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Abstract We introduce a natural framework for dealing with Mourre theory in an
abstract two-Hilbert spaces setting. In particular a Mourre estimate for a pair of self-
adjoint operators (H, A) is deduced from a similar estimate for a pair of self-adjoint
operators (H0, A0) acting in an auxiliary Hilbert space. A new criterion for the com-
pleteness of the wave operators in a two-Hilbert spaces setting is also presented.
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1 Introduction

It is commonly accepted that Mourre theory is a very powerful tool in spectral and
scattering theory for self-adjoint operators. In particular, it naturally leads to limiting
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absorption principles which are essential when studying the absolutely continuous
part of self-adjoint operators. Since the pioneering work of Mourre [11], a lot of
improvements and extensions have been proposed, and the theory has led to numerous
applications. However, in most of the corresponding works, Mourre theory is pre-
sented in a one-Hilbert space setting and perturbative arguments are used within this
framework. In this paper, we propose to extend the theory to a two-Hilbert spaces
setting and present some results in that direction. In particular, we show how a Mourre
estimate can be deduced for a pair of self-adjoint operators (H, A) in a Hilbert space
H from a similar estimate for a pair of self-adjoint operators (H0, A0) in a auxiliary
Hilbert space H0.

The main idea of Mourre for obtaining results on the spectrum σ(H) of a self-
adjoint operator H in a Hilbert space H is to find an auxiliary self-adjoint operator
A in H such that the commutator [i H, A] is positive when localised in the spectrum
of H . Namely, one looks for a subset I ⊂ σ(H), a number a ≡ a(I ) > 0 and a
compact operator K ≡ K (I ) in H such that

E H (I )[i H, A]E H (I ) ≥ aE H (I )+ K , (1.1)

where E H (I ) is the spectral projection of H on I . Such an estimate is commonly
called a Mourre estimate. In general, this positivity condition is obtained via per-
turbative technics. Typically, H is a perturbation of a simpler operator H0 in H for
which the commutator [i H0, A] is easily computable and the positivity condition eas-
ily verifiable. In such a case, the commutator of the formal difference H − H0 with
A can be considered as a small perturbation of [i H0, A], and one can still infer the
necessary positivity of [i H, A].

In many other situations one faces the problem that H is not the perturbation of
any simpler operator H0 in H. For example, if H is the Laplace–Beltrami operator on
a non-compact manifold, there is no candidate for a simpler operator H0 in the same
Hilbert space. Similarly, for scattering theory with obstacles, one is naturally led to
consider two different Hilbert spaces with one operator living in each of these spaces.
Alternatively, for multichannel scattering systems, there might exist more than one
single candidate for H0, and one has to take this multiplicity into account. In these
situations, it is therefore unclear from the very beginning wether one can find a suitable
conjugate operator A for H and how some positivity of [i H, A] can be deduced
from a hypothetic similar condition involving a simpler operator H0. Of course, these
interrogations have found positive answers in various situations. Nevertheless, it does
not seem to the authors that any general framework has yet been proposed.

The starting point for our investigations is the scattering theory in the two-Hilbert
spaces setting. In this setup, one has a self-adjoint operator H in a Hilbert space H,
and one looks for a simpler self-adjoint operator H0 in an auxiliary Hilbert space H0
and a bounded operator J : H0 → H such that the strong limits

s- limt→±∞ ei t H Je−i t H0ϕ

exist for suitable vectors ϕ ∈ H0. If such limits exist for enough ϕ ∈ H0, then some
information on the spectral nature of H can be inferred from similar information on
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the spectrum of H0. We refer to the books [4,14] for general presentations of scattering
theory in the two-Hilbert spaces setting. Therefore, the following question naturally
arises: if A0 is a conjugate operator for H0 such that (1.1) holds with (H0, A0) instead
of (H, A), can we define a conjugate operator A for H such that (1.1) holds? Under
suitable conditions, the answer is “yes”, and its justification is the content of this
paper. In fact, we present a general framework in which a Mourre estimate for a
pair (H, A) can be deduced from a similar Mourre estimate for a pair (H0, A0). In
that framework, we suppose the operators A0 and A given a priori , and then exhibit
sufficient conditions on the formal commutators [i H, A] and [i H0, A0] guaranteeing
the existence of a Mourre estimate for (H, A) if a Mourre estimate for (H0, A0) is
verified (see the assumptions of Theorem 3.1). We also show how a conjugate operator
A for H can be constructed from a conjugate operator A0 for H0.

Let us finally sketch the organisation of the paper. In Sect. 2, we recall a few
definitions (borrowed from [2, Chap. 7]) in relation with Mourre theory in the usual
one-Hilbert space setting. In Sect. 3, we state our main result, Theorem 3.1, on the
obtention of a Mourre estimate for (H, A) from a similar estimate for (H0, A0).
A complementary result on higher order regularity of H with respect to A is also
presented. In the second part of Sect. 3, we show how the assumptions of Theorem 3.1
can be checked for short-range type and long-range type perturbations (note that the
distinction between short-range type and long-range type perturbations is more subtle
here, since H0 and H do not live in the same Hilbert space). We also show how a natural
candidate for A can be constructed from A0. In Sect. 4, we illustrate our results with
the simple example of one-dimensional Schrödinger operator with steplike potential.
A more challenging application on manifolds will be presented in [13] (many other
applications such as curved quantum waveguides, anisotropic Schrödinger operators,
spin models, etc. are also conceivable). Finally, in Sect. 5 we prove an auxiliary result
on the completeness of the wave operators in the two-Hilbert spaces setting without
assuming that the initial sets of the wave operators are equal to the subspace Hac(H0)

of absolute continuity of H0 (in [4,14], only that case is presented and this situation
is sometimes too restrictive as will be shown for example in [13]).

2 Mourre theory in the one-Hilbert space setting

In this section we recall some definitions related to Mourre theory, such as the regularity
condition of H with respect to A, providing a precise meaning to the commutators
mentioned in the Introduction. We refer to [2, Sec. 7.2] for more information and
details.

Let us consider a Hilbert space H with scalar product 〈 · , · 〉H and norm ‖ · ‖H. Let
also H and A be two self-adjoint operators in H, with domains D(H) and D(A). The
spectrum of H is denoted by σ(H) and its spectral measure by E H ( ·). For shortness,
we also use the notation E H (λ; ε) := E H (λ− ε, λ+ ε) for all λ ∈ R and ε > 0.

The operator H is said to be of class C1(A) if there exists z ∈ C\σ(H) such that
the map

R � t �→ e−i t A(H − z)−1ei t A ∈ B(H) (2.1)
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is strongly of class C1 in H. In such a case, the set D(H)∩ D(A) is a core for H and
the quadratic form D(H) ∩ D(A) � ϕ �→ 〈Hϕ, Aϕ〉H − 〈Aϕ, Hϕ〉H is continuous
in the topology of D(H). This form extends then uniquely to a continuous quadratic
form [H, A] on D(H), which can be identified with a continuous operator from D(H)
to the adjoint space D(H)∗. Furthermore, the following equality holds:

[
A, (H − z)−1] = (H − z)−1[H, A](H − z)−1.

This C1(A)-regularity of H with respect to A is the basic ingredient for any investi-
gation in Mourre theory. It is also at the root of the proof of the Virial Theorem (see
for example [2, Prop. 7.2.10] or [7]).

Note that if H is of class C1(A) and if η ∈ C∞
c (R) (the set of smooth functions on

R with compact support), then the quadratic form D(A) � ϕ �→ 〈η̄(H)ϕ, Aϕ〉H −
〈Aϕ, η(H)ϕ〉H also extends uniquely to a continuous quadratic form [η(H), A] on
H, identified with a bounded operator on H.

We now recall the definition of two very useful functions in Mourre theory described
in [2, Sec. 7.2]. For that purpose, we use the following notations: for two bounded
operators S and T in a common Hilbert space we write S ≈ T if S − T is compact,
and we write S � T if there exists a compact operator K such that S ≤ T + K . If H
is of class C1(A) and λ ∈ R we set

�A
H (λ) := sup

{
a ∈ R | ∃ε > 0 s.t. a E H (λ; ε) ≤ E H (λ; ε)[i H, A]E H (λ; ε)}.

A second function, more convenient in applications, is

�̃A
H (λ) := sup

{
a ∈ R | ∃ε > 0 s.t. a E H (λ; ε) � E H (λ; ε)[i H, A]E H (λ; ε)}.

Note that the following equivalent definition is often useful:

�̃A
H (λ) = sup

{
a ∈ R | ∃η ∈ C∞

c (R) real s.t. η(λ) �= 0,

a η(H)2 � η(H)[i H, A]η(H)}. (2.2)

It is commonly said that A is conjugate to H at the point λ ∈ R if �̃A
H (λ) > 0,

and that A is strictly conjugate to H at λ if �A
H (λ) > 0. Furthermore, the function

�̃A
H : R → (−∞,∞] is lower semicontinuous and satisfies �̃A

H (λ) < ∞ if and only
if λ belongs to the essential spectrum σess(H) of H . One also has �̃A

H (λ) ≥ �A
H (λ) for

all λ ∈ R, see [2, Prop. 7.2.6].
Another property of the function �̃, often used in the one-Hilbert space setting, is its

stability under a large class of perturbations: Suppose that H and H ′ are self-adjoint
operators in H and that both operators H and H ′ are of class C1

u(A), i.e. such that the
map (2.1) is C1 in norm. Assume furthermore that the difference (H−i)−1−(H ′−i)−1

belongs to K (H), the algebra of compact operators on H. Then, it is proved in [2,
Thm. 7.2.9] that �̃A

H ′ = �̃A
H , or in other words that A is conjugate to H ′ at a point

λ ∈ R if and only if A is conjugate to H at λ.
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Our first contribution in this paper is to extend such a result to the two-Hilbert
spaces setting. But before this, let us recall the importance of the set μ̃A(H) ⊂ R on
which �̃A

H ( · ) > 0: if H is slightly more regular than C1(A), then H has locally at
most a finite number of eigenvalues on μ̃A(H) (multiplicities counted), and H has no
singularly continuous spectrum on μ̃A(H) (see [2, Thm. 7.4.2] for details).

3 Mourre theory in the two-Hilbert spaces setting

From now on, apart from the triple (H, H, A) of Sect. 2, we consider a second triple
(H0, H0, A0) and an identification operator J : H0 → H. The existence of two such
triples is quite standard in scattering theory, at least for the pairs (H, H) and (H0, H0)

(see for instance the books [4,14]). Part of our goal in what follows is to show that the
existence of the conjugate operators A and A0 is also natural, as was realised in the
context of scattering on manifolds [13].

So, let us consider a second Hilbert space H0 with scalar product 〈 · , · 〉H0 and
norm ‖ · ‖H0 . Let also H0 and A0 be two self-adjoint operators in H0, with domains
D(H0) and D(A0). Clearly, the C1(A0)-regularity of H0 with respect to A0 can be
defined as before, and if H0 is of class C1(A0) then the definitions of the two functions
�

A0
H0

and �̃A0
H0

hold as well.
In order to compare the two triples, it is natural to require the existence of a map

J ∈ B(H0,H) having some special properties (for example, the ones needed for the
completeness of the wave operators, see Sect. 5). But for the time being, no additional
information on J is necessary. In the one-Hilbert space setting, the operator H is
typically a perturbation of the simpler operator H0. And as mentioned above, the
stability of the function �̃A0

H0
is an efficient tool to infer information on H from similar

information on H0. In the two-Hilbert spaces setting, we are not aware of any general
result allowing the computation of the function �̃A

H in terms of the function �̃A0
H0

. The
obvious reason for this being the impossibility to consider H as a direct perturbation
of H0 since these operators do not live in the same Hilbert space. Nonetheless, the
next theorem gives a result in that direction:

Theorem 3.1 Let (H, H, A) and (H0, H0, A0) be as above, and assume that

(i) the operators H0 and H are of class C1(A0) and C1(A), respectively,
(ii) for any η ∈ C∞

c (R) the difference of bounded operators J [i A0, η(H0)]J ∗ −
[i A, η(H)] belongs to K (H),

(iii) for any η ∈ C∞
c (R) the difference Jη(H0)− η(H)J belongs to K (H0,H),

(iv) for any η ∈ C∞
c (R) the operator η(H)(J J ∗ − 1)η(H) belongs to K (H).

Then, one has �̃A
H ≥ �̃

A0
H0

. In particular, if A0 is conjugate to H0 at λ ∈ R, then A is
conjugate to H at λ.

Note that with the notations introduced in the previous section, Assumption (ii)
reads J [i A0, η(H0)]J ∗ ≈ [i A, η(H)]. Furthermore, since the vector space generated
by the family of functions {( · − z)−1}z∈C\R is dense in C0(R) and the set K (H0,H)
is closed in B(H0,H), the condition J (H0 − z)−1 − (H − z)−1 J ∈ K (H0,H)
for all z ∈ C\R implies Assumption (iii) (here, C0(R) denotes the set of continuous
functions on R vanishing at ±∞).
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Proof Let η ∈ C∞
c (R; R), and define η1, η2 ∈ C∞

c (R; R) by η1(x) := x η(x) and
η2(x) := x η(x)2. Under Assumption (i), it is shown in [2, Eq. 7.2.18] that

η(H)[i A, H ]η(H) = [i A, η2(H)] − 2Re
{[i A, η(H)]η1(H)

}
.

Therefore, one infers from Assumptions (ii) and (iii) that

η(H)[i A, H ]η(H) ≈ J [i A0, η2(H0)]J ∗ − 2Re
{

J [i A0, η(H0)]J ∗η1(H)
}

= J [i A0, η2(H0)]J ∗ − 2Re
{

J [i A0, η(H0)]η1(H0)J
∗}

−2Re
{

J [i A0, η(H0)]
(
J ∗η1(H)− η1(H0)J

∗)}

≈ J [i A0, η2(H0)]J ∗ − 2JRe
{[i A0, η(H0)]η1(H0)

}
J ∗

= Jη(H0)[i A0, H0]η(H0)J
∗,

which means that

η(H)[i A, H ]η(H) ≈ Jη(H0)[i A0, H0]η(H0)J
∗. (3.1)

Furthermore, if a ∈ R is such that η(H0)[i A0, H0]η(H0) � aη(H0)
2, then Assump-

tions (iii) and (iv) imply that

Jη(H0)[i A0, H0]η(H0)J
∗ � a Jη(H0)

2 J ∗ ≈ aη(H)J J ∗η(H) ≈ aη(H)2. (3.2)

Thus, one obtains η(H)[i A, H ]η(H) � aη(H)2 by combining (3.1) and (3.2). This
last estimate, together with the definition (2.2) of the functions �̃A0

H0
and �̃A

H in terms
of the localisation function η, implies the claim. ��

As mentioned in the previous sections, the C1(A)-regularity of H and the Mourre
estimate are crucial ingredients for the analysis of the operator H , but they are in
general not sufficient. For instance, the nature of the spectrum of H or the existence
and the completeness of the wave operators is usually proved under a slightly stronger
C1,1(A)-regularity condition of H . It would certainly be valuable if this regularity
condition could be deduced from a similar information on H0. Since we have not been
able to obtain such a result, we simply refer to [2] for the definition of this class of
regularity and present below a coarser result. Namely, we show that the regularity
condition “H is of class Cn(A)” can be checked by means of explicit computations
involving only H and not its resolvent. For simplicity, we present the simplest, non-
perturbative version of the result; more refined statements involving perturbations as
in Sects. 3.1 and 3.2 could also be proved.

For that purpose, we first recall that H is of class Cn(A) if the map (2.1) is strongly
of class Cn . We also introduce the following slightly more general regularity class:
assume that (G,H) is a Friedrichs couple, i.e. a pair (G,H) with G a Hilbert space
densely and continuously embedded in H. Assume furthermore that the unitary group
{ei t A}t∈R leaves G invariant. Then, the restriction of this group to G generates a C0-
group in G, and by duality extends to a C0-group in G∗ (the adjoint space of G). Without
ambiguity, the generators of these groups can be denoted by A (see [2, Sec. 6.3]
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for details). In such a situation, an operator T ∈ B(G,H) is said to belong to
Cn(A;G,H) if the map

R � t �→ e−i t AT ei t A ∈ B(G,H)

is strongly of class Cn . Similar definitions hold with T in B(H,G), B(G,G∗) or in
B(G∗,H), and one clearly has Cn(A;G,H) ⊂ Cn(A;G,G∗).

The next proposition (which improves slightly the result of [10, Lemma 1.2]) is
an extension of [2, Thm. 6.3.4.(c)] to higher orders of regularity of H with respect
to A. We use for it the notation G for the domain D(H) of H endowed with its natural
Hilbert space structure. We also recall that if H is of class C1(A), then [i H, A] can
be identified with a bounded operator from G to G∗.

Proposition 3.2 Assume that ei t AG ⊂ G for all t ∈ R and that H ∈ Cn−1(A;G,H)∩
Cn(A;G,G∗) for some integer n ≥ 1. Then, H is of class Cn(A).

Proof We prove the claim by induction on n. For n = 1, the claim follows from [2,
Thm. 6.3.4.(a)].

Now, assume that the statement is true for n − 1 ≥ 0, and suppose that H ∈
Cn−1(A;G,H) ∩ Cn(A;G,G∗). Since H is of class C1(A), one has

[
(H − i)−1, A

] = −(H − i)−1[H, A](H − i)−1. (3.3)

Furthermore, since (H ± i) ∈ B(G,H) are bijections from G onto H, one
infers from the inclusion H ∈ Cn−1(A;G,H) and from [2, Prop. 5.1.6.(a)] that
(H ± i)−1 ∈ Cn−1(A;H,G). One also deduces from [2, Prop. 5.1.7] that (H ∓ i)−1 ∈
Cn−1(A;G∗,H). Finally, the inclusion H ∈ Cn(A;G,G∗) implies that [H, A] ∈
Cn−1(A;G,G∗). So, by taking into account (3.3) and the regularity property for prod-
uct of operators [2, Prop. 5.1.5], one obtains that

[
(H − i)−1, A

] ∈ Cn−1(A). This
implies the inclusion (H − i)−1 ∈ Cn(A), which proves the statement for n. ��

Usually, the regularity of H0 with respect to A0 is easy to check. On the other
hand, the regularity of H with respect to A is in general rather difficult to establish,
and various perturbative criteria have been developed for that purpose in the one-
Hilbert space setting. Often, a distinction is made between so-called short-range and
long-range perturbations. Roughly speaking, the difference between these types of
perturbations is that the two terms of the formal commutator [A, H − H0] = A(H −
H0)− (H − H0)A are treated separately in the former situation while the commutator
[A, H − H0] is really computed in the latter situation. In the first case, one usually
requires more decay and less regularity, while in the second case more regularity but
less decay are imposed. Obviously, this distinction cannot be as transparent in the
general two-Hilbert spaces setting presented here. Still, a certain distinction remains,
and thus we dedicate to it the following two complementary sections.
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3.1 Short-range type perturbations

We show below how the condition “H is of class C1(A)” and the assumptions (ii)
and (iii) of Theorem 3.1 can be verified for a class of short-range type perturbations.
Our approach is to derive information on H from some equivalent information on H0,
which is usually easier to obtain. Accordingly, our results exhibit some perturbative
flavor. The price one has to pay is that a compatibility condition between A0 and
A is necessary. For z ∈ C\R, we use the shorter notations R0(z) := (H0 − z)−1,
R(z) := (H − z)−1 and

B(z) := J R0(z)− R(z)J ∈ B(H0,H). (3.4)

Proposition 3.3 Let H0 be of class C1(A0) and assume that D ⊂ H is a core for A
such that J ∗D ⊂ D(A0). Suppose furthermore that for any z ∈ C\R

B(z)A0 � D(A0) ∈ B(H0,H) and R(z)(J A0 J ∗ − A) � D ∈ B(H). (3.5)

Then, H is of class C1(A).

Proof Take ψ ∈ D and z ∈ C\R. Then, one gets

〈
R(z̄)ψ, Aψ

〉
H − 〈

Aψ, R(z)ψ
〉
H

= 〈
R(z̄)ψ, Aψ

〉
H − 〈

Aψ, R(z)ψ
〉
H − 〈

ψ, J [R0(z), A0]J ∗ψ
〉
H

+ 〈
ψ, J [R0(z), A0]J ∗ψ

〉
H

= 〈
B(z̄)A0 J ∗ψ,ψ,

〉
H − 〈

ψ, B(z)A0 J ∗ψ
〉
H + 〈

ψ, J [R0(z), A0]J ∗ψ
〉
H

+ 〈
R(z̄)(J A0 J ∗ − A)ψ,ψ

〉
H − 〈

ψ, R(z)(J A0 J ∗ − A)ψ
〉
H.

Now, one has

∣∣〈B(z̄)A0 J ∗ψ,ψ,
〉
H − 〈

ψ, B(z)A0 J ∗ψ
〉
H

∣∣ ≤ Const.‖ψ‖2
H

due to the first condition in (3.5), and one has

∣∣〈R(z̄)(J A0 J ∗ − A)ψ,ψ
〉
H − 〈

ψ, R(z)(J A0 J ∗ − A)ψ
〉
H

∣∣ ≤ Const.‖ψ‖2
H

due to the second condition in (3.5). Furthermore, since H0 is of class C1(A0) one
also has

∣∣〈ψ, J [R0(z), A0]J ∗ψ
〉
H

∣∣ ≤ Const.‖ψ‖2
H.

Since D is a core for A, the conclusion then follows from [2, Lemma 6.2.9]. ��
We now show how the assumption (ii) of Theorem 3.1 is verified for a short-range

type perturbation. Note that the hypotheses of the following proposition are slightly
stronger than the ones of Proposition 3.3, and thus H is automatically of class C1(A).
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Proposition 3.4 Let H0 be of class C1(A0) and assume that D ⊂ H is a core for A
such that J ∗D ⊂ D(A0). Suppose furthermore that for any z ∈ C\R

B(z)A0 � D(A0) ∈ K (H0,H) and R(z)(J A0 J ∗ − A) � D ∈ K (H). (3.6)

Then, for each η ∈ C∞
c (R) the difference of bounded operators J [A0, η(H0)]J ∗ −

[A, η(H)] belongs to K (H).
Proof Takeψ,ψ ′ ∈ D and z ∈ C\R. Then, one gets from the proof of Proposition 3.3
that

〈
ψ ′, J [A0, R0(z)]J ∗ψ

〉
H − 〈

ψ ′, [A, R(z)]ψ〉H
= 〈

B(z̄)A0 J ∗ψ ′, ψ,
〉
H − 〈

ψ ′, B(z)A0 J ∗ψ
〉
H

+ 〈
R(z̄)(J A0 J ∗ − A)ψ ′, ψ

〉
H − 〈

ψ ′, R(z)(J A0 J ∗ − A)ψ
〉
H.

By the density of D in H, one then infers from the hypotheses that J [A0, R0(z)]J ∗ −
[A, R(z)] belongs to K (H).

To show the same result for functions η ∈ C∞
c (R) instead of ( · − z)−1, one needs

more refined estimates. Taking the first resolvent identity into account one obtains

B(z) = {
1 + (z − i)R(z)

}
B(i)

{
1 + (z − i)R0(z)

}
.

Thus, one gets on D the equalities

B(z)A0 J ∗ = {
1 + (z − i)R(z)

}
B(i)A0

{
1 + (z − i)R0(z)

}
J ∗

+{
1 + (z − i)R(z)

}
B(i)(z − i)[R0(z), A0]J ∗, (3.7)

where

[R0(z), A0] = {
1 + (z − i)R0(z)

}
R0(i)[A0, H0]R0(i)

{
1 + (z − i)R0(z)

}
.

Obviously, these equalities extend to all of H since they involve only bounded
operators. Letting z = λ+ iμ with |μ| ≤ 1, one even gets the bound

∥∥B(z)A0 J ∗∥∥
B(H) ≤ Const.

(
1 + |λ+ i(μ− 1)|

|μ|
)4

.

Furthermore, since the first and second terms of (3.7) extend to elements of K (H),
the third term of (3.7) also extends to an element of K (H). Similarly, the operator
on D

R(z)(J A0 J ∗ − A) ≡ {
1 + (z − i)R(z)

}
R(i)(J A0 J ∗ − A)

extends to a compact operator in H, and one has the bound

∥∥R(z)(J A0 J ∗ − A)
∥∥

B(H) ≤ Const.

(
1 + |λ+ i(μ− 1)|

|μ|
)
.
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Now, observe that for any η ∈ C∞
c (R) and any ψ,ψ ′ ∈ D one has

〈
ψ ′, J [A0, η(H0)]J ∗ψ

〉
H − 〈

ψ ′, [A, η(H)]ψ 〉
H

= 〈{
Jη(H0)− η(H)J

}
A0 J ∗ψ ′, ψ

〉
H − 〈

ψ ′,
{

Jη(H0)− η(H)J
}

A0 J ∗ψ
〉
H

+ 〈
η(H)(J A0 J ∗ − A)ψ ′, ψ

〉
H − 〈

ψ ′, η(H)(J A0 J ∗ − A)ψ
〉
H. (3.8)

Then, by expressing the operators η(H0) and η(H) in terms of their respective resol-
vents (using for example [2, Eq. 6.1.18]) and by taking the above estimates into
account, one obtains that

{
Jη(H0)− η(H)J

}
A0 J ∗ and η(H)(J A0 J ∗ − A) are equal

on D to a finite sum of norm convergent integrals of compact operators. Since D
is dense in H, these equalities between bounded operators extend continuously to
equalities in B(H), and thus the statement follows by using (3.8). ��
Remark 3.5 As mentioned just after Theorem 3.1, the requirement B(z) ∈ K (H0,H)
for all z ∈ C\R implies the assumption (iii) of Theorem 3.1. Since an a priori stronger
requirement is imposed in the first condition of (3.6), it is likely that in applications
the compactness assumption (iii) will follow from the necessary conditions ensuring
the first condition in (3.6).

Before turning to the long-range case, let us reconsider the above statements in the
special situation where A = J A0 J ∗. This case deserves a particular attention since it
represents the most natural choice of conjugate operator for H when A0 is a conjugate
operator for H0. However, in order to deal with a well-defined self-adjoint operator
A, one needs the following assumption:

Assumption 3.6 There exists a set D ⊂ D(A0 J ∗) ⊂ H such that J A0 J ∗ is essen-
tially self-adjoint on D , with corresponding self-adjoint extension denoted by A.

Assumption 3.6 might be difficult to check in general, but in concrete situations the
choice of the set D can be quite natural (see the examples presented in Sect. 4 and [13,
Rem. 4.3]). We now show how the assumptions of the above propositions can easily
be checked under Assumption 3.6. Recall that the operator B(z) was defined in (3.4).

Corollary 3.7 Let H0 be of class C1(A0), suppose that Assumption 3.6 holds for some
set D ⊂ H, and for any z ∈ C\R assume that

B(z)A0 � D(A0) ∈ B(H0,H).

Then, H is of class C1(A).

Proof All the assumptions of Proposition 3.3 are verified. ��
Corollary 3.8 Let H0 be of class C1(A0), suppose that Assumption 3.6 holds for some
set D ⊂ H, and for any z ∈ C\R assume that

B(z)A0 � D(A0) ∈ K (H0,H). (3.9)

Then, for each η ∈ C∞
c (R) the difference of bounded operators J [A0, η(H0)]J ∗ −

[A, η(H)] belongs to K (H).
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Proof All the assumptions of Proposition 3.4 are verified.

Remark 3.9 As mentioned above the choice A = J A0 J ∗ is natural when A0 is a
conjugate operator for H0. With that respect the second conditions in (3.5) and (3.6)
quantify how much one can deviate from this natural choice.

The most important consequence of Mourre theory is the obtention of a limiting
absorption principle for H0 and H . Rather often, the space defined in terms of A0
(resp. A) in which holds the limiting absorption principle for H0 (resp. H ) is not
adequate for applications. In [2, Prop. 7.4.4] a method is given for expressing the
limiting absorption principle for H0 in terms of an auxiliary operator 	0 in H0 more
suitable than A0. Obviously, this abstract result also applies for three operators H , A
and 	 in H, but one crucial condition is that (H − z)−1D(	) ⊂ D(A) for suitable
z ∈ C. In the next lemma, we provide a sufficient condition allowing to infer this
information from similar information on the operators H0, A0 and 	0 in H0. Note
that 	 does not need to be of the form J	0 J ∗ but that such a situation often appears
in applications.

Lemma 3.10 Let z ∈ C\{σ(H0) ∪ σ(H)}. Suppose that Assumption 3.6 holds for
some set D ⊂ H. Assume that

B(z̄)A0 � D(A0) ∈ B(H0,H).

Furthermore, let 	0 and 	 be self-adjoint operators in H0 and H satisfying
(H0 − z)−1D(	0) ⊂ D(A0) and J ∗(	 − i)−1 − (	0 − i)−1 J ∗ = (	0 − i)−1 B
for some B ∈ B(H,H0). Then, one has the inclusion (H − z)−1D(	) ⊂ D(A).
Proof Let ψ ∈ D and ψ ′ ∈ H. Then, one has

〈
Aψ, (H − z)−1(	− i)−1ψ ′〉

H
= 〈{

(H − z̄)−1 J − J (H0 − z̄)−1}A0 J ∗ψ, (	− i)−1ψ ′〉
H

+ 〈
J (H0 − z̄)−1 A0 J ∗ψ, (	− i)−1ψ ′〉

H
= −〈

B(z̄)A0 J ∗ψ, (	− i)−1ψ ′〉
H + 〈

(H0 − z̄)−1 A0 J ∗ψ, (	0 − i)−1 J ∗ψ ′〉
H0

+ 〈
(H0 − z̄)−1 A0 J ∗ψ, (	0 − i)−1 Bψ ′〉

H0
.

So,
∣∣〈Aψ, (H − z)−1(	 − i)−1ψ ′〉

H
∣∣ ≤ Const. ‖ψ‖H, and thus (H − z)−1(	 −

i)−1ψ ′ ∈ D(A), since A is essentially self-adjoint on D . ��

3.2 Long-range type perturbations

In the case of a long-range type perturbation, the situation is slightly less satisfactory
than in the short-range case. One reason comes from the fact that one really has
to compute the commutator [A, H − H0] instead of treating the terms A(H − H0)

and (H − H0)A separately. However, a rather efficient method for checking that
“H is of class C1(A)” has been put into evidence in [9, Lemma. A.2]. We start by
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recalling this result and then we propose a perturbative type argument for checking the
assumption (ii) of Theorem 3.1. Note that there is a missprint in the hypothesis 1 of
[9, Lemma A.2]; the meaningless condition supn ‖χn‖D(H) < ∞ has to be replaced
by supn ‖χn‖B(D(H)) < ∞.

Lemma 3.11 (Lemma A.2 of [9]) Let D ⊂ H be a core for A such that D ⊂ D(H)
and HD ⊂ D . Let {χn}n∈N be a family of bounded operators on H such that

(i) χnD ⊂ D for each n ∈ N, s- limn→∞ χn = 1 and supn ‖χn‖B(D(H)) < ∞,
(ii) for all ψ ∈ D , one has s- limn→∞ Aχnψ = Aψ ,

(iii) there exists z ∈ C\σ(H) such that χn R(z)D ⊂ D and χn R(z̄)D ⊂ D for each
n ∈ N,

(iv) for all ψ ∈ D , one has s- limn→∞ A[H, χn]R(z)ψ = 0 and one has
s- limn→∞ A[H, χn]R(z̄)ψ = 0.

Finally, assume that for all ψ ∈ D

∣
∣〈Aψ, Hψ〉H − 〈Hψ, Aψ〉H

∣
∣ ≤ Const.

(‖Hψ‖2
H + ‖ψ‖2

H
)
.

Then, H is of class C1(A).

In the next statement we provide conditions under which the assumption (ii) of
Theorem 3.1 is verified for a long-range type perturbation. One condition is that
for each z ∈ C\R the operator B(z) belongs to K (H0,H), which means that the
hypothesis (iii) of Theorem 3.1 is also automatically satisfied. We stress that no direct
relation between A0 and A is imposed; the single relation linking A0 and A only
involves the commutators [H0, A0] and [H, A]. On the other hand, the condition on
H0 is slightly stronger than just the C1(A0)-regularity.

Proposition 3.12 Let H0 be of class C1(A0) with [H0, A0] ∈ B
(D(H0),H0

)
and

let H be of class C1(A). Assume that the operator J ∈ B(H0,H) extends to an
element of B

(D(H0)
∗,D(H)∗), and suppose that for each z ∈ C\R the operator

B(z) belongs to K (H0,H) and that the difference J [H0, A0]J ∗ − [H, A] belongs to
K

(D(H),D(H)∗). Then, for each η ∈ C∞
c (R) the difference of bounded operators

J [A0, η(H0)]J ∗ − [A, η(H)]

belongs to K (H).
Proof By taking the various hypotheses into account one gets for any z ∈ C\R that

J [A0, R0(z)]J ∗ − [A, R(z)]
= J R0(z)[H0, A0]R0(z)J

∗ − R(z)[H, A]R(z)

= {
J R0(z)− R(z)J

}[H0, A0]R0(z)J
∗ + R(z)J [H0, A0]

{
R0(z)J

∗ − J ∗ R(z)
}

+R(z)
{

J [H0, A0]J ∗ − [H, A]}R(z)

= B(z)[H0, A0]R0(z)J
∗ + R(z)J [H0, A0]B(z̄)∗

+R(z)
{

J [H0, A0]J ∗ − [H, A]}R(z),
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with each term on the last line in K (H). Now, by taking the first resolvent identity
into account, one obtains

B(z)[H0, A0]R0(z)J
∗

= {
1 + (z − i)R(z)

}
B(i)

{
1 + (z − i)R0(z)

}[H0, A0]R0(i)
{
1+(z − i)R0(z)

}
J ∗

and

R(z)J [H0, A0]B(z̄)∗

= {
1+(z − i)R(z)

}
R(i)J [H0, A0]

{
1+(z − i)R0(z)

}
B(−i)∗

{
1 + (z − i)R(z)

}

as well as

R(z)
{

J [H0, A0]J ∗ − [H, A]}R(z)

= {
1 + (z − i)R(z)

}
R(i)

{
J [H0, A0]J ∗ − [H, A]}R(i)

{
1 + (z − i)R(z)

}
.

Thus, by letting z = λ+ iμ with |μ| ≤ 1, one gets the bound

∥∥J [A0, R0(z)]J ∗ − [A, R(z)]∥∥B(H) ≤ Const.

(
1 + |λ+ i(μ− 1)|

|μ|
)3

.

One concludes as in the proof of Proposition 3.4 by expressing J [A0, η(H0)]J ∗ −
[A, η(H)] in terms of J [A0, R0(z)]J ∗−[A, R(z)] (using for example [2, Eq. 6.2.16]),
and then by dealing with a finite number of norm convergent integrals of compact
operators. ��

As mentioned before the statement, no direct relation between A0 and A has been
imposed, and thus considering the special case A = J A0 J ∗ is not really relevant.
However, it is not difficult to check how the quantity J [H0, A0]J ∗ − [H, A] looks
like in that special case, and in applications such an approach could be of interest.
However, since the resulting formulas are rather involved in general, we do not further
investigate in that direction.

4 One illustrative example

To illustrate our approach, we present below a simple example for which all the com-
putations can be made by hand (more involved examples will be presented elsewhere,
like in [13], where part of the results of the present paper is used). In this model, usu-
ally called one-dimensional Schrödinger operator with steplike potential, the choice
of a conjugate operator is rather natural, whereas the computation of the �-functions
is not completely trivial due to the anisotropy of the potential. We refer to [1,3,5,6,8]
for earlier works on that model and to [12] for a n-dimensional generalisation.

So, we consider in the Hilbert space H := L2(R) the Schrödinger operator H :=
−� + V , where V is the operator of multiplication by a function v ∈ C(R; R) with
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finite limits v± at infinity, i.e. v± := limx→±∞ v(x) ∈ R. The operator H is self-
adjoint on H2(R), since V is bounded. As a second operator, we consider in the
auxiliary Hilbert space H0 := L2(R)⊕ L2(R) the operator

H0 := (−�+ v−)⊕ (−�+ v+),

which is also self-adjoint on its natural domain H2(R) ⊕ H2(R). Then, we take a
function j+ ∈ C∞(R; [0, 1]) with j+(x) = 0 if x ≤ 1 and j+(x) = 1 if x ≥ 2,
we set j−(x) := j+(−x) for each x ∈ R, and we define the identification operator
J ∈ B(H0,H) by the formula

J (ϕ−, ϕ+) := j−ϕ− + j+ϕ+, (ϕ−, ϕ+) ∈ H0.

Clearly, the adjoint operator J ∗ ∈ B(H,H0) is given by J ∗ψ = ( j−ψ, j+ψ) for any
ψ ∈ H, and the operator J J ∗ ∈ B(H) is equal to the operator of multiplication by
j2− + j2+.

Let us now come to the choice of the conjugate operators. For H0, the most natural
choice consists in two copies of the generator of dilations on R, that is, A0 := (D, D)
with D the generator of the group

(
ei t Dψ

)
(x) := et/2ψ(et x), ψ ∈ S (R), t, x ∈ R,

where S (R) denotes the Schwartz space on R. In such a case, the map (2.1) with
(H, A) replaced by (H0, A0) is strongly of class C∞ in H0. Moreover, the �-functions
can be computed explicitly (see [2, Sec. 8.3.5] for a similar calculation in an abstract
setting):

�̃
A0
H0
(λ) = �

A0
H0
(λ) =

⎧
⎪⎨

⎪⎩

+∞ if λ < min{v−, v+}
2
(
λ− min{v−, v+}) if min{v−, v+} ≤ λ < max{v−, v+}

2
(
λ− max{v−, v+}) if λ ≥ max{v−, v+}.

For the conjugate operator for H , two natural choices exist: either one can use again
the generator D of dilations in H, or one can use the (formal) operator J A0 J ∗ which
appears naturally in our framework. Since the latter choice illustrates better the general
case, we opt here for this choice and just note that the former choice would also be
suitable and would lead to similar results. So, we set D := S (R) and j := j− + j+,
and then observe that J A0 J ∗ is well-defined and equal to

J A0 J ∗ = j Dj (4.1)

on D . This equality, the fact that j is of class C1(D), and [2, Lemma 7.2.15], imply that
J A0 J ∗ is essentially self-adjoint on D . We denote by A the corresponding self-adjoint
extension.

We are now in a position for applying results of the previous sections such as
Theorem 3.1. First, recall that H0 is of class C1(A0) and observe that the assumption
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(iv) of Theorem 3.1 is satisfied with the operator J introduced above. Similarly, one
easily shows that the assumption (iii) of Theorem 3.1 also holds. Indeed, as mentioned
after the statement of Theorem 3.1, the assumption (iii) holds if one shows that B(z) ∈
K (H0,H) for each z ∈ C\R. But, for any (ϕ−, ϕ+) ∈ H0, a direct calculation shows
that B(z)(ϕ−, ϕ+) = B−(z)ϕ− + B+(z)ϕ+, with

B±(z) := (H − z)−1{[−�, j±] + j±(V − v±)
}
(−�+ v± − z)−1 ∈ K (H).

So, one readily concludes that B(z) ∈ K (H0,H).
Thus, one is only left with showing the assumption (ii) of Theorem 3.1 and the

C1(A)-regularity of H . We first consider a short-range type perturbation. In such a
case, with A defined as above, we know it is enough to check the condition (3.9) of
Corollary 3.8. For that purpose, we assume the following stronger condition on v :

lim|x |→∞ |x |(v(x)− v±
) = 0, (4.2)

and observe that for each (ϕ−, ϕ+) ∈ S (R) ⊕ S (R) and z ∈ C\R we have the
equality

B(z)A0(ϕ−, ϕ+) = B−(z)Dϕ− + B+(z)Dϕ+.

Then, taking into account the expressions for B−(z) and B+(z) as well as the above
assumption on v, one proves easily that B±(z)D � D(D) ∈ K (H), which implies
(3.9). Collecting our results, we end up with:

Lemma 4.1 (Short-range case) Assume that v ∈ C(R; R) satisfies (4.2), then the
operator H is of class C1(A) and one has �̃A

H ≥ �̃
A0
H0

. In particular, A is conjugate to
H on R\{v−, v+}.

We now consider a long-range type perturbation and thus show that the assumptions
of Proposition 3.12 hold with A defined as above. For that purpose, we assume that
v ∈ C1(R; R) and that

lim|x |→∞ |x |v′(x) = 0. (4.3)

Then, a standard computation taking the inclusion (H − z)−1D ⊂ D(A) into account
shows that H is of class C1(A) with

[A, H ] = [
j (−i∇) idR j,−�] − i j2 idR v

′ + i

2

[
j2,−�]

, (4.4)

where idR is the function R � x �→ x ∈ R. Then, using (4.3) and (4.4), one infers that
J [H0, A0]J ∗−[H, A] belongs to K

(D(H),D(H)∗). Furthermore, simple considera-
tions show that J extends to an element of B

(D(H0)
∗,D(H)∗). These results, together

with the ones already obtained, permit to apply Proposition 3.12, and thus to get:
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Lemma 4.2 (Long-range case) Assume that v ∈ C1(R; R) satisfies (4.3), then the
operator H is of class C1(A) and one has �̃A

H ≥ �̃
A0
H0

. In particular, A is conjugate to
H on R\{v−, v+}.
5 Completeness of the wave operators

One of the main goal in scattering theory is the proof of the completeness of the wave
operators. In our setting, this amounts to show that the strong limits

W±(H, H0, J ) := s- limt→±∞ ei t H Je−i t H0 Pac(H0) (5.1)

exist and have ranges equal to Hac(H). If the wave operators W±(H, H0, J ) are partial
isometries with initial sets H±

0 , this implies in particular that the scattering operator

S := W+(H, H0, J )∗ W−(H, H0, J )

is well-defined and unitary from H−
0 to H+

0 .
When defining the completeness of the wave operators, one usually requires that

H±
0 = Hac(H0) (see for example [4, Def. III.9.24] or [14, Def. 2.3.1]). However,

in applications it may happen that the ranges of W±(H, H0, J ) are equal to Hac(H)
but that H±

0 �= Hac(H0). Typically, this happens for multichannel type scattering
processes. In such situations, the usual criteria for completeness, as [4, Prop. III.9.40]
or [14, Thm. 2.3.6], cannot be applied. So, we present below a reformulation of the
completeness of the wave operators without assuming that H±

0 = Hac(H0). Its proof
is inspired by [14, Thm. 2.3.6]. Note that condition (5.3) below might be the difficult
point when a long-range type perturbation is considered.

Proposition 5.1 Suppose that the wave operators defined in (5.1) exist and are partial
isometries with initial set projections P±

0 . If there exists J̃ ∈ B(H,H0) such that

W±
(
H0, H, J̃

) := s- limt→±∞ ei t H0 J̃e−i t H Pac(H) (5.2)

exist and such that

s- limt→±∞
(
J J̃ − 1

)
e−i t H Pac(H) = 0, (5.3)

then the equalities Ran
(
W±(H, H0, J )

) = Hac(H) hold. Conversely, if
Ran

(
W±(H, H0, J )

) = Hac(H) and if there exists J̃ ∈ B(H,H0) such that

s- limt→±∞
(
J̃ J − 1

)
e−i t H0 P±

0 = 0, (5.4)

then W±
(
H0, H, J̃

)
exist and (5.3) holds.

Proof (i) By using the chain rule for wave operators [14, Thm. 2.1.7], we deduce from
the definitions (5.1)-(5.2) that the limits

W±
(
H, H, J J̃

) := s- limt→±∞ ei t H J J̃e−i t H Pac(H)

exist and satisfy
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W±
(
H, H, J J̃

) = W±(H, H0, J )W±
(
H0, H, J̃

)
. (5.5)

In consequence, the equality

s- limt→±∞
(
ei t H J J̃e−i t H Pac(H)− Pac(H)

) = 0,

which follow from (5.3), implies that W±
(
H, H, J J̃

)
Pac(H) = Pac(H). This,

together with (5.5) and the equality W±
(
H0, H, J̃

) = W±
(
H0, H, J̃

)
Pac(H), gives

W±(H, H0, J )W±
(
H0, H, J̃

) = W±
(
H, H, J J̃

)
Pac(H) = Pac(H),

which is equivalent to

W±
(
H0, H, J̃

)∗
W±(H, H0, J )∗ = Pac(H).

This gives the inclusion Ker
(
W±(H, H0, J )∗

) ⊂ Hac(H)⊥, which together with the
fact that the range of a partial isometry is closed imply that

H = Ran
(
W±(H, H0, J )

) ⊕ Ker
(
W±(H, H0, J )∗

) ⊂ Hac(H)⊕ Hac(H)
⊥ = H.

So, one must have Ran
(
W±(H, H0, J )

) = Hac(H), and the first claim is proved.
(ii) Conversely, consider ψ ∈ Hac(H). Then we know from the hypothesis

Ran
(
W±(H, H0, J )

) = Hac(H) that there exist ψ± ∈ P±
0 H0 such that

lim
t→±∞

∥∥e−i t Hψ − Je−i t H0 P±
0 ψ±

∥∥H = 0. (5.6)

Together with (5.4), this implies that the norm

∥∥ei t H0 J̃e−i t Hψ − P±
0 ψ±

∥∥H0

≤ ∥∥ei t H0 J̃
(
e−i t Hψ− Je−i t H0 P±

0 ψ±
)∥∥H0

+∥∥ei t H0 J̃ Je−i t H0 P±
0 ψ±−P±

0 ψ±
∥∥H0

≤ Const.
∥
∥e−i t Hψ − Je−i t H0 P±

0 ψ±
∥
∥H + ∥

∥(
J̃ J − 1

)
e−i t H0 P±

0 ψ±
∥
∥H0

converges to 0 as t → ±∞, showing that the wave operators (5.2) exist.
For the relation (5.3), observe first that (5.4) gives

s- limt→±∞
(
J J̃ − 1

)
Je−i t H0 P±

0 = s- limt→±∞ J
(
J̃ J − 1

)
e−i t H0 P±

0 = 0.

Together with (5.6), this implies that the norm

∥∥(
J J̃ − 1

)
e−i t Hψ

∥∥H
≤ ∥∥(

J J̃ − 1
)(

Je−i t H0 P±
0 ψ± − e−i t Hψ

)∥∥H + ∥∥(
J J̃ − 1

)
Je−i t H0 P±

0 ψ±
∥∥H

≤ Const.
∥∥e−i t Hψ − Je−i t H0 P±

0 ψ±
∥∥H + ∥∥(

J J̃ − 1
)
Je−i t H0 P±

0 ψ±
∥∥H

converges to 0 as t → ±∞, showing that (5.3) also holds. ��
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