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Abstract We study the non-selfadjoint Dirac system on a finite interval having non-
integrable regular singularities in interior points with additional matching conditions
at these points. Properties of spectral characteristics are established, and the inverse
spectral problem is investigated. We provide a constructive procedure for the solution
of the inverse problem, and prove its uniqueness. Moreover, necessary and sufficient
conditions for the global solvability of this nonlinear inverse problem are obtained.

Keywords Differential systems - Singularity - Spectral analysis - Inverse problems
Mathematics Subject Classification 34A55 - 34140 - 34A36 - 47E05
1 Introduction

Consider the boundary value problem L = L(Q,,(x), Q(x), «, B) for the Dirac system
on a finite interval with N regular singularities inside the interval:

BY + (Qw(x) n Q(x))Y =Y, 0<x<m, (1
(cosa, sina)Y (0) = (cos B,sinB)Y () =0, 2)

where

_ (1) _(0 1 _ (1) qx)
S ()’2()6))’ B= (—1 O)’ Q) = (qz(x) —ql(x))’
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k), Mk ((sin2ng cos2m
Oux) = 04" (x) = X — Yk (COSznk sin 27

Here 0 < y1 < y2 <--- <yN <7, wp = (Vps Vp+1)s Vi+1/2 = Va1 +
v)/2, k=1, N—1, yijp =1 =0, yN+1/2 = YN+1 = 7, qj(x) are complex-
valued functions, and w; are complex numbers. Let for definiteness, o, B, nx €
[-7/2,7/2], Repux > 0, ux +1/2 ¢ N. Let g;(x) be absolutely continuous on
[0, 7] and |g;(x)] H,]Cvzl Ix — | 2Rete e L0, ). If Qu(x), Q(x), o, B satisfy these
conditions, we will say that L € W.

In this paper we establish properties of spectral characteristics and investigate the
inverse spectral problem of recovering L from the given spectral data. We provide a
constructive procedure for the solution of the inverse problem, and prove its unique-
ness. Moreover, necessary and sufficient conditions for the global solvability of this
nonlinear inverse problem are obtained.

Differential equations with singularities inside the interval play an important role in
various areas of mathematics as well as in applications. Moreover, a wide class of dif-
ferential equations with turning points can be reduced to equations with singularities.
For example, such problems appear in electronics for constructing parameters of het-
erogeneous electronic lines with desirable technical characteristics [1-3]. Boundary
value problems with discontinuities in an interior point appear in geophysical models
for oscillations of the Earth [4]. Differential equations with turning points arise in
various physical and technical problems; see [5] where further references and links to
applications can be found. We also note that in different problems of natural sciences
we face different kind of matching conditions in singular points.

The case when a singular point lies at the endpoint of the interval was investigated
fairly completely for various classes of differential equations in [6—10] and other
works. The presence of singularity inside the interval produces essential qualitative
modifications in the investigation (see [11]).

A few words on the structure of the paper. In Sect. 2 properties of spectral charac-
teristics are studied. For this we use the results from [12] where special fundamental
systems of solutions are constructed with prescribed analytic and asymptotic prop-
erties. In Sect. 3 we provide a constructive procedure for the solution of the inverse
problem, and prove its uniqueness. Necessary and sufficient conditions for the global
solvability of the inverse problem are presented in Sect. 4.

)fOI‘x € wk+12YYk+1/2, k=1, N.

2 Properties of the spectrum

System (1) has non-integrable singularities at the points y, hence it is necessary
to require additional matching conditions for solutions on the intervals wi—1 and
wk. We will do it as follows. It was shown in [12] that for x € wi_1 U wy there
exist a fundamental system of solutions Sk (x,0) = (ka) (x, A), Sék)(x, A)) such
that

0

${90r, 20 ~ (= )T (Cm

), Sék)(x,k) ~ (x =y (682) for x — Y.
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where corcoa = 1. Let Y(x, 1) = a1 (%) S\ (x, &) + a2 (1) S8 (x, 1) be a solution of
system (1) for x € wi—;. Then we put by definition

Y(x,2) = a1 ()8 (e, AR ) + a2 0088 (x, AR (),

for x € wy, where A<k>(k) is a fixed given transition matrix for yy. For example, if
AR () = I (Iisthe identity matrix) and Q(x) is analytic at y%, then this continuation
of the solution coincides with the analytic continuation through the upper half-plane

2imw
Imx > 0.1 ARy = (<7 9

0 o2 |’ then it corresponds to the analytic contin-

uation through the lower half-plane Imx < 0.

Let S(x, A) = (S1(x, A), S2(x, 1)) be the fundamental matrix for system (1) with
the initial condition S(0, A) = I and with the above mentioned matching conditions.
For definiteness, everywhere below AR () =1, k =1, N. The construction of this
fundamental matrix can be described as follows. If x € wypUw1, then we put S(x, 1) =

—1
S (x, ) (S<1>(0, A)) - moreover, if x € w, then S(x, &) = S (x, MV (A). Fix

1
X1 € w;. Then S (xy, ,\)(S<1>(o, x)) — 5@ (e, CD G, pe.

S = SPx, A)(S(2>(x1, )\))_ls<‘>(x1, x)(sm(o, x))_l, X € .

Analogously, one gets for x € wy:

k —
S, =502 (T (590 0) U0 ) S0, x € o).
i=1
3)

Lemma 1 For x € wy and |M(x — yi)| > 1,

1 /(.. i - T
S(ea) = — [ e [’1 . 1} et [’_1 ?}
2i ) k)

k .

. —ilx—2yj)+2iln; | —E L
—i-}:smrry,je’ (x=2y;) 177_/|:l :| ,
j=1 (k)

n,m n,m
(aij), . = \aij + 0(|/\(X - Vk)l_”) , v =min{l, 2Resu, 2Reus,
i,j=1 (k) i =l

B 1’ arg)\'e Hf] Unl,

... 2Reun}, | = |_1, arg A € Ty,
Sk+3

LTS
6+ 2k

mn A‘ar Ae( ok —3
3 == T,
k £ 6— 2k

” k=0, +1.
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We prove the lemma by induction. According to [12], the matrix S (x, A) can be
represented by S<k>(x, A) = E<k>(x, A)ﬂ“‘)(k), where E(k>(x, A) is the Birkhoff-type
fundamental matrix, and %) (1) are Stockes multipliers.

Let x € wp. Then S(x, 1) = S (x, 1) (S0, 1))~! and (see [12])

1 (ei’\x)[i]m +e Mgy @M=y + e )

S(x, ) = —[21‘]<1> Iy + e [—1]1y ™ [ilny +e i

Suppose that the assertion of the lemma is true for x € wy—j. Let us prove it for
x € wg. It follows from (3) that for x € wy,

S, 2) = 8% 0, ™ Gt M) T S (i, ). )
We find the asymptotics for S k) (x, M)(S (k) Gor—1, )7L, using the asymptotics from

[12]. Denote [T = [0 m* = m%) for x > y, and I= = [®, m~ = m% for
X < . One has

T
S® () A)B(S(k>(xk_1, x)) BT

z(e—tux—yk)ﬂnk[l—i 1—1} +eix(x—yk>—mk[i1 :ll] H(emum))
® )

><H(ez"”“k”ﬁ)H()f"k)/3<k>B,3<k>H()F“k)H(ez"”“kmf)

. (e—m<xk_1—yk>+mk [—l 1]
—i 1 *)

4 et —yo—in g ity [ 1 BT,
—i 1 )

-1
(Z) S) and T is the sign for the transposition. Since BH (z) BT =

H(z~') and % B BT = g g\ it follows that

where H(z) = (

T
s®) (x. B (s<’<> ey A)) BT

_ ﬂfk)ﬁz(ld (eix(xyk)Jrink |:1_l 1_l ] H(eZirruk(m*fm’))
(k)

-1 (k)

s | e~ HOr-1=viHmk 1 i +e“‘(xk*1_Vk)_inkH(e_ianl_) —hi
—1 =i ] i)

4 2iMa—y =ik |:11 —i ] H(emuk(1++2m+2m)))
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Taking the relation ,81<k> ﬂz(k> = (4i cos )~ ! into account, we calculate

—1
S<k) (x, A) (S<k) (Xk—1, )‘))
_ ; e IMEHx 12702k | 2 gin (ZHMk(mi - m+)) N 1
4i cos T [y 1 N

1 . .
M) [2 cos (nuk(l_ +2m~ — 2m+)) (l ] 1)i|
4i cos (g =1 i )]y

; =1 | 9 oo (nﬂk(l+ +2omt — zm—)) l ._1
4i cos g 1

1

4i cos 7T [ix
X | 2sin (nuk(l_ —It+2m - 2m+)) (_l _1) .
-1 i )

Consider three cases:
. IfreI,thenm™ =1, mt=0,1"=—1,1T =1, and

ei)»(X+Xk—1 —2yk)—2ink

S® (x, 0 (s<k>(xk_1, x))fl

= sin(r g ) e M EFR-1=2y0+2im —i 1 _,’_lefi)\(xka,l) i 1
1 L (k) 2i —1 4 (k)

LI TEE [i fl] L o rE =22 [0 0} .
2i 1 i ) 0 0 )
2. Ifrell_|,thenm™ =0,mt =—1,1"=—1,IT =1, and

—1
$9 e, 1 (5% (-1 2)
o —ixen—2p0+2im |~ 1 Lo |[i 1
= sin(w ug)e |:1 i:|<k>+2ie [_1 ; o

+l ei)»(xkafl) |:l _1] + ei)»(x+xk,172yk)72ink |:O O:| )
2i 1 ) 0 0 )

3. If»eg, thenm™ =0,mt =0,"=1,IT = —1, and
- - T0 0
(k) (k) — o iA(xtxg—1—2yi)+2ink
S (x7)\')(S (xk717)\')) =e [0 0}

LI YO [i 1}

L eix(x—xkl)[i fl] L sinGr ) e =200 =20 [—i fl] _
1 ) -1 )

(k)

2i
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Since xx—1 < Yk, X > Yk, itfollowsthat x +xp—1 =2y = X —Xp—1 +2(xXk—1 — V&) <
X = Xk—1, X +Xp—1 — 29k = Xk—1 —x +2(x — yx) > xr—1 — x, and the exponentials
eFiMeta—1=2yk) grow not faster than e+ —Xk-1) Thys,

S (x k)(S(k>(xk_1 A))_l _ L e [ 1
’ ’ 2 DL

L - | 1 . —linGAxp —2y)+2dig | T
+Ee 1 <k)—i—sm(nuk)e ! .(k>.

Substituting this asymptotics into (4), we get

Sx, 1) = l M=) i __1 + l e~ IMr—x-1) l_ 1
2i 1 1 ) 2i 1 1 "

+sin(nuk)e—lix(xm_l—2yk>+zz,~,,k[l—i 1} )
)

X i oMk |:i ._1:| + i PR [i 1}
21 1 l (k—1) 21 -1 l k—1)

k—1

- =il G —2yp+2ily; | T
+ E SHESTHT vp)+2iln; |:l l,i|
e k1)

Since 0 < x;_1 < x, it follows that 0 < 2x;_1 < 2x, —x < 2x,_; — x < x, and
e M2%-17%) orow not faster than e***, Therefore

1 . — 1 : j
S(x, )») = — etAx l ] 1 + — e—tAx l_ 1
2l 1 4 (k) 21 1 1 (k)

k—1

1 . in(e—xk_1)—lir(xg1 —2y)+2lin; I =i
+ZZsm(n,uj)e k=l k=172 A=\
P (k)
| k! L
- . N p—iA(x—xp—1)—liX(xk—1—2y;)+2lin; l
+2izlsm(n,u])e j j |:(1+l) (i _1):|<k>
]:

4 sin(nuk)el)\xk_l711A(x+xk_|72)/k)+21mk (141 1 l
2i i =1 ")

2i

k—1

+ D sinGrpg) sin( e AR =2y 2y bl [8 8] :
i ()

_’_i Sin (7 1y )¢~ okt iR Gk =2y 2l [(1 — (1 —i )]
j —i -1
(k)
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Let/ = —1. Then
S(.X,)\,)Z_.elkx |:l] ] 1:| +_.g—z)Lx |:l | li|
2i 1 (k) 2i - 14 (k)

k—1 .
. N irx—2iry;i—2in; | —F 1
+ 2 sin(mj)e J Y [_1 ; ]
iz (k)

! 0 0
- N =i A 420 A, —2ihy;—2in;
p

1 pRikxkHidx =2y —2im 0 0
0 O ")

—i =1

S SinGr g e A2 [1 o ]
(k)

k—1
. . N A A2x5 1 =2 —2yj)—4in; 0 0
—i—zlsm(nuk)sm(nu])e ! J J [0 0:|<k)-
j=

1{ .. T - T
S(r,2) = — (™ [’1 : 1} e [’_1 .1]
2i ) ! k)

k .
i Z Sinr p )¢ E 202 [ —11 .—1 :| .
O (k)

This yields

The case / = 1 is treated similarly. Lemma 1 is proved.
The following assertion is proved analogously.

Lemma 2 Forx € wi and | M(x — yr)| > 1

9 xf o [=1 —i a1 =i
—8(x, ) = — e'“l:. i| +elx|:. i|
oA 21( 4 -1 (k) l 1 (k)

k .
PR —ilnx—2yp+2ily; | —L i
+ El(x 2yj)sinmije i Y |:—i / ](k).
j=

Definition A function Y (x, 1) is called the solution of system (1), if there exist
constants C1(A), C2(X) such that Y (x,A) = Ci(L)S1(x,A) + Co(M)S2(x, A), x €
0, )\ Uz ()

We introduce the functions

px.2) = (0100, 2, 22, )) = S WV (@),

cosa —sino
sinae cosa ’

V@ = (Vi@, ) = (
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(A An@®)
A(“‘(Am(x) An(h)

) = VRS, WV (@),
P n) = (V1 0), Y20 2) = S@ DS @MV P).

Clearly, ¢(x, 1), ¥ (x, A) are fundamental matrices for system (1). Denote (Y, Z) :=
YT'BZ. If Y(x, 1), Z(x, A) are solutions of system (1), then (Y (x, 1), Z(x, 1)) =
det{Y (x, 1), Z(x, A)} is their Wronskian. Obviously,

(V2(x, 1), p2(x, 1)) = —A12(4). (6)

A number A is called an eigenvalue of problem (1)—(2), if there exist constants A, A
(JA1] + |A2] > 0) such that the function A1S;(x, Ag) + A252(x, Ag) satisfies the
boundary conditions (2).

Lemma 3 Zeros of A12(X) coincide with the eigenvalues of the boundary value prob-
lem (1)-(2). If Lg is an eigenvalue, then ¢(x, Ag) and Y (x, o) are eigenfunctions,
and ¥ (x, Lg) = bop(x, Ag).

Proof 1. Let Ao be a zero of Aja()), ie. VlT(,B)S(n, ro)Va(a) = 0. Therefore,
@2(x, Ap) = S(x, Ag)Va(@) is an eigenfunction, and )¢ is an eigenvalue. It follows
from (5) that g2 (x, Xp) and ¥ (x, Ag) are linear dependent.
2. Let Ao be an eigenvalue, and let Yy(x) be the corresponding eigenfunction. Since
@1(x, A), ¢2(x, 1) form a fundamental system of solutions, it follows that Yo(x) =
D¢ (x, Ao)+ D292 (x, Ag). Substituting this relation into the first boundary condition,
we obtain D VIT (v)Vi(a) + Dy VIT () Va(a) = 0, hence D1 = 0. Using the second
boundary condition, we find D, VlT (B)pa(mw, o) = 0. Since Yyp(x) # 0, one has
Dy #0, i.e. VI (B)g2(rr, o) = 0. Lemma 3 is proved.

We note that the functions Ajx(A), j,k = 1,2, are the characteristic func-
tions for the boundary value problems L j; foe system (1) with boundary conditions.
Vi (@Y (0) = V].T(ﬁ)Y(n) = 0. Denote

1
O(x,2) = (P10r,2), B2, 1)), B1(, ) = == Va(x, 2,
Alz(k)w
Da(x, 1) = @a(x, A).
It follows from (5) that det ®(x, A) = 1. The functions ®{(x, 1), ®,(x, 1) are called

the Weyl solutions, and the matrix 9T(A) := VZT (A)®1(0, 1) is called the Weyl matrix
for the problem (1)-(2).

Lemma 4 The following relations hold

1 0 A

D(x, ) = @(x, VM), WhereM(“:(m(x) 1)’9)?@): Ap()’
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Only formula for @1 (x, A) isneeded to be proved. Let ®(x, A) = D1 (A)¢1(x, L)+
Dy (AM)@a(x, A). Then

— (A1) '¥2(0, 1) = Di(W)Vi(@) + D2 (W) Va(a). (6)
Multiplying (6) by V| (@), we infer —(A12(A) "'V (@)y2(0, &) = D (1). Since
VI @)¥2(0, ) = V{ ()BT ST (, 1) BVa(B).
it follows that V| (&) y2(0, 1) = =V (B)S(, ) Va(@) = —A12 (L), ie. Di(A) = 1.
Multiplying (6) by V) (), we find D2(x) = V) (@)®1(0, 1) = M(1). Taking the
relation V2T (a)¥2(0, 1) = Aq1()) into account, we obtain the assertion of the lemma.

Thus, 9T(A) is a meromorphic function; its poles coincide with the eigenvalues of
L, and its zeros coincide with the eigenvalues of L.

Lemma 5 Forx € wi and |M(x — yi)| = 1, |M(x — yk+1)| = 1, one has

1 iAx+ia i -1 —iAx—ia i 1
w(x,k)—z(e L +e R
(k) (k)

k

- —ilnx—2y)+2ily—ile | —1 1
+Zsmn,u]e J / |:l i]k ) @)
j=1 (k)
V(A = b pirr—0)=ip | 1 1 4 pmitT—x)+ip i -1
’ 2i -1 i 1 i
(k+1) (k+1)
N .
_ . il =2y ) 2ily—itp | —1 1
Z sinmuje i J |:—l ; ] . (8)
j=k+1 (k+1)

Indeed, since ¢ (x, 1) = S(x, A)V (), relation (7) follows from Lemma 1. To prove
(8) we make the substitution x — 7 — x and repeat the arguments.

Taking the relation A(A) = V(B)¢(, 1) into account we arrive at the following
assertion.

Corollary 1 For the characteristic function A12(A), the following asymptotics holds

L i 1
Ap() = 2—i€_l()”n+a_ﬁ)[1] — 2_iel(An+a—ﬁ)[1]

N
+ Z sin nujef’“(nfzyj)ﬂl(z”j =P, 9)
Jj=1

n,m n,m
where [(ak./)k:,jzl] = (akj + 0 (|)\|—V) )k j=]for L] = oo.

By the well-known method (see for example [13—15]) one obtains the following
properties:
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1. App(r) = O(e™1ImAy,
2. All eigenvalues Ag, k € Z of the problem (1)—(2) lie in the strip |[ImA| < h.
3. Let N, be a number of eigenvalues in the rectangle

{A | Rek € la,a+ 1), [Im)] < h} Then N, is uniformly bounded.

4. Denote Gs = {A : |, — Ag| = 8 Vk}. Then |A12(1)| = Cse™ ™M for A € Gs.
5. For sufficiently small §, there exists a sequence R, — oo such that the circles

r, = {x DA = Rn} lic in Gj.

6. Let {Ag};i_oo be zeros of the function

AL () = le—i(k”ﬂl—ﬁ) _ iei(xn+a—ﬂ)
. 2i 2i
N A ‘
+lz sin JTMje_ll)L(n_ZVj)‘l'll(zr]j—a—ﬁ). (10)
j=1

Then A = 20 + O (120 ™).

For simplicity, we confine ourselves to the case when all eigenvalues of L are
simple, i.e. the function A7 (A) has only simple zeros. In particular, it is always true
for the self-adjoint case. Denote ax := Resy—;, IM(A). The data {a, )Lk},':jioo are
called the spectral data for L. The inverse problem is formulated as follows.

Inverse Problem 1 Given {ay, Ak},jioo, construct L, i.e. Q(x), Qu,(x), a, B.

In Sects. 3 and 4 we give an algorithm for the global solution of this nonlinear
inverse problem and provide necessary and sufficient conditions for its solvability.

Lemma 6 Let ML) be the Weyl function for the problem L° of the form (1)—(2) but
with the zero potential Q(x) = 0. Then

+00 ar a’ =
_ o0 -k >, =l 2
Me) = MG) + > (A—Ak A—AO)’ A
“= k k=—00 k| <R, 1201< Ry

Proof Consider the integral J, (1) = % fl"n mé%?%dé, X € intT,. Using Lem-

mas 4-5 and Corollary 1, we obtain (&) — MOE) = O(g|™Y) for & € G, and
consequently, J,(A) — 0 as n — 00. On the other hand, by residue’s theorem,

—_ oo 0
M(E) — M) 5 (mm@_mm@)

J,(A) =Res ———— +
" oy E— 2 F=hE = A =) £

M| <Ry, [A| <Ry,

hence

0 Ak al?
I =MB) = MG+ D] — - :

A <Ru. 12| <Ry

If n — oo, we arrive at the assertion of the lemma.
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Together with L we consider a boundary value problem L of the same form (DH-(2)
but with different Q(x) Qw(x) o, ﬂ We agree that if a certain symbgl v denotes
an object related to L, then v will denote an analogous object related to L.

Lemma 7 IfA;, = kaor all k, then Ajp(\) = 512()»).

Proof The functions Ajz(}) and A12(}) are entire in A of _exponential type. Using
Hadamard’s factorization theorem, we get Aj2(1) = et A1, ()). Let us show that
a =0, b=0.In view of (9),

N

_z(kﬂ+a ﬂ)[l] 1 l()»ﬂ-‘rol ﬁ)[l]—i-Zsmn,u, e —ilA(r—2y)+il 2nj—a— ﬂ)[l]
2i 21 =
_ ie—i(kn+&—/§)+ak+b[1] _ lei(kn+&—;§)+ak+b[1]
2i 2i
N ~
+ z sin n,ﬁje*il}»(?‘[*Z?j)+il(2’ﬁj7&'*,B)+a)»+b[l]' (11)
j=1

LetA =0 +it.If t =0and 0 — 400, then the right-hand side in (11) is bounded;
hence Rea < 0; fort = 0 and 0 — —o0, we get Rea > 0, i.e. Rea = 0.
Furthermore, the right-hand side in (11) is O(e~!™*T), but the left-hand side is
O (e~ Imrt—Imalmiy g5r ¢ < (. For T — —oo we have Ima < 0. If T > 0, then
it follows from (11) that O(e™%) = O(e™*~!™47) This means that Ima > 0, i.e.
Ima = 0. Thus, a = 0. Similarly, one gets that » = 0. Lemma is proved.

Corollary 2 [fi = Tk forallk, then Ajzg) =AW, iea—B=a—B, v = %,
sin 7t el Cm—=P) —= sin 7 fie! @ —=F)_ Here A?Z(A) is defined by (10).

Lemma8 [fa —&@ = B — B = i — mk. mk = k. ¥ = % k = LN and
Ox) = Q(x)Vz(oe — ), then M(A) = MQ).

Proof Denote § = o — a=p- ,B = 7k — nk. Let us show that if ¥'(x, A) is a
solution of (1), then Y (x, LX) = V(=8)Y (x, A) is a solution of (1) Indeed, substituting
V((S)Y(x, 2) into (1), we obtain

BV ()Y (x, ) + (Q(x) + Qw(x))V(a)?(x, ) = AV()Y (x, ).

Multiplying by VT (8) = V(—§) and taking the relation V7 (§)Q(x) = Q(x)V(8)
into account, we get

BY'(x, %) + (Q(x) + Qw(x))vz(a)?(x, W) =T (x, 0.
One has V( 8)S(0, A)V (8) = I. Since the Cauchy problem has the unique solution,

weinfer S(x, 1) = V(=8)S(x, M)V (8). Then A(L)=VT (B)V(=8)S(, MV (§)V (@)
or
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AR =VI(B+8)S(, MV(S +a).

This yields A jk(A) = Ajr(1). Lemma is proved.

3 Solution of the inverse problem

Let us first prove the uniqueness theorem.

Theorem 1 If M(A) = MG), then & =& = p — B = ik — e, bk = fiks Vi =
Y, k=1,Nand Q(x) = Q(x)V3(@ — ).

Proof By virtue of Lemma 8, it is sufficient to prove the theorem for the case g =
B = 0. Consider the function P (x, 1) = ®(x, MO (x, A).

Since M(A) = M(1r), it follows that these functions have the same poles. In
view of Lemma 7, one gets Ajp(A) = le(k). By Corollary 2, @ = «, y =
Yk, Sin nuke”(z’”‘_"‘) = sin nﬁke”(ﬁk_&). This yields

@, ) — x, W)= 0™ ATV, P, A) — Px, A) = O (el HT=I 7Yy,

(12)
Since @1 (x, 1) = —(A12(1) "' (x, 1), it follows that
D (x,A) = O™y e Gs. (13)
Taking (12) into account, we infer
D(x, 1) — Di(x, 1) = O(e ™)™y, 1 e Gs. (14)

Obviously, P(x, 1) — I = (®(x,A) — ®(x, 1)) BD(x, A)BT. Using (12)~(14), we
obtain for A € Gy:

— O(e—\lmxlx) O(ellmMX) O(ellmMX) O(e|1mMX)
P, ) —1=|A| (O(elmAIX) O(ellmAX)) (O(elmAIX) O(e|lmk|x))

= O0(Ar|™"). (15)

Since ®(x, 1) = ¢(x, )M (), we get P(x, %) = p(x, VMM~ (Wg~" (x, ),
or P(x,A) = @(x, 1)@ '(x, A). Therefore, P(x, A) is entire in A. Using (15), max-
imur~n modulus principle and Liouville’s theoremL we corlglude that P(x, 1) = I,
i.e. <I>(x,2:) = d(x, ). Tllen Ox) + Qu,(x) = O(x) + QOz(x), and consequently,
O(x) = 0(x), Qu(x) = Qz(x). Theorem is proved.

Corollary 3 Ifa; = ay, A = ok forall k, then L = L.

Corollary 4 If1\'" = %", 3y =7 forallk, then L = L. Here (3.""} and (5"}
are eigenvalues of L1 and L1, respectively.



Inverse problem for dirac system with singularities 13

Indeed, ~a\ccording to Lemma 7, Aj2(d) = le(k). Analogously, we obtain
A11(A) = Aq11(A). By Lemma 4, 97T(A) = 9(X).

Let us now go on to constructing the solution of the nonlinear Inverse Problem 1.
The central role here is played by the so-called main equation of the inverse problem,
which is a linear equation in the corresponding Banach space. Let us derive the main
equation.

Let the problem L with a simple spectrum be given. We choose a model boundary
value problem L with a simple spectrum such that w = @, Q,(x) = éw (x) and

+o0
A= D |@lg < oo, & =M — Al +1a a —11. (16)

k=—00

For definiteness, we assume that « = a = 0. Then g = ,g .Denote Q; :={x : x €
0,7), |x —ykl =& k=1,N}, Ago = Ak, bkt = Ak, ako = a, ax1 = ax,

Di(x, 1), Pa(x,0)
A—0
Pk (x) = D (x, Aty Mpdakj, 9245 (%) = 0205, M)y Pk (X) = Ga(x, Akj),s

DVx, A, 0) := (

=12 D) =D b ).

where (Y, Z) := det(Y,Z) = YTBZ. Analogously we define D<l>(x,k,9),
D,ﬁ? (x, A) and Py zj (x).

Lemma9 For x € Q. and ) on compact sets,

B 1 < CA+RID™, 1337 (0 = 5] < CE+D™, m=0, 1,

(17)
~(2) ~(2) ~(2) Clagy |k
D (x, M| £ —————-, Dy (x, Maro — D (x, Vagy| £ ——-,
ki 141 — 29 ko K 1412 —29
=(2) / =(2) ) /
|(Dy;" (x, 1)1 = €, [(Dygy (x, Mako — Dyy' (x, Mag1)'| < Claxy|€x-
(13)

The same estimates are valid for ¢ jj(x), D,g) (x, Q).

In order to prove the lemma, we need the following generalization of Schwarz’s
lemma:

Let the function f(z) be analytic inside the circle |z — zg9| < R and continuous
in the whole circle. Moreover, | f(z)| < C on the boundary, and f(zp) = 0. Then
| f(z)| < Clz — zo|/R in the circle |z — zo| < R.

1. It follows from (7) that
G2(x, M| < Cel™ Xy e Q. (19)

The eigenvalues lie in the strip |ImA| < max{h, ﬁ}; it follows from (19) that
|(Z§",?j (x)] < C( + |Ax;j ™. Using (10), we obtain the first estimate in (17) for
m=0.
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Applying Schwarz’s lemma, we find |32 (x, 1) — @ox1 (x)] < Cel!™ X5 — x4y,
Hence the second estimate in (17) holds (17) form = 0. Form = 1, the arguments
are similar

2. Since D? "X, A, 0) = (0 —6)” l(goz(x T Bg(x, 0), it follows from (19)
for A # 6, |A] < R, |6] < R that [D(x,1,0)] < Cl]A — 0|7 If 1 =

~ 0
then D(x, A, 1) = (@2(x, 2)" Bp,(x, 1), where g (x, 1) = TP R, Usmg

Lemma 2, we obtain |<Z'2(x, 1| < Cxel!™ X for x € Q,. Then |5(x, rMA<C
for [A] < R. Thus,

~ Cc
[D(x,2,0)| = Trm_a *°€ Qe, M =R, 10| =R. (20)

o’

Furthermore, (®; (x, 1), $2(x, 8)) = (EISJT.(x,,\))/B@(x,e) + EISJT(x,A)B(ﬁz(x,e).
Then

(®)(x, ), G2 (x.0)) = —(BD;(x. 1)) @2 (x, 0) + DT (x, )BT (x, 0).

Since j» @2 are solutions of the system, it follows that (&3 (A, @a(x, 9))/ =0 —
A)dDJT(x, A)@2(x, 0). This yields

(DY (x, 2, 0)) = _5j(x,x)§52(x,9). (21)

Taking (21) and (19) into account, we arrive at the third estimate in (18).
ClAro—Ak1]

UsingSchwarz’slemmaand(20),weinfer|5,%)(x,A)—ﬁ,ﬁ?(x,kﬂf T A0| .
Mk

Since

=2 =2 =2
Do (s Maro — Dy (v, Mag| < 1Dy (v, M) (aro — ax)|
~(2 ~(2
+I(Dyg (v, 1) = DY (x, Mg,
one gets the second estimate in (18). Other estimates are obtained analogously. Lemma
is proved.

Similarly one can prove the following assertion.

Lemma 10 For x € Q and A on compact sets,

~ Clag| =,
Piwvi¥)) < ————, |P,;:(x)| < Clagi],
| m,k]( )l =1+ |)\2 —)\.O| | m,k./( )| | k1|
Clagi |8k
|Pm k1(x) — Py, ko(x)| =< m, | ni, ik (%) — Py ko(x)| =< Clag 8,
n k
Cla1|§x

| Pt i () — Puoij (x)] < P, 1.k () — Pro. k,(X)I < Clag1én,

1420 =29
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Clag1|5kén
1+ 20— a9

|P11 k](x) n] k()(x) no k](x) + P ()ko(x)| < Clak1|&xén.

| Pa1 k1 (X) — Pu1x0(x) — Paok1(x) + Paoxo(x)] <

Moreover, if A € Gs = {A : |A—Xk| >4, ke Z}, then

Cs

~
D (e, )] < ——,
ki A — Akl

(D) (x. 2)Y'| < Cs.

- ~ 1 1
(1) (1)

|Dy (x, Mako — Dy (x, Magt| < Cslag &k ( + ) )
ko “ A=Akl 1A= Axl

~1 ~1
|(D1i0> (x, Mako — D,§1> (x, Mag1)'| < Cslak &,

where C and Cs depend on ¢. The same estimates are valid for D (x Ay Ppigj(x).

Lemma 11 The following relations hold

~+00
®j(x, 0 =800+ > (B v Marogaro) = DY (v, Maki g2 (),
k=—00
j=1.2, (22)

the series converge absolutely and uniformly for x € Sz and h on compact sets without
the spectra of L and L.

Proof Consider the function P(x, A) = ®(x, L)@~ (x, A). Denote

1

I ) = 5 S IA(P(x g)—l)dg r, = {x A :Rn}.

The functions ® (x, A) and @ (x, 1) have the same main term in the asymptotics. There-
fore, forafixedx # y,onehas P(x,&)—1 = O(|€]7"), and J,(x, 1) — Oasn — oo
uniformly in A on the compact sets. Integration on I',, is divided into integration on
the contours F,<11> = F,?) U 1",<,5>, F,<,2> = F,§4> U F,(,5> (with counterclockwise circuit),
where T = (A : |[ImA] < R} T, TS = DAY = (& : [ImA] > B} (T,
) — {A : [ImA| = h}()intT,.Let 1 € int F,<,2). By the Cauchy integral formula,
1

1
i e Sj(P(x, §)—1)ds = P(x. ) — I.

Clearly,

1 1
— —Idé =0.
2mi nE—x
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Then

1 1
Px,A) =1+ e 0 EP()C, &)dE — J,(x, ). (23)

Since @ (x, 1) = ¢(x, A)M (L), it follows that

P(x.§) = (. OMEM ™ )¢ (x.6)
= ¢(x. )77 (x. &) — (ME) — ME)g(x. ) By§™' (x. ),

0 0
By = (_1 0).

The function ¢ (x, é){o”l (x, &) is entire in &. Therefore,

1 . dg
Tt Jro #0077 =0,

since A is outside Ffl”. Thus, it follows from (23) that

! - . de
P =1-g0 [ @0 ~Tenp. B 5,075 — s,

One has ®(x, 1) = P(x, \)®(x, &), hence ®;(x, 1) = P(x, 1)®;(x, 1). Then
®;(x,2) =Dj(x, 1)

1 - . ~ dE
—ﬁ/rw(im(é)—m(é))¢(x,$)3<1>¢ 1(x,$)q>j(x,k)m+8n(x,/\),

and ¢, (x, A) — 0 as n — oo uniformly for x € .. Furthermore,

By~ 6. )8, 0r.2) = (F120x )B2; (v, ) = (v, )81 (. ) (?) ,

and consequently,

~ 1 ~ ~ ~ d
Qj(x, M) =P;(x,4) — z—m./rm(im(é) —93?(5))(%(%%),wz(&f))wz(né)%

+e,(x, ).

Calculating the integral by residue’s theorem and taking n — oo, we arrive at (22).
Lemma is proved.
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Consider (22) for j =2 and A = A,;:
+00
Pr2oni () = Quani () = D ( 21, k0 () Pm2.k0(X) = Pri k1 (X)) pm, kl(x))
k=—o00
m=1,2, (24)
©12,4j (X)

here i(x) =
v v25 (%) (fpzz,kj(x)

since the series converges only “with brackets”. We transform (24) as follows:

amZ nO(x) - amZ nl(x) = ‘/)mZ,nO(x) — Om2,n1 (x)

- z ((PnOko(X) Pa1 k0(0)) (@m2.40(X) — @ k1 (X))

k=—00
+ (P40 (x) = Pu1k0(X) = Pao.k1(x) + Pt g1 (X)) @m2, kl(X))
+o00
B2t () = 0n2an () = D (Pt to ) @m2k0(®) = P21 (1))
k=—00

+Pa k0 ®) = Pttt ()@ (1))
Denote

v () = X (‘me,nO(x) - tpmz,m(x)),
O» n — 01 m
Xn = [El gn ;é 0, \I]’(d)(x) = ‘PmZ,nl(x)v
gno,ko(X) (Pao.o(x) — n] ko(x))XnSk,
Hyok1(x) = (Pno k0 (x) — nl k0 (x) — nO K (x) + Pnl k1) X,
Hy1 10 (x) = Py1 ko). Hurk1(x) = Putko(x) — Pyp g1 ().

Then

+00
T =i @ = D (Ao %fg) @) + B0 ).

k=—00

Using Lemmas 9 and 10, we obtain the estimates

1T ol < ¢, 1@ ) < C+ 129D,

~ Clagi &k o
[Hpikj ()| < ——————~» [Hp; ;%) < Clagilék.
l + |)\‘2 _ )\,gl ni,Kj

). The last relation is not convenient for our purpose,

(25)

(26)



18 0. Gorbunov, V. Yurko

The same estimates are valid for lllr(;") (x), Hy;kj(x). Denote

W () = v (x) +00
v, )

n=—0o0

m) m) (m) (m) T
= (v @, W o, i, )
Similarly we define the block-matrix

~ . Eno’ko(x) H:nO,kl(x) oo
H(x) = (Hnl,kom Hnl,klm)

n,k=—o0

Then we rewrite (25) as follows
U () =T —Hx)W™ @), m=1,2, 27)

where I is the identity operator. It follows from (26) that W) (x), W) (x) € m for
each fixed x ;é Yk, k = 1, N, where m is the Banach space of bounded sequences.
The operator H (x), acting from m to m, is a linear bounded operator, and

< a1 |&k R
H(x < Csu E — < C E a < 00.
” ( )”m—>m = npk:_oo 1+ I)»B _ )\gl = | kllék

k=—o00

For each fixed x, relation (27) is a linear equation in m with respect to WM (x). This
equation is called the main equation of the inverse problem.

Lemma 12 The following relation holds

Q(x) = O(x) + Ba(x) — &(x)B, (28)
where
+o0
&(x)= Y (akoaz,ko(X)%T,ko(X) - ak@z,kl(x)f/)zr,kl(x)), (29)
k=—00

and the series converges uniformly for x € Q.
Proof Differentiating (22), we calculate

+o00
®(x,0) = &0+ > (B (e 1) arog2.r000) + DY (v, Makog o)

k=—o00

—(D}) (. )Y a1 2.1 () — DY (x. Mg (x))'
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Multiplying this relation by B and using (21), we obtain
(M = 0() = Qo)) ®;x,2) = (A = O) = () B, (x, 1)

+00
+ > (—CDJT(x,k)@z,ko(X)akoBfﬂz,ko(X)

k=—00
+5,<({)> (x, Maxo ()»kol —Q0(x)— Qw(x))‘PZ,kO(x)‘f‘E)JT(xv MN@2. k1 (X)ax1 Bea 1 (x)

=Bl v, Maxi (b = Q) = Qo)) 921 (9),
and consequently,

+o00
Q@) = QNP (x, 1)+ D (=T (x, W@2r0(¥)aro Bz o (x)

k=—o00

+51i{)> (x, Mako(rko — A)@2.x0(x)
+®7 (x, M)F2u1 (Va1 Bea,t (v) — Dy (v, Mag (et — Dpa.p1 (1) = 0.

5;()6, A)B@2 yi (x)

Since 551{)(x, A) = PR , it follows that
Q) = 0N®; . )+ > (= 18] (x. B0 @ako} Beaso )
k=—o00

—{ @7 (x, M BP2.r0(X)aro}2.k0(x) + {PF (x, MF2x1(X)ar1} Bea g1 (x)
+H{®] (x, A)Balkl(x)akl}fﬂlkl(x)) =0.

The matrices Q(x) and é (x) are symmetrical. Then

+00

B mfow - 0w+ 3 ((@of2ro()e] () — anr (¢l (1)) B

k=—o00

—B(ak0@2.400()0340(0) = a1 G2.1 (0311 (1) ) | = 0.
Multiplying by (®7 (x, 1)) !, we arrive at (28). It follows from the estimate

|ak0B2.k0(X) 93 10 (X) — ar1P2,41 ()93 41 ()]
< 1@2.40()@3 10 (X) — G251 (V)@] 41 ()] - lag1 |

H@2.k1(X)93 1 (O] - laro — ax1| < Clag: &

that the series in (29) converges uniformly. Lemma is proved.
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Let us now study the solvability of the main equation. For this purpose we need the
following assertion.

Lemma 13 The following relation holds

+o00
D?(x,3.0) = D?(x.5.0)+ > (D (x. WD (x. O)axo
k=—o00
—D& x, »DY (x, O)ar), (30)

and the series converges uniformly for x € Q¢ and ). on compact sets.

Proof According to (23) we have for A, 0 € F,<12):

1 1 1
P(X,)\.) - P(x,@) = % r“) (m - m) P(X,E)ds +Jn(x,k,9),

where J,(x, X, 60) — 0 as n — oo uniformly for x € 2, and X, 6 on compact sets.
Therefore,

;(PT(X,A)—PT(X,G)) = PT(x,8)ds

1 1
Py ‘%/r;w (A—E)E—0)
+J) (x, 2, 0). (3D
Since P(x,£) = ®(x, £)P 1(x, &) = =D (x, \) BDT (x, £) B, it follows that
@y (x, W PT(x,&)Bey(x,0) = =@ (x, ) BD(x, &) B (x, £) Bpa (x, 0).

One has (y, z) = yT Bz, and consequently,

75 () PT (6, §)Bea(x, ) = (@25, 1), Gax, ) P1(x, £), 92(x, 0))
(@206, 2, B1(x, ) lg2(x, ), 92(x, 0)). (32)

Since <<I>1 (x, 1), p2(x, A)) =1, <g02(x, A), ¢ (x, k)) = 0, we infer

73 (v, W PT (5,0 Bea(x, 0) = (2, 1), 92(x, 0)),

73 (r ) PT (2, 0) Bea(x, 0) = (723, ), a(x, 0).

Multiplying (31) by (ZZT (x, A) from the left, and by Bg, (x, ) from the right, and using
(32), we calculate
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(200,20, 0205, 0)) (2,2, Ba(x, 0)

A—0 a A—0
| (@2(x, 1), B2(x, ) @1+, ), 2+, )
~omi 1"},”( (0.~ &) —6)
(@20x. 2), @1(x, &))(@2(x., ), p2(x,0)) s
- d Jo(x, A, 0).
G-BE—0) Jd& + I3 ..

By Lemma 4, ®1(x, &) = ¢1(x, &) + M(E)p2(x, &). This yields

(020,20, 0205, 0)) (2,2, B2 (x, 0)
=6 - =6

PN R RE) ERNAEND)
Zﬁﬂ¥> (r—&)E —0)
+J2(x, 1, 6),

(e - M) e

since the integrals from analytic functions are equal to zero. Calculating the integral
by residue’s theorem and taking n — oo, we arrive at (30) firstly for [A| > h, and by
analytic continuation for all A. Lemma is proved.

Taking A = A,;, € = A;; in (30) and multiplying by a;;, we obtain

+oo

Paitj ) = Paigy(0) = 37 (Paiko ) Peosj () = Pai @) Pra 1) = 0. (33)
k=—00
Symmetrically, one has
P09 = Py @) = > (Pyk0C0) Phoni (¥) = Prjat () P i () = 0. (34)
k=—00

It follows from (33)—(34) that

+00

Hoit ) = Huitj )= Y (Haisto ) Hio () = Bl () i 1)) =0, (35)
k=—00
+00

Huid () = Hoit @)= Y (Hoisko ) Fioj () = Haia (0 i1 () =0. (36)
k=—00

We rewrite relations (35) and (36) in the matrix form

H(x)— H(x)— Hx)H(x) =0, H(x)— H(x)— HX)H(x) =0
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or (I — ﬁ(x))([ +Hx) =1, I+ HX)U — ﬁ(x)) = [. Thus, we have proved
the following assertion.

Theorem 2 For each fixed x (x # yx, k = 1, N), the linear bounded operator
1 — H(x), acting from m to m, has the unique inverse operator, and the main equation
(27) is uniquely solvable in m.

The solution of Inverse Problem 1 can be constructed by the following algorithm.
Algorithm 1 Given the spectral data {A, ak};:o_ oo Of the problem L.

1. Choose a model boundary value problem L, for example, with the zero potential.
2. Construct W) (x) and ﬁ(x).

3. Solving the linear main Eq. (27), find W (m) (x), and then calculate @3 4;(x).

4. Construct Q(x) by (28), anda =@, B = B.

4 Necessary and sufficient conditions for the solvability of the inverse problem

Theorem 3 For numbers {1, ak};;'ioo, ar # 0, Ay # Ap, (k # n), to be the
spectral data for a certain problem L € W, it is necessary and sufficient that the
following conditions hold

1. (Asymptotics): There exists L € W such that (16) holds;

2. (Condition S): For each fixed x # yi, k = 1, N, the linear bounded operator
I — H(x) has the unique inverse operator;

3. (Ba(x) — &(x)B)|x — y| 2Rk ¢ L(wiy1/2), where ®(x) is constructed by
(29).

Under these conditions the potential Q(x) is constructed by (28) and o = «, B = E

The necessity part of the theorem was proved above. Let us prove the sufficiency.
Let numbers {A, ak}+°° be given such that @ # 0 and Ay # A,, (k # n). Let

k=—00
L = L(Q,(x), 0(x),0, B) € W be chosen such that (16) holds. Let {W " (x)} be
the solution of the main equation (25). The following assertion is proved in [14].

Lemma 14 Consider the equations

I+ Apyo = fo, U+A)y=F,

in a Banach space B, where A, A are linear bounded operators, acting from B to B,
and 1 is the identity operator. Suppose that there exists the linear bounded operator
Ro := (I + Ag) L. If|A — Agll < QI|Rol)~", then there exists the linear bounded
operator R = (I + A)~', and |R|| < 2||Roll, |R — Roll < 2[[Rol*I| A — Aol.

Lemma 15 The following relations hold

v e e, ™) < C.,

- 37)
W (x) — T ()] < C. A6,
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+00 1 1/2
b = , X € R, (38)
! (kg“oo (1429 =292 + |x2|)2) ¢
W (@) < Co(l+ 129D x € Qe
|(\I]y(11;n>(x))/ - (‘I’,ilzl>(x))’| < CcA, x €. (39)

Proof Using (26), we infer
| Hpi kj () = Hyi g (¥0)| < |Hy 1 (E) x — X0l < Celag|€lx — xol, x,x0,& € Q,

hence

+00
IH() = Hxo)| < Ce D laxtléxlx — xol < CeAlx — xol.

k=—o00

Choose &9 > 0 such that ||H(x) H(xo)ll < (2||R(x0)||) ! for |x — x|S0, where
R(x) = (I — H(x))"'. By Lemma 14, ||R(x)_R(xO)|| < |R(x0)[ICelx — xol,
Q.. Therefore, the function f(x) = ||R(x)|| is continuous and bounded on €2;. Then

IR < Ce, IR(x) — R(xo)|l < Celx —xol,  x € e,

where the constant C, does not depend on x, x¢. Since wim (x) = E(x)(fl(’”)(x), it
follows that | W) (x)|| < [|[R()| [[¥" (x)|| < Ce. Thus, (37) is proved.
Taking (25)—(26) into account, we obtain

1 +o00

BT Y S e e e, 3

0_ 50’
k=—o0 j=0 fo—eo 1 T 12 = 2

and consequently,

+o00
~ 2
Wi ) = B @)1 = Ceb > (lanalé @+ 140D)

k=—o00

i.e. (38) holds. Estimates (39) are proved similarly. Lemma is proved.

T
Construct the functions ¢2 ,; (x) = (golz,m- (x), cpzz,m-(x)) by the formula

Oman0@) = W 08, + W () g0 =¥ (), m=1,2. (40)
It follows from (40) and Lemma 15 that

S ()] < Ce(TH D™, 193 () =@y (0)] < Cebn(1+ [29D™, m =0, 1,

(41)
92,01 (X) = @2, ()] < Ce Ay, 1@ i (X) — @, (X)] < CeA. (42)
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Lemma 16 The function Q(x), constructed by (28), is absolutely continuous on
[0, m].

Proof In view of (41), the series in (29) converges uniformly on €2.. According to
Lemma 15, the functions @2 5; (x) are continuous, and consequently, &(x) is continuous
on 2. One has

+00
&(x) = A1(x) + A2(x), A1(x) = D (aro — @) @2.40(x) @3 4o (),
k=—o00
+00
A0 = > (a0 0T o) — P (00T ().
k=—00

Taking (41) and (17) into account, we infer |(arg — akl)ﬁz,ko(x)wgko(x)| <

lag1 & Ce (1 + |A2|). This yields that the series for Aj(x) converges uniformly on
Q¢ and A/ (x) € L(0, 7). Since

(@2.40()93 10(X) = P2x1 (V)@ 11(X)) = (@5 10(X) — B 41 (X))@3 o (x)
+ 8501 (@2.40) — 201 ()T + @2k0() (95 4o(x) — @5 4 ()T
+ (@240 (x) — @201 () (@3 1 (X)),

it follows from (41) and (17) that |ak1($2,k0(x)¢£ko(x) — (Zz,kl(x)cpzT,k](x))ﬂ <
Celag & (1 + |A2|). This yields A’z(x) € L(0, ). Thus, &(x) is absolutely con-
tinuous on [0, 7] and &’(x) € L(0, 7). Lemma is proved.

Let us now show that the given numbers {Ak},j:i o are eigenvalues of the con-
structed boundary value problem L(Q,(x), Q(x), 0, 8).

Lemma 17 The following relations hold

Lo kj(x) = Ajooij(x), £Dj(x,A) =AD;(x, 1), 43)
®2(0,2) = V2(0), VI (O®1(0,2) =1, VI (B)D1(r,2) =0, Ap(h)=0.
(44)

Proof 1. We construct ®;(x, 1) by (22). In view of (41)—(42), the series in (22)
converges uniformly in 2,. Moreover, differentiating (22) and taking (21) into
account, we obtain

“+o00
O =8 0+ > (D akew s 000~ DY (M (0)
k=—00
400
- > (CDJT'(X,)»)(52,k0(x)ak0€02,k0(x) - CDJT»(x,k)(ﬁz,kl(X)aklwz,kl(X)),

k=—o00
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and consequently,
(@0, )T = (@ (x, )" = T (x, Mz (x)

. (DL (x Maro(@ s o en” = D (v, Mkt (@ g o).

k=—o00

This yields

/ T 5/ T =T
(BCIJ»(x,)»)—G-Q(x)(I)J-(x,A)) — (®,(x, 1) +d>j(x,k)(Q(x)+ae(x)B)

. (B . haro(Be s 100) + Qa0 ()

k=—o00

~(j T
B} . (Bo () + Qg2 ) ).

Since Q(x) = Q(x)+Ba(x)—(x) B, ®T (x, 1) B (x) = D (x, 1) G=hni).
it follows that

+00

(. B = D (D (6 M = 2o)arog] o)
k=—00

=D (6, 0 = D e (),

hence

T ~, ~ ~ T
(B0 + 00,0 1) = (B ) + 0@, 1))
too T
+ 2 (Dlgg (x, Mako (Bw 2400 + Q()P2k0(x) + (A — kko)wz,ko(X)))
k=—o00
—» / _ T
DY (x. Maw (Be (0 + 0@g2.41 () + 6 = gz () )

Taking (22) into account, we calculate

+00
(D) (x,2) = A®j(x.0) = D (D,S{)><x,mako(e<pz,ko<x)—xkowz,kom)

k=—00

—5%) (x, Maki (ﬁfﬂz,kl(X) - ?»klwz,kl(X))) (45)
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Consider (45) for j =2 and A = A,;:

“+o00

i) = > (ﬁni,ko(X)Zko(X) - ﬁm‘,kl(x)zkl(x)) =0,

k=—o00

where z,,; (x) = £@2 5i (X) — Ayi@2,ni (x), Or

ZW () = D Hyi g () Z{7 (x) = 0, (46)
k’j
where Z{ = (2ma0 @) = 2t @) otar ZW ) = zmm @), 2ix) =

(210 (%), 22, (x)7, m = 1,2. Taking (41) into account, we get |Z\" (x)|
Ce(1 4 [A2]). Using (46) and (26), we infer

IA

+00 0
(m) laki 1§k (121 + 1)
PAGIS P St St YOy
ni P 1+ |)\2 — )\k|

and consequently, {Zf?(x)} € m. Equation (46) has only trivial solution, i.e.
Z,i';” (x) = 0, hence £¢2 i (x) —Ani92.0i (x) = 0. The second relation (43) follows
now from (45).

: 7(2) _
2. Since ij (x, 1) = i

det(@a(x, 1), @2,k (x)), it follows that

kj

B2 (0.3 = - det(V2(0), V2(0)) = 0.

]

Using (22), we find (0, 1) = 2132(0, X) = V»(0). Furthermore, taking j = 1,
x = 0in (22) and multiplying by VIT (0), we calculate

VI (0)®1(0, %) = V] (0)®1(0, 1)

~+00
+ > (Bl ©. mao V! 0)¢2100) = DY O, i V] 0p210))
k=—o00

Since V| (0)¢2,4;(0) = VI (0)V2(0) = 0, one gets V[ (0)®1(0,1) = V[ (0)®,
(0,2) = 1. Thus, ®7(x, 1) = ¢2(x, A) is a solution of (1) with the initial condition
@200, 1) = V»(0). Then Ajp(X) = VIT (B)p2(m, 1). Let us show that A2(A,0) = 0,
i.e. {An}f{i‘ioo are eigenvalues of L. For this purpose we take j = 2, x = 7 in (22)
and multiply by VIT (B). This yields

+00
AG) =Kot + Y. (D (r DawAituo) = DY (r. an A Gun).

k=—o00
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and consequently,
A Ou) =A00mi) + Y (Pni,ko(ﬂ)Alz(?»ko) - Pni,kl(ﬂ)Alz()ukl))- (47)
k=—o00
By definition A(A) = VT (B)p(, 1), then det A(L) = 1, or
A1 (M) A2R) — Ap()A2n () = 1 (48)
Furthermore, (92(, 1), @2,k (7)) = @3 (71, A) B2 ij (7). Since V(B)VT(B) = I,

T
it follows that (2(. 4), G2 (1)) = (VI (Beam, ) BVT (B)ga(r. i), and
consequently,

(27, 2), P2 () = Br2() B2 (0tj) = B12Gui) B2 ().

Thus,

D (1.3 = ——— (B Bn(u) - AnGiBn®).  @9)

kj

From (49) for n # k, we find

Akl

Pui g1 () = (112()»"1)522()%1) — le(Kkl)Zzz(knl)) =0.

Anl — Akl
For n = k, one has Pyii(0) = anAraCa)Aoa(har), where App(h) =
L X15(1). Since ay = Res;—;,, M) = —(A11 (1)) (A12(2n1)) "L it follows that

Puin1 () = —A11 (A1) A2z (A1) From (48) for A = A, we infer Py () = —1.
Thus,

Pui g1 () = =8t (50)
where &, is the Kronecker symbol. From (49) for A,,0 # Ax1 one has

an ([~ ~ ~ ~
—(Alz(kno)Azz(kkl) - Alz()»kl)Azz(kno))
An0 — Akl

A12(hn0) D22 (Mk1)
An0 — Akl '

Puox1(m) =

By virtue of (48), Zzg(kkl) = (Zu(kkl))_l. Moreover, ﬁnO,kl(ﬂ) = —1 for A0 =
Mi1. Thus,

~ ~ A12(hno)
Puok1(m)y=—1"for Ayo=2Ak1, Puos1(m)=—= for Ano # Ak1.

A2 (1) Mo — Ak1)

61y
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Consider the function Z(A) = (A12(A) — Aja(W)(A12(A) L. Since Q,(x) =
Ou(X),a =& =0,8 = =0, itfollows that Ajs(}) — A2 (A) = o(eﬂl’mllurv),

hence |Z(A)| < Cs|A|™" for A € Gs. In particular, this yields ek, %ds — 0as

n — oo. Calculating the integral by residue’s theorem, we obtain for n — oo,

_ +o00 Z A
Ap(d) = Ap) + Z 125,)
koo (A — Ak1) A12(Ak1)

A (A1)
Putting A = 4,0 and taking (51) into account, we infer

“+00
A1 (hn0) = A On0) = D Paoki () A (hr).

k=—o00
Together with (47) and (50) this yields
+00 _
Z Puiko(m) A12(Aiko) =0,
k=—00

and consequently, Aj2(1,0) = 0. Now we take j = 1, x = 7 in (22) and multiply by
V'(B). Then

VIB)YDi(m, 1) = VI(B)D1 (7, 1)

+00
~(1 ~(1
+ 2 (Bl r. MaroAia(ro) = DY (. i Ara(h)).

k=—o00

VT (B (r, )T BVT (B)@a (7, Ax1) or

Furthermore, l~),i11> (T, X)) =
A — Akl

Dy (m. 1) = (V! BB 16r. B2 = VI (BB (1, ) B2,

A — Akl

hence, D} (r, 1) = 0. Thus, V" (B)® (rr, ») = V] (8)®;(x, ) = 0, and all rela-
tions (44) are valid. Lemma 17 is proved.

It remains to show that ay = Res;—;, M(A), where M) = VQT(O)CDl(O, A).
Taking in (22) j = 1, x = 0 and multiplying by V2T (0), we obtain

~+00
MGy = MR+ > (B O DaoVi 0p240(0)

k=—o00

~Dii 0. Waa Vi 0241 (0). (52)
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Using Lemma 17, we calculate V2T 0)@2,4(0) = V2T (0)V»(0) = 1. Since

it follows that 5,§j.> 0, 1) =

~ | ~ ~
Dy 0.0 = T O BRGO), Faki(0) = V2(0),
J

———. Thus, (52) takes the form
A — Akj

+00
- ako Aak1
M) = M(A — .
> ()+¢2:;(K—Am k—km)

With the help of Lemma 6, this yields a;y = Res; =, M(1). Theorem 3 is proved.
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