −(̃11(λn1))(
˙̃12(λn1))

−1, it follows that
P̃n1,n1(π) = −̃11(λn1)̃22(λn1). From (48) for λ = λn1 we infer P̃n1,n1(π) = −1.
Thus,

P̃n1,k1(π) = −δnk, (50)

where δnk is the Kronecker symbol. From (49) for λn0 
= λk1 one has

P̃n0,k1(π) = ak1
λn0 − λk1

(
̃12(λn0)̃22(λk1) − ̃12(λk1)̃22(λn0)

)

= ak1
̃12(λn0)̃22(λk1)

λn0 − λk1
.

By virtue of (48), ̃22(λk1) = (̃11(λk1))
−1. Moreover, P̃n0,k1(π) = −1 for λn0 =

λk1. Thus,

P̃n0,k1(π)=−1 for λn0=λk1, P̃n0,k1(π)=− ̃12(λn0)

˙̃12(λk1)(λn0 − λk1)
for λn0 
=λk1.

(51)
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Consider the function Z(λ) = (12(λ) − ̃12(λ))(̃12(λ))−1. Since Qω(x) =
Q̃ω(x), α = α̃ = 0, β = β̃ = 0, it follows that12(λ)−̃12(λ) = O

(
eπ |Imλ||λ|−ν

)
,

hence |Z(λ)| ≤ Cδ|λ|−ν for λ ∈ G̃δ. In particular, this yields
∫
|ξ |=R̃n

Z(ξ)
ξ−λ

dξ → 0 as
n → ∞. Calculating the integral by residue’s theorem, we obtain for n → ∞,

12(λ) = ̃12(λ) +
+∞∑

k=−∞

̃12(λ)

(λ − λk1)
˙̃12(λk1)

12(λk1).

Putting λ = λn0 and taking (51) into account, we infer

12(λn0) = ̃12(λn0) −
+∞∑

k=−∞
P̃n0,k1(π)12(λk1).

Together with (47) and (50) this yields

+∞∑
k=−∞

P̃ni,k0(π)12(λk0) = 0,

and consequently, 12(λn0) = 0. Now we take j = 1, x = π in (22) and multiply by
V T
1 (β). Then

V T
1 (β)�1(π, λ) = V T

1 (β)�̃1(π, λ)

+
+∞∑

k=−∞

(
D̃〈1〉
k0 (π, λ)ak012(λ0) − D̃〈1〉

k1 (π, λ)ak112(λ1)
)
.

Furthermore, D̃〈1〉
k1 (π, λ) = 1

λ − λk1
(V T (β)�̃1(π, λ))T BV T (β)ϕ̃2(π, λk1) or

D̃〈1〉
k1 (π, λ) = 1

λ − λk1

(
V T
1 (β)�̃1(π, λ)̃22(λk1) − V T

2 (β)�̃1(π, λ)̃12(λk1)
)
,

hence, D̃〈1〉
k1 (π, λ) = 0. Thus, V T

1 (β)�1(π, λ) = V T
1 (β)�̃1(π, λ) = 0, and all rela-

tions (44) are valid. Lemma 17 is proved.
It remains to show that ak = Resλ=λkM(λ), where M(λ) = V T

2 (0)�1(0, λ).

Taking in (22) j = 1, x = 0 and multiplying by V T
2 (0), we obtain

M(λ) = M̃(λ) +
+∞∑

k=−∞

(
D̃〈1〉
k0 (0, λ)ak0V

T
2 (0)ϕ2,k0(0)

−D̃〈1〉
k1 (0, λ)ak1V

T
2 (0)ϕ2,k1(0)

)
. (52)



Inverse problem for dirac system with singularities 29

Using Lemma 17, we calculate V T
2 (0)ϕ2,k j (0) = V T

2 (0)V2(0) = 1. Since

D̃〈1〉
k j (0, λ) = 1

λ − λk j
�̃T

1 (0, λ)Bϕ̃2,k j (0), ϕ̃2,k j (0) = V2(0),

it follows that D̃〈1〉
k j (0, λ) = 1

λ − λk j
. Thus, (52) takes the form

M(λ) = M̃(λ) +
+∞∑

k=−∞

(
ak0

λ − λk0
− ak1

λ − λk1

)
.

With the help of Lemma 6, this yields ak = Resλ=λkM(λ). Theorem 3 is proved.
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