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Abstract We consider the stability of ground state solitary waves of the generalized
Ostrovsky equation (ut − βuxxx + f (u)x )x = γ u, with homogeneous nonlinearities
of the form f (u) = ae|u|p + ao|u|p−1u. We obtain bounds on the function d whose
convexity determines the stability of the solitary waves. These bounds imply that,
when 2 ≤ p < 5 and ao < 0, solitary waves are stable for c near c∗ = 2

√
βγ . These

bounds also imply that, for γ > 0 small, solitary waves are stable when 2 ≤ p < 5
and unstable when p > 5. We also numerically compute the function d, and thereby
determine precise regions of stability and instability, for several nonlinearities.

1 Introduction

The focus of this paper is on the stability of solitary wave solutions of the generalized
Ostrovsky equation

(ut − βuxxx + f (u)x )x = γ u, (1.1)

where f is a C2 function that is homogeneous of degree p ≥ 2. Also known as the
rotation modified KdV equation, this equation was originally proposed by Ostrovsky
[10], with f (u) = u2, as a model for the unidirectional propagation of weakly nonlin-
ear long surface and internal waves of small amplitude in a rotating fluid, where the
parameter γ > 0 is a measure of rotational effects due to the Coriolis force. Equation
(1.1) has also been derived, with f (u) = −u3, as a model for the propagation of short
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pulses in nonlinear media [3]. Setting γ = 0 in the Ostrovsky equation and integrating,
one obtains the generalized KdV equation

ut − βuxxx + f (u)x = 0. (1.2)

In [14], Varlamov and Liu considered the Cauchy problem for the Ostrovsky equation.
They proved that (1.1) is well-posed in the space Xs for s > 3/2. In [9] they also
showed that solutions of the Ostrovsky equation converge to solutions of the KdV
equation on finite time intervals, in the sense that if ψ ∈ Xs with s > 3/2, v is the
solution of (1.2) with v(0) = ψ and un is the solution of (1.1) with un(0) = ψ and
γn → 0, then sup0≤t≤T ‖un(t)−v(t)‖L2 → 0 for fixed T > 0. Tsugawa [13] extended
the results of Varlamov and Liu by proving well-posedness in Xs for s > −3/4.

Existence of solitary waves was considered in [6,15] for the quadratic nonlinearity,
and in [7] for more general homogeneous nonlinearities. Using variational methods,
it was shown that solitary waves exist in the space X1 provided β > 0, γ > 0 and
c < c∗ = 2

√
βγ . In [3], existence was shown for pure power nonlinearities and small

γ > 0 by considering the Ostrovsky equation as a perturbation of the KdV equation.
The behavior of the solitary waves of the Ostrovsky equation as γ → 0 was studied

in [6,7], where it was shown that solitary waves of the Ostrovsky equation converge
in H1 to solitary waves of the KdV equation. This is somewhat surprising, as the
Ostrovsky solitary waves have zero mass, while the KdV solitary waves have nonzero
mass.

Stability of solitary waves was considered in [6,7,9]. It was shown that the stability
of solitary waves is determined by the convexity or concavity of the function d defined
in equation (3.4). Although there are no known explicit expressions for d, by using
the scaling identity satisfied by d, together with numerically computed solitary wave
solutions, it is possible to obtain numerical approximations of d that determine the
regions of stability and instability in terms of the parameters β, c and γ . This was
done in [6,7] for the class of pure power nonlinearities f (u) = (−u)p.

The purpose of this paper is twofold. We first investigate the behavior of d near
the boundary of its domain. In particular, when p < 5 we obtain bounds that imply
convexity of d, and hence stability, for c near c∗ = 2

√
βγ . We also show that the

scaling identity implies stability for p < 5 and instability for p > 5, for γ near zero.
Secondly, we extend the numerical results of [7] to a broader class of nonlinearities.
The main results of the paper can be summarized as follows.

Main Results

(i) Suppose f (s) = ae|s|p + ao|s|p−1s where 2 ≤ p < 5 and ao < 0. Then solitary
waves are stable for c near c∗. (Corollary 5.1.)

(ii) If p < 5 solitary waves are stable for small γ > 0. (Corollary 5.4, part (i).)
(iii) If p > 5 solitary waves are unstable for small γ > 0. (Corollary 5.4, part (ii).)

(iv) If p > 5 + 4
√

2 and c <
(

p2−10p−7
(p−1)2

)
c∗, solitary waves are unstable. (Theorem

3.5, part (ii).)
(v) Precise regions of stability and instability are given for the nonlinearity f (s) =

cos(θ)|s|p + sin(θ)|s|p−1s for several values of θ and p. (Table 1.)
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The stability results (i) and (ii) are new. The instability result (iii) was proved in [7], but
is proved here using a different method, and the instability result (iv) is an improvement
on the previously known result. The numerical results (v) extend those of [7].

The paper is organized as follows. In Sects. 2 and 3 we summarize the known
results concerning the properties of solitary waves of the Ostrovsky equation and their
stability. In Sect. 4 we discuss the class of nonlinearities that will be considered. In
Sect. 5 we derive bounds on d near the boundary of its domain. The main results
are Theorem 5.1 and Theorem 5.2. Together with Theorem 3.3, these results provide
information about the stability of solitary waves for parameter values close to the
boundary of the domain of d. Finally, in Sect. 6 we present numerical results for
several different homogeneous nonlinearities.

Notation
We shall use F (u) or û to denote the Fourier transform of u with respect to the

spatial variable x , and F−1(u) or ǔ to denote the inverse Fourier transform. We denote
by ∂−1

x the operator defined by

∂−1
x u = F−1

(
(iξ)−1Fu

)
.

The space Xs is defined by

Xs = {u ∈ Hs(R) | ∂−1
x u ∈ Hs(R)}

with norm

‖u‖Xs = ‖u‖Hs + ‖∂−1
x u‖Hs .

2 Solitary waves

In this section we summarize the known properties of solitary waves of Eq. (1.1). By
a solitary wave we mean a solution of (1.1) of the form u(x, t) = ϕ(x − ct). The
profile ϕ must then satisfy the stationary equation

βϕxx + cϕ + γ D−2
x ϕ = f (ϕ), (2.1)

or equivalently

βϕxxxx + cϕxx + γ ϕ = f (ϕ)xx . (2.2)

We will restrict attention to the case β > 0, γ > 0 and c < c∗ = 2
√
βγ , when

this equation is elliptic. In all other cases, the results of Zhang and Liu [17] and Liu
[8] imply non-existence of solutions of (2.1) in X1. Existence of solutions of (2.1)
in the space X1 was established in [7] (and in [9] for the quadratic nonlinearity) by



410 S. Levandosky

considering the following variational problem. Let

I (u) = I (u;β, c, γ ) =
∫

R

βu2
x − cu2 + γ (∂−1

x u)2 dx, (2.3)

K (u) = −(p + 1)
∫

R

F(u) dx, (2.4)

where F ′ = f and F(0) = 0. Let λ > 0 and suppose there exist u ∈ X1 such that
K (u) = λ. Then define

Mλ = inf{I (u) : u ∈ X1, K (u) = λ}.

Then since I is coercive over X1, it follows that Mλ > 0. A minimizing sequence is
then defined to be a sequence ψk ∈ X1 such that

K (ψk) → λ, I (ψk) → Mλ

as k → ∞. We then have the following result [7].

Theorem 2.1 Let β > 0, γ > 0 and c < c∗. Let ψk be a minimizing sequence for
some λ > 0. Then there exists a subsequence (renamed ψk), scalars yk ∈ R and
ψ ∈ X1 such that ψk(· + yk) → ψ in X1. The function ψ achieves the minimum
I (ψ) = Mλ subject to the constraint K (ψ) = λ.

The minimizer ψ then satisfies the equation

βψxx + cψ + γ D−2
x ψ = μ f (ψ), (2.5)

for some μ ∈ R. Multiplying by ψ and integrating yields Mλ = I (ψ) = μK (ψ) =
μλ, so μ > 0, and thus ϕ = μ

1
p−1ψ is a solution of (2.1). Such solutions are referred

to as ground states. The homogeneity of F implies that ground state solitary waves
achieve the minimum

m = m(β, c, γ ) = inf

{
I (u;β, c, γ )

(K (u))
2

p+1

: u ∈ X1, K (u) > 0

}
. (2.6)

Multiplying the solitary wave equation (2.1) by ϕ and integrating gives I (ϕ) = K (ϕ),
and therefore the set of all ground state solutions of (2.1) can be described as follows.

G (β, c, γ ) = {ϕ ∈ X1 : I (ϕ) = K (ϕ) = m(β, c, γ )
p+1
p−1 } (2.7)

The regularity and decay of solutions of (2.1) with quadratic nonlinearity were
considered by Zhang and Liu [17], where they proved the following.
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Fig. 1 Solitary waves of the Ostrovsky equation with nonlinearity f (u) = u2. Here β = 1 and γ = 1
4 , so

c∗ = 1. In the figure on the left c = −2 < −c∗ and in the figure on the right c = 0.9

Theorem 2.2 Let β > 0, γ > 0 and c < c∗, and suppose ϕ is a solution of (2.1) with
f (u) = u2. Then ϕ ∈ C∞(R) ∩ H∞(R) and

∂−1
x ϕ(x), ϕ(x), ϕx (x) = O

(
e−α|x |)

where α is a positive constant depending only on β, c and γ .

As can be seen from the behavior of solutions of the linear equation

βuxxxx + cuxx + γ u = 0 (2.8)

solitary waves have exponentially decaying, oscillatory tails when −c∗ < c < c∗,
while they have exponentially decaying, non-oscillatory tails when c < −c∗. See
Fig. 1. In the latter case, Zhang and Liu also proved the following uniqueness result
for the quadratic nonlinearity.

Theorem 2.3 Let β > 0, γ > 0 and c < −c∗. Then, up to translation, Eq. (2.1) with
f (u) = u2 has a unique, symmetric (even), solution ϕ ∈ X1.

The behavior of solitary waves of the Ostrovsky equation as the rotation parameter
γ approaches zero was studied in [6,7]. Although the solitary waves of the Ostrovsky
equation have zero mass, while the KdV solitary waves have non-zero mass, it was
shown that the Ostrovsky solitary waves converge to the KdV solitary waves, in the
following sense.

Theorem 2.4 Fix β > 0, c < 0 and consider any sequence γk → 0+. For each k,
choose ϕk ∈ G (β, c, γk). Then there exists a subsequence (renamed γk) and transla-
tions yk so that

ϕk(· + yk) → ϕ0 (2.9)

in H1(R) as γk → 0+.
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3 Stability

In this section we summarize the known results concerning the stability of solitary
waves of the Ostrovsky equation. In light of the well-posedness result of Tsugawa, it
now makes sense to use the following definition of stability, which removes the Xs ,
s > 3/2 assumption.

Definition 3.1 We say that a set S ⊂ X1 is stable with respect to the Ostrovsky
equation (1.1) if for any ε > 0 there exists some δ > 0 such that, for any u0 ∈ X1,

inf{‖u0 − v‖X1 : v ∈ S } < δ,

it follows that the solution u of (1.1) with u(0) = u0 satisfies

inf{‖u(t)− v‖X1 : v ∈ S } < ε

for all t > 0. Otherwise we say S is unstable.

The conserved quantities of the Ostrovsky equation,

E(u) =
∫

R

β

2
u2

x + γ

2
|∂−1

x u|2 + F(u) dx (3.1)

and

V (u) = 1

2

∫

R

u2 dx, (3.2)

play a critical role in the analysis of the stability of solitary waves. With respect to E
and V , solutions of the solitary wave equation (2.1) are critical points of the action
functional L defined by

L(u) = E(u)− cV (u), (3.3)

in the sense that L ′(ϕ) = 0. This fact motivates considering the function d(c) defined
by

d(c) = d(β, c, γ ) = E(ϕ)− cV (ϕ), (3.4)

where ϕ is any element of G (β, c, γ ). Using the relation

E(u)− cV (u) = 1

2
I (u)− 1

p + 1
K (u), (3.5)

which holds for all u ∈ X1, it follows that

d(β, c, γ ) = p − 1

2(p + 1)
I (ϕ) = p − 1

2(p + 1)
K (ϕ) = p − 1

2(p + 1)
(m(β, c, γ ))

p+1
p−1 . (3.6)
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This implies that d is well-defined, and its properties may be investigated by studying
the function m. Using this approach, the following results were obtained in [7].

Theorem 3.1 On the domain β > 0, γ > 0, c < c∗, the function d is continuous,
strictly increasing in γ and β and strictly decreasing in c. For each fixed β > 0 and
γ > 0, the partial derivative ∂d/∂c(β, c, γ ) exists for all but countably many c < c∗.
Similarly, ∂d/∂β and ∂d/∂γ exist for all but countably many β and γ , respectively.
At points where these partial derivatives exist,

∂d

∂β
= 1

2

∫
(ϕx )

2 dx

∂d

∂c
= −1

2

∫
ϕ2 dx

∂d

∂γ
= 1

2

∫
(∂−1

x ϕ)2 dx .

Remark 3.1 The uniqueness result in Theorem 2.3 implies that, in the case of the
quadratic nonlinearity f (u) = u2, d is differentiable for all (β, c, γ ) satisfying
c < −c∗.

The scaling identity satisfied by d is also a consequence of the relation between d
and m.

Theorem 3.2 Let β > 0, γ > 0 and c < c∗. For any r > 0 and s > 0 we have

d(rs2β, rc, rs−2γ ) = r
p+1
p−1 sd(β, c, γ ).

In terms of the function d, the main stability results of [7] may be summarized as
follows.

Theorem 3.3 Fix β > 0, γ > 0 and c < c∗. Then

(i) If dcc(β, c, γ ) > 0 then G (β, c, γ ) is stable.
(ii) If dcc(β, c, γ ) < 0, then Oϕ = {ϕ(· − y) : y ∈ R} is unstable for any ϕ ∈

G (β, c, γ ).

Part (i) of this result follows from a variational argument due to Cazenave and Lions
[2], while part (ii) of this result is actually a consequence of a more general instability
criterion. Using techniques of Goncalves-Ribeiro [4], the following was proved in [7].

Theorem 3.4 Fix β > 0, γ > 0 and c < c∗. Let ϕ ∈ G (β, c, γ ). Suppose there exists
ψ ∈ L2(R) such that ψx ∈ Xs, s > 3/2, ψxx ∈ X1 and the following conditions are
satisfied.

(i)
〈
V ′(ϕ), ψx

〉 = 0.
(ii)

〈
L ′′(ϕ)ψx , ψx

〉
< 0.

Then Oϕ is unstable.

Part (ii) of Theorem 3.3 follows by showing that when dcc(β, c, γ ) < 0, there exists
a functionψ satisfying the hypotheses of Theorem 3.4. With the choiceψx = ϕ+2xϕx ,
one also obtains the following result.
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Theorem 3.5 Fix β > 0, γ > 0 and c < c∗. Then Oϕ is unstable if either of the
following conditions hold.

(i) p > 5, c < 0 and 0 < γ < γ0 for some small γ0 > 0.

(ii) p > 5 + 4
√

2 ≈ 10.657 and c <
(

p2−10p−7
(p−1)2

)
c∗.

Proof Part (i), and a slightly weaker version of part (ii), were proved in [7]. By Lemma
4.11 in [7], ψ = ∂−1

x (ϕ + 2xϕx ) satisfies the hypotheses of Theorem 3.4, and

〈
L ′′(ϕ)ψx , ψx

〉 = (p − 1)(5 − p)

p + 1
K (ϕ)+ 16γ

∫

R

(∂−1
x ϕ)2 dx .

Using the identity I (ϕ) = K (ϕ) and the Pohozaev identity

∫

R

βϕ2
x + cϕ2 − 3γ (∂−1

x ϕ)2 dx = − 2

p + 1
K (ϕ) (3.7)

one obtains

c
∫

R

ϕ2 dx − 2γ
∫

R

(∂−1
x ϕ)2 dx = − p + 3

2(p + 1)
K (ϕ),

from which it follows that

〈
L ′′(ϕ)ψx , ψx

〉 = −p2 + 10p + 7

p + 1
K (ϕ)+ 8c

∫

R

ϕ2 dx .

By the elementary inequality I (ϕ) ≥ (c∗ − c)
∫

R ϕ
2 dx it then follows that

〈
L ′′(ϕ)ψx , ψx

〉 ≤
(−p2 + 10p + 7

p + 1
+ 8c

c∗ − c

)
K (ϕ).

Since −p2 + 10p + 7 < 0 when p > 5 + 4
√

2, the term in parentheses is negative
precisely when condition (ii) holds. ��
Remark 3.2 As p increases, the region described in part (ii) of Theorem 3.5 approaches
the entire region of existence c < c∗. We note that this result is not at all sharp since,
in light of the numerical calculations of dcc, it appears that we have instability for all
c < c∗ even when p > 5.

As mentioned in the introduction, although Theorem 3.3 provides necessary and
sufficient conditions for stability in terms of d, there are no known explicit formulas for
d, and thus it is difficult to directly apply this result. However, since d and dc are defined
in terms of ϕ by Eq. (3.4) and Theorem (3.1), respectively, it is possible to obtain
numerical approximations of d and dc, and hence dcc, via numerical approximations
of the solitary waves. By doing so, the following conclusions were drawn in [6,7].
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Observation 3.1 Let f (u) = (−u)p.

(i) When p = 2 or p = 3, solitary waves are stable for all c < c∗.
(ii) When p = 4 there exists α0(≈ 0.88) such that solitary waves are stable for

c
c∗ < α0 and unstable for α0 <

c
c∗ < 1.

(iii) When p ≥ 5, solitary waves are unstable for all c < c∗.

While it is is some sense natural to consider the family of nonlinearities (−u)p for
integer p, this family includes both odd and even functions, and the behavior of the
function d differs depending on whether p is even or odd, particularly for c near c∗,
where the solitary waves become highly oscillatory. It is thus more natural to consider
the families of odd and even nonlinearities separately, as we do in the following section.

4 Homogeneous nonlinearities

In this section we discuss the class of nonlinearities that will be considered. The
existence and stability results discussed in Sects. 2 and 3 apply to Eq. (1.1) where f
is any homogeneous function with the property that

K (u) = −(p + 1)
∫

R

F(u) dx > 0

for some u ∈ X1. Let Hp(R) denote the set of all functions f on R that are homoge-
neous of degree p, in the sense that for any λ > 0 we have f (λs) = λp f (s) for all
s ∈ R.

Lemma 4.1 Hp(R) is a two-dimensional vector space.

Proof Define f+(s) = (max{s, 0})p and f−(s) = (max{−s, 0})p. Then f+, f− ∈
Hp(R) are clearly linearly independent, and given any f ∈ Hp(R), we have

f (s) = f (1) f+(s)+ f (−1) f−(s)

for all s ∈ R. ��
It is somewhat more convenient to think of functions in Hp(R) in terms of the even

and odd functions fe(s) = |s|p and fo(s) = |s|p−1s. If we write

Hp(R) = {ae fe + ao fo : ae, ao ∈ R}

then we have the following result.

Theorem 4.1 Fix p ≥ 2, β > 0, γ > 0 and c < c∗. Let f = ae fe + ao fo. Then
there exist solutions of (2.1) in X1 if and only if ao < |ae| (equivalently, f (1) < 0 or
f (−1) > 0).
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Proof First suppose ao < |ae|. Then

K (u) = −(p + 1)
∫

R

F(u) dx =
∫

R

−(ae|u|pu + ao|u|p+1) dx .

Without loss of generality, suppose ae < 0. Then we have ae + ao < 0 and thus

K (u) = −(ae + ao)

∫

u>0

|u|p+1 dx + (ae − ao)

∫

u<0

|u|p+1 dx .

We claim that there exists v ∈ X1 such that K (v) > 0. The existence result then
follows from Theorem 2.1. To prove the claim, let ψ be any C1 function that vanishes
outside (0, 1) and is positive on (0, 1). Then for A > 0, set

v(x) =
⎧⎨
⎩

Aψ(x) 0 ≤ x ≤ 1
−ψ((x − 1)/A) 1 ≤ x ≤ A + 1
0 otherwise

Then
∫

R v(x) dx = 0 so v ∈ X1. On the other hand

K (v) = [−(ae + ao)A
p+1 + (ae − ao)A]

1∫

0

ψ(x)p+1 dx .

Since −(ae + ao) > 0 and ψ > 0 on (0, 1) it follows that K (v) > 0 for A sufficiently
large. This proves the claim.

Now suppose ao ≥ |ae|. Then ae|s|pu + ao|s|p+1 ≥ 0 for all s ∈ R, so K (u) ≤ 0
for all u ∈ X1. If a solution ϕ ∈ X1 of (2.1) existed, then multiplying by ϕ and
integrating would yield 0 < I (ϕ) = K (ϕ) ≤ 0, a contradiction. ��

We next observe that, without loss of generality, it suffices to consider only f ∈
Hp(R) for which ae ≥ 0, since if u solves (2.1) with f = ae fe + ao fo, then v = −u
solves (2.1) with f = −ae fe + ao fo. Also, by re-scaling v = αu for α > 0 it suffices
to consider only f ∈ Hp(R) for which a2

e + a2
o = 1. Hence the set of homogeneous

nonlinearities of degree p ≥ 2 that we shall consider can be parametrized by

fθ = cos(θ) fe + sin(θ) fo (4.1)

where −π/2 ≤ θ < π/4. See Fig. 2.

5 Boundary behavior of d

In this section we consider the behavior of d near the boundary of its domain. We first
derive bounds on d as c approaches c∗ = 2

√
βγ . The lower bound is given in the

following result.
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Fig. 2 The set of nonlinearities
f (s) = ae|s|p + ao|s|p−1s that
will be considered
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Lemma 5.1 Fix p ≥ 2, β > 0 and γ > 0. Then there exists a constant C > 0 such
that for 0 < c < c∗ we have

d(c) ≥ C (c∗ − c)
p+1
p−1 .

Proof We give two proofs of this fact. First, for c > 0 and any u ∈ X1 we have

I (u) ≥ Cβ,c,γ

∫

R

u2
x + (∂−1

x u)2 dx = Cβ,c,γ ‖u‖2
X1
,

where

Cβ,c,γ = 4βγ − c2

2(β + γ + √
(β − γ )2 + c2)

.

Observe that Cβ,c,γ ≥ C(c∗−c) for c near c∗. Since |K (u)| ≤ C‖u‖p+1
L p+1 ≤ C‖u‖p+1

x1

it then follows that

I (u)

K (u)
2

p+1

≥ C(c∗ − c)

for all u ∈ X1 with K (u) > 0. Therefore m(c) ≥ C(c∗ − c) and the lemma follows
from relation (3.6).
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Alternately, using Theorem 3.1 and (3.6), we have

d ′(c) = −1

2

∫

R

ϕ2 dx ≥ − 1
2 I (ϕ)

c∗ − c
= − p + 1

p − 1
· d(c)

c∗ − c
, (5.1)

so integrating yields

d(c) ≥ d(0)

(
1 − c

c∗

) p+1
p−1

.

��
This implies that, as c approaches c∗, d at best vanishes to order (c∗ − c)

p+1
p−1 . We

next show that d does in fact vanish near c = c∗. Our main result is the following.

Theorem 5.1 Suppose p ≥ 2 and f = ae fe + ao fo where ao < 0 (equivalently
f (1) < f (−1)). Then

d(c) = O

(
(c∗ − c)

p+3
2(p−1)

)

as c approaches c∗.

Corollary 5.1 Suppose 2 ≤ p < 5 and f = ae fe + ao fo where ao < 0 ( f (1) <
f (−1)). Fix β > 0 and γ > 0. Then there exist c arbitrarily close to c∗ for which
G (β, c, γ ) is stable.

Proof Using (5.1), it follows that

0 > d ′(c) ≥ − p + 1

p − 1
· d(c)

c∗ − c
≥ −O

(
(c∗ − c)

5−p
2(p−1)

)
.

Thus if 2 ≤ p < 5, d ′(c) → 0 as c → c∗. Since d ′(c) < 0 for all c < c∗, this
implies that there must exist c arbitrarily close to c∗ such that d ′′(c) > 0. The result
then follows from part (i) of Theorem 3.3. ��

To prove Theorem 5.1, we select trial functions to obtain upper bounds on the
value of the quotient that defines m in expression (2.6). To motivate the choice of trial
function, observe that if we ignore the nonlinear term in (2.1) and differentiate twice
we obtain the linear equation

βuxxxx + cuxx + γ u = 0. (5.2)

This equation has solutions u = er x where βr4 + cr2 +γ = 0. When c > 0, the roots
of this equation are r = ±(a ± bi) where

a = 1

2

(
c∗ − c

β

)1/2

and b = 1

2

(
c∗ + c

β

)1/2

.
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Fig. 3 The trial function u given by equation (5.3) (right) together with the numerically computed solitary
wave (left) for β = 1, γ = 1/4 and c = 0.9, and f (u) = u2

If we then make the choice

u = −∂x

(
e−a|x | sin(bx)

)
= −e−a|x |(b cos(bx)− a sin(b|x |)), (5.3)

it follows that u ∈ X1 and satisfies the above linear equation for x �= 0. As one can see
from Fig. 3, the function u is a reasonable approximation of the exact solitary wave,
the main difference being that u is not differentiable at x = 0.

A direct calculation reveals that

I (u) = 1

4
(c∗ + c)(c∗ − c)1/2 = O(c∗ − c)1/2 (5.4)

as c approaches c∗. We next need a lower bound on K (u). This depends on the nonlinear
term. We consider separately the purely even and purely odd nonlinearities.

Lemma 5.2 Fix β > 0 and γ > 0. There exists some positive constants C1 and C2
such that for c > 0 near c∗ we have

(i) K (u) ≥ C1(c∗ − c)1/2 if f = fe,
(ii) K (u) ≥ C2(c∗ − c)−1/2 if f = − fo,

where u is the trial function given by (5.3).

Proof First consider f = fe. Since a ≥ C(c∗−c)1/2, part (i) will follow once we show
that K (u) ≥ Ca for c near c∗. If we write b cos(bx)−a sin(bx) = √

a2 + b2 cos(bx +
φ) where φ = arctan(a/b) then we have

K (u) = −2

∞∫

0

|u|pu dx = +2(a2 + b2)
p+1

2

∞∫

0

e−a(p+1)x | cos(bx + φ)|p cos(bx + φ) dx,

and after the change of variable y = bx + φ this becomes

2ea(p+1)φ/b

b
(a2 + b2)

p+1
2

∞∫

φ

e−a(p+1)y/b| cos(y)|p cos(y) dy.
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As c approaches c∗ the term outside the integral approaches 2(γ /β)p/4 > 0, so we
will henceforth ignore this term. We now write the integral as

0∫

φ

e−a(p+1)y/b| cos(y)|p cos(y) dy +
∞∑

k=0

(k+1)π∫

kπ

e−a(p+1)y/b| cos(y)|p cos(y) dy.

The first term is negative, but bounded below by −φ = − arctan(a/b) ≥ −a/b. In
each term of the summation we make the change of variable z = y − kπ and then
sum the resulting geometric series to obtain

1

1 + e−a(p+1)π/b

π∫

0

e−a(p+1)z/b| cos(z)|p cos(z) dz.

The remaining integral we rewrite as

π/2∫

0

e−a(p+1)z/b| cos(z)|p cos(z) dz +
π∫

π/2

e−a(p+1)z/b| cos(z)|p cos(z) dz.

Making the change of variable y = π − z in the second integral and combining the
two integrals gives

π/2∫

0

(e−a(p+1)z/b − e−a(p+1)(π−z)/b) cos(z)p+1 dz.

Since

lim
a→0

e−a(p+1)z/b − e−a(p+1)(π−z)/b

a
= p + 1

b
· (π − 2z)

uniformly in z on [0, π/2] the integral approaches

a

b

π/2∫

0

(p + 1)(π − 2z)| cos(z)|p cos(z) dz

as c → c∗. Since

π/2∫

0

(p + 1)(π − 2z) cos(z)p+1 dz > π(p + 1)

π/2∫

0

(
1 − 2z

π

)p+2

dx = (p + 1)π2

2(p + 3)

>
π2

4
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for all p > 1, it follows that as c → c∗ we have

1

1 + e−a(p+1)π/b

π∫

0

e−a(p+1)z/b| cos(z)|p cos(z) dz ≥ 1

2
· 1

4
π2 · a

b
,

and therefore

∞∫

φ

e−a(p+1)y/b| cos(y)|p cos(y) dy ≥ 1

2

(
1

4
π2 − 2

)
a

b
,

which implies that

K (u) ≥ Ca

as claimed.
Next suppose f = − fo. Using the calculations above, we have

K (u) = +
∫

R

|u|p+1 dx = 2ea(p+1)φ/b

b
(a2 + b2)

p+1
2

∞∫

φ

e−a(p+1)y/b| cos(y)|p+1 dy

≥ 2ea(p+1)φ/b

b
(a2 + b2)

p+1
2

∞∫

π/2

e−a(p+1)y/b| cos(y)|p+1 dy.

Writing the integral as

∞∑
k=1

(k+ 1
2 )π∫

(k− 1
2 )π

e−a(p+1)y/b| cos(y)|p+1 dy,

and making the change of variable z = y − kπ , this becomes

∞∑
k=1

e−a(p+1)πk/b

π/2∫

−π/2
e−a(p+1)z/b cos(z)p+1 dz

= ea(p+1)π/b

ea(p+1)π/b − 1

π/2∫

−π/2
e−a(p+1)z/b cos(z)p+1 dz.
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For small a this is approximately

b

a(p + 1)π

π/2∫

−π/2
cos(z)p+1 dz ≥ C ′a−1 = C(c∗ − c)−1/2.

��
Proof of Theorem 5.1 Let u be given by (5.3), and define

Ke(u) = −
∫

R

|u|pu dx

Ko(u) =
∫

R

|u|p+1 dx .

By part (ii) of Lemma 5.2 we have Ko(u) ≥ C2(c∗ − c)−1/2, and it follows by the
same calculations used to prove part (i) of Lemma 5.2 that |Ke(u)| ≤ C3(c∗ − c)1/2

for some constant C3. Thus if f = ae fe + ao fo where ao < 0, then we have

K (u) = ae Ke(u)− ao Ko(u) ≥ (−ao)C2(c∗ − c)−1/2 − |ae|C3(c∗ − c)1/2

≥ C4(c∗ − c)−1/2

for c near c∗. Thus

m(β, c, γ ) ≤ I (u)

K (u)
2

p+1

≤
1
4 (c∗ + c)(c∗ − c)1/2

[C(c∗ − c)−1/2] 2
p+1

= O(c∗ − c)
p+3

2(p+1)

and it follows from (3.6) that

d(c) = p − 1

2(p + 1)
m(β, c, γ )

p+1
p−1 = O(c∗ − c)

p+3
2(p−1) ,

as claimed. ��
Remark 5.1 In view of the numerical results of Sect. 6, it appears that the bound in
Theorem 5.1 is sharp. See Fig. 4.

As a consequence of the first part of Lemma 5.2 we have the following bound on
d for even nonlinearities.

Corollary 5.2 Suppose f = k fe for some k �= 0. Then

d(c) = O
(
(c∗ − c)1/2

)

as c approaches c∗.
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Fig. 4 Plots of d(c)/(c∗ −c)
p+3

2(p−1) for the odd nonlinearity f (u) = −|u|p−1u. Here β = 1 and γ = 1/4,
so c∗ = 1. Plots for other nonlinearities with ao < 0 are similar. These illustrate the sharpness of the bound
in Theorem 5.1

Proof For k < 0, Lemma 5.2 implies that, for u defined by (5.3), we have

m(β, c, γ ) ≤ I (u)

K (u)
2

p+1

≤
(c∗+c)(c∗−c)1/2

2
√
β

[C(c∗ − c)] 1
p+1

= O(c∗ − c)
p−1

2(p+1)

and it follows from (3.6) that

d(c) = p − 1

2(p + 1)
m(β, c, γ )

p+1
p−1 = O(c∗ − c)

1
2 .

For k > 0, the same estimate follows by using the trial function −u. ��
Remark 5.2 The numerical evidence obtained by the methods of Sect. 6 suggest that
the bound in Corollary 5.2 is not sharp. Rather, it appears that the optimal bound is

d(c) = O

(
(c∗ − c)

p+1
2(p−1)

)
.

See Fig. 5. This bound would imply stability for c near c∗ when 2 ≤ p < 3. However,
it is not clear what choice of trial function is required to prove this bound.

Remark 5.3 When 0 < a0 < |ae|, the behavior of d as c approaches c∗ is less clear.
In fact the function u defined by (5.3) is no longer a valid trial function for c near c∗
since K (u) becomes negative as c approaches c∗. Numerical results seem to indicate
that when p > 2, d ′′(c) is negative for c near c∗.

We next derive bounds on d as γ approaches zero. The idea once again is to use
appropriately chosen trial functions. By Theorem 2.4, the Ostrovsky solitary waves



424 S. Levandosky

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d/
(c

*−
c)

(p
+

1)
/(

2(
p−

1)
)

c

p=2

p=6

Fig. 5 Plots of d(c)/(c∗ − c)
p+1

2(p−1) for the even nonlinearity f (u) = |u|p . Here β = 1 and γ = 1/4, so
c∗ = 1

converge in H1 to the KdV solitary waves, so it would be natural to use the KdV
solitary waves as trial functions. However, since the KdV solitary waves have nonzero
mass, they are inadmissible as trial functions in the Ostrovsky variational problem. To
remedy this, we use a trial function obtained by truncating a KdV solitary wave and
giving it a tail that satisfies the linear equation (2.8) in such a way that the resulting
function has zero mass. We thereby obtain the following result.

Theorem 5.2 Fix β > 0 and c < 0. Then

d(β, c, γ ) = d(β, c, 0)+ O(
√
γ )

as γ approaches zero.

Proof For c < 0 and γ > 0 small, solutions of the linear equation take the form
e±λ1x , e±λ2x where

λ1 =
(

−c+
√

c2−4βγ
2β

)1/2

λ2 =
(

−c−
√

c2−4βγ
2β

)1/2

.

As γ → 0 we have

λ1 = √−c/β + O(γ )

λ2 = O(
√
γ ).
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Next let ϕ0 denote the ground state solution of the KdV equation

βϕxx + cϕ = f (ϕ)

and define

ψ0(x) =
x∫

0

ϕ0(y) dy

for x ≥ 0. Then for R > 0 we set

vR(x) =
{
ψ0(x) x ≤ R
a1(R)e−λ1x + a2(R)e−λ2x x ≥ R

(5.5)

where a1(R) and a2(R) are chosen so as to make vR differentiable on (0,∞). A
straightforward calculation reveals that

a1(R) = − eλ1 R

λ1−λ2
(λ2ψ0(R)+ ϕ0(R))

a2(R) = eλ2 R

λ1−λ2
(λ1ψ0(R)+ ϕ0(R)) .

Next we set u R(x) = v′
R(x) for x > 0 and extend u R to be even on R. Then for each

R > 0 we have u R ∈ X1. Now we compute

I (u R;β, c, γ ) = 2

∞∫

0

β(u R)
2
x − cu2

R + γ (vR)
2 dx

= 2

R∫

0

β(ϕ0)
2
x −cϕ2

0 + γ (vR)
2 dx+2

∞∫

R

β[(u R)x ]2−cu2
R +γ (vR)

2 dx

= I (ϕ0;β, c, 0)− 2

∞∫

R

β(ϕ0)
2
x − cϕ2

0 dx + 2

R∫

0

γ (vR)
2 dx

+2

∞∫

R

β[(vR)xx ]2 − c[(vR)x ]2 + γ (vR)
2 dx

Observe that for 0 < x < R, vR(x) is bounded independently of R, so

I1 ≡
R∫

0

γ (vR)
2 dx ≤ Cγ R (5.6)
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for some constant C . Next, since ϕ0 and (ϕ0)x decay like e−x
√−c/β as x → ∞, we

have

I2 ≡
∞∫

R

β(ϕ0)
2
x − cϕ2

0 dx ≤ Ce−2R
√−c/β (5.7)

for any R > 0. Finally, since vR satisfies the linear equation (2.8) for x > R, we have

I3 ≡
∞∫

R

β[(vR)xx ]2 − c[(vR)x ]2 + γ (vR)
2 dx

= −βv′
R(R)v

′′
R(R)+ βvR(R)v

′′′
R (R)+ cvR(R)v

′
R(R).

Using the definition of vR and the values of a1(R) and a2(R) above, this becomes

I3 = β[λ1λ2(λ1 + λ2)ψ
2
0 (R)+ (λ1 + λ2)

2ψ0(R)ϕ0(R)+ (λ1 + λ2)ϕ
2
0(R)]

+cψ0(R)ϕ0(R). (5.8)

Recalling that λ1 = O(1) and λ2 = O(
√
γ ) as γ → 0 and that ψ0(R) is bounded

independently of R, it follows that the first term in (5.8) is O(
√
γ ). By (5.6) we will

have I1 = O(
√
γ ) if we choose R = γ−1/2. Since ϕ0 decays exponentially, it follows

from (5.7) that I2 = O(
√
γ ), and that the remaining terms in (5.8) are O(

√
γ ). Hence

I1 + I2 + I3 = O(
√
γ ), so that

I (u R;β, c, γ ) = I (ϕ0;β, c, 0)+ O(
√
γ ).

Next, we compute

K (u R)− K (ϕ0) = 2

∞∫

R

F(u R)− F(ϕ0) dx .

We bound the first term by

∣∣∣∣∣∣

∞∫

R

F(u R) dx

∣∣∣∣∣∣
≤ C

∞∫

R

∣∣λ1a1(R)e
−λ1x

∣∣p+1 + ∣∣λ2a2(R)e
−λ2x

∣∣p+1
dx

≤ C
(
λ

p
1 |a1(R)e

−λ1 R |p+1 + λ
p
2 |a2(R)e

−λ2 R |p+1
)

≤ C

λ1 − λ2

(
λ

p
1 |λ2ψ0(R)+ ϕ0(R)|p+1 + λ

p
2 |λ1ψ0(R)+ ϕ0(R)|p+1

)
.
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For R = γ−1/2, it then follows that this term is O(γ p/2). The exponential decay of
ϕ0 implies that

∣∣∣∣∣∣

∞∫

R

F(ϕ0) dx

∣∣∣∣∣∣
= O(γ p/2)

as well. Hence we have

K (u R) ≥ K (ϕ0)− O(γ p/2),

and thus

K (u R)
2

p+1 ≥ K (ϕ0)
2

p+1 − O(γ p/2).

Combining this with the estimate on I (u R), we have

d(β, c, γ ) ≤ I (u R)

K (u R)
2

p+1

≤ I (ϕ0)+ O(
√
γ )

K (ϕ0)
2

p+1 − O(γ p/2)

= I (ϕ0)

K (ϕ0)
2

p+1

+ O(
√
γ )

= d(β, c, 0)+ O(
√
γ ).

Since d is increasing in γ , we have d(β, c, γ ) ≥ d(β, c, 0) and the proof is complete.
��

Corollary 5.3 Fix β > 0 and c < 0. Then

dγ (β, c, γ ) = O(γ−1/2)

as γ approaches zero.

Proof For γ > 0 we have

d(β, c, γ )− d(β, c, 0) = p − 1

2(p + 1)

(
I (ϕγ ;β, c, γ )− I (ϕ0;β, c, 0)

) = p − 1

2(p + 1)

×
⎛
⎝I (ϕγ ;β, c, 0)− I (ϕ0;β, c, 0)+ γ

∫

R

(∂−1
x ϕγ )

2 dx

⎞
⎠

where ϕγ ∈ G (β, c, γ ) and ϕ0 ∈ G (β, c, 0). Since d is strictly increasing in γ , we
have

K (ϕ0) = 2(p + 1)

p − 1
d(β, c, 0) <

2(p + 1)

p − 1
d(β, c, γ ) = K (ϕγ ),
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so K (αϕγ ) = K (ϕ0) where α =
(

d(β,c,0)
d(β,c,γ )

) 1
p+1

< 1. By the variational characteriza-

tion of ϕ0, this implies I (ϕ0;β, c, 0) < I (ϕγ ;β, c, 0), and thus

d(β, c, γ )− d(β, c, 0) >
p − 1

2(p + 1)
γ

∫

R

(∂−1
x ϕγ )

2 dx = p − 1

p + 1
γ dγ (β, c, γ ).

The result then follows from Theorem 5.2. ��
Corollary 5.4 Let p ≥ 2 and fix β > 0 and c < 0. Suppose d is twice differentiable
on its domain.

(i) If p < 5, then there exist γ > 0 arbitrarily close to zero such that G (β, c, γ ) is
stable.

(ii) If p > 5, then there exist γ > 0 arbitrarily close to zero such that Oϕ is unstable
for any ϕ ∈ G (β, c, γ ).

Proof First fix c0 < 0. Then for c < 0, Theorem 3.2 with s−2 = r = c0/c implies

d(β, c, γ ) = (c/c0)
p+3

2(p−1) d(β, c0, (c0/c)
2γ ).

Setting q = p+3
2(p−1) and differentiating with respect to c then gives

dc(β, c, γ ) = −2γ

c0
(c/c0)

q−3dγ (β, c0, (c0/c)
2γ )+ 1

c0
q(c/c0)

q−1d(β, c0, (c0/c)
2γ )

and

dcc(β, c, γ ) = 4γ 2

c2
0

(c/c0)
q−6dγ γ (β, c0, (c0/c)

2γ )

−2γ

c2
0

(2q − 3)(c/c0)
q−4dγ (β, c0, (c0/c)

2γ )

+ 1

c2
0

q(q − 1)(c/c0)
q−2d(β, c0, (c0/c)

2γ )

Setting c = c0, this reduces to

dcc(β, c, γ )= 1

c2

(
4γ 2dγ γ (β, c, γ )−2γ (2q−3)dγ (β, c, γ )+q(q−1)d(β, c, γ )

)
.

(5.9)

We now let γ approach zero. By Theorem 5.2 and Corollary 5.3 we have

lim
γ→0

−2γ (2q − 3)dγ (β, c, γ )+ q(q − 1)d(β, c, γ ) = q(q − 1)d(β, c, 0).
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To handle the γ 2dγ γ (β, c, γ ) term we first define

g(γ ) =
{
γ 2dγ (β, c, γ ) γ > 0
0 γ = 0.

Then g is differentiable for γ > 0, and by Corollary 5.3, g is continuous for γ ≥ 0.
Therefore, by the mean value theorem, for each j ∈ N there exists γ j ∈ (0, 1/j) such
that

g′(γ j ) = g(1/j)

1/j
= 1

j
dγ (β, c, 1/j).

By Corollary 5.3 it follows that lim j→∞ g′(γ j ) = 0. But since g′(γ ) = γ 2dγ γ +2γ dγ
it then follows that

lim
j→∞ γ

2
j dγ γ (β, c, γ j ) = lim

j→∞ g′(γ j )− 2γ j dγ (β, c, γ j ) = 0.

Thus, for j sufficiently large, dcc(β, c, γ j ) has the same sign as q(q − 1)d(β, c, 0).
Since d(β, c, 0) > 0 and q > 0, this is determined by the sign of q − 1, which is
positive when p < 5 and negative when p > 5. This completes the proof. ��

6 Numerical computations

In this section we present numerical results which extend those in [7] to the class of
general homogeneous nonlinearities discussed in Sect. 4. We employ the same strategy
here as in [5,7]. Because the values of d and dc are given in terms of ϕ by (3.4) and
Theorem 3.1, by numerically approximating the solitary waves we obtain numerical
approximations of d, dc, and hence dcc by varying c. By the scaling property of d, the
sign of dcc is constant within �r = {(β, c, γ ) : c = r

√
βγ } for each fixed r < 2. It

therefore suffices to fix β = 1 and perform these computations over the segments

S1 = {(c, γ ) : −1 ≤ c < 1, γ = 1/4}
S2 = {(c, γ ) : c = −1, 0 < γ ≤ 1/4}.

See Fig. 6.
On S1 we approximate dcc directly in terms of the numerically computed values of

dc using a centered difference, while on S2 we do the same for dγ γ in terms of dγ ,
and then apply formula (5.9) to compute dcc. Two methods were used to compute the
solitary wave profiles.

Spectral Method
For most of the solitary wave computations we used following spectral method due

to Petviashvili. Using the form (2.2) of the solitary wave equation and settingψxx = ϕ

we have

βψxxxx + cψxx + γψ = f (ψxx ) = f (ϕ). (6.1)
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Fig. 6 The domain of d and the segments S1 and S2 over which the numerical computations were performed

Taking the Fourier transform gives

ψ̂ = ̂f (ϕ)

βξ4 − cξ2 + γ
.

We thus perform the iteration

ψ̂k+1 = Mα
k

̂f (ϕk)

βξ4 − cξ2 + γ
, ϕk+1 = ∂2

xψk+1,

where

Mk =
∫

R(βξ
4 − cξ2 + γ )ψ̂k ϕ̂k dξ
∫

R
̂f (ϕk)ϕ̂k dξ

is the stabilizing factor introduced by Petviashvili. The convergence properties of this
algorithm were studied in [12], where it was shown that the rate of convergence is
fastest when α = p/(p − 1). In most cases, this method converged quite rapidly.
However, when f (s) = ae|s|p + ao|s|p−1s with ao > 0 and c near c∗ the algorithm
failed to converge. In these cases we then resorted to the following shooting method
to compute the solitary wave profiles.

Shooting Method
This is a modification of the method used in [5,7] to compute solitary waves of the

fifth-order KdV equation and Ostrovsky equation, respectively. Using the form (6.1)
of the solitary wave equation, and setting �y = (ψ,ψ ′, ψ ′′, ψ ′′′), we obtain the system

d �y
dx

= A�y + �g(�y) (6.2)
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where

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−γ /β 0 −cβ 0

⎞
⎟⎟⎠ , �g(�y) =

⎛
⎜⎜⎝

0
0
0

f (y3)

⎞
⎟⎟⎠ .

Multiplying (6.1) by ψ ′′′ and integrating gives

β

2
(ψ ′′′)2 + c

2
(ψ ′′)2 + γψ ′′ψ − γ

2
(ψ ′)2 = F(ψ ′′).

Without loss of generality we may assume ϕ has a local extremum at x = 0, so
ψ ′′′(0) = ϕ′(0) = 0. Then setting α1 = ψ ′(0) and α2 = ψ ′′(0), we have

ψ(0) = F(α2)− c
2α

2
2 + γ

2 α
2
1

γα2
= 1

γ

(
f (α2)

p + 1
− c

2
+ γα2

1

2α2

)
.

We then use MATLAB’s Runge–Kutta–Fehlberg solver to solve (6.2) over a spatial
domain [−X, X ] with initial data

�y0 =
(

1

γ

(
f (α2)

p + 1
− c

2
+ γα2

1

2α2

)
, α1, α2, 0

)
.

If we denote by Es and Eu the stable and unstable subspaces associated with the linear
system d �y

dx = A�y, then there exist matrices As and Au such that for any �y ∈ R4 we
have �y = As �y + Au �u, where As �y ∈ Es and Au �y ∈ Eu . By the stable manifold
theorem, a solution �y(x) of (6.2) satisfies Au �y(x) → 0 as x → ∞ and As �y(x) → 0
as x → −∞. We therefore define the shooting function by

S(α1, α2) = ‖Au �y(X)‖2 + ‖As �y(−X)‖2.

To apply Newton’s method to the function S, we also need to solve for d �y
dα1

and d �y
dα2

via the auxiliary system

d �w
dx

= A �w + �h(�y, �w), �h(�y, �w) =

⎛
⎜⎜⎝

0
0
0

f ′(y3)w3

⎞
⎟⎟⎠ ,

with initial data

(
α1

α2
, 1, 0, 0

)
and

(
1

γ

(
f ′(α2)

p + 1
− c

2
− γα2

1

2α2
2

)
, 0, 1, 0

)
.



432 S. Levandosky

Ta
bl

e
1

R
eg

io
ns

of
in

st
ab

ili
ty

fo
r

th
e

no
nl

in
ea

ri
ty

f(
s)

=
co

s(
θ
)|s

|p
+

si
n(
θ
)|s

|p−
1
s

p
θ

=
−π

/
2

θ
=

−3
π
/
8

θ
=

−π
/
4

θ
=

−π
/
8

θ
=

0
θ

=
π
/
8

2
∅

∅
∅

∅
∅

∅
2.

5
∅

∅
∅

∅
∅

0.
98
<

c c ∗
<

1
3

∅
∅

∅
0.

95
<

c ∗ c
<

0.
97

0.
94
<

c c ∗
<

1
0.

95
<

c c ∗
<

1
3.

5
∅

∅
∅

0.
93
<

c c ∗
<

0.
98

0.
92
<

c c ∗
<

1
0.

92
<

c c ∗
<

1
4

∅
∅

0.
89
<

c c ∗
<

0.
98

0.
88
<

c c ∗
<

0.
99

0.
88
<

c c ∗
<

1
0.

89
<

c c ∗
<

1
4.

5
0.

55
<

c c ∗
<

0.
9

0.
65
<

c c ∗
<

0.
98

0.
71
<

c c ∗
<

0.
99

0.
74
<

c c ∗
<

0.
99

5
0.

77
<

c c ∗
<

1
0.

81
<

c c ∗
<

1
5

c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
5.

5
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
6

c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1
c c ∗
<

1



On the stability of solitary waves of a generalized Ostrovsky equation 433

0 0.05 0.1 0.15 0.2 0.25
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

γ

d cc

θ=−π/2

p=2.5

p=5

Fig. 7 Plots of dcc for the odd nonlinearity f (s) = −|s|p−1s over the segment S2, where p varies from
2 to 6 by multiples of 1

2 . Observe that when p < 5, dcc is positive on S2 and when p ≥ 5, dcc is negative
on S2
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Fig. 8 Plots of dcc for the odd nonlinearity f (s) = −|s|p−1s over S1, where p varies from 2 to 6 by
multiples of 1

2 . When p ≤ 4, dcc > 0 everywhere, and when p ≥ 5, dcc < 0 everywhere. When p = 4.5,
dcc changes sign twice

The method then proceeds by applying Newton’s method to S, while incrementing X ,
until ‖�y(X)‖ + ‖�y(−X)‖ is sufficiently small.

Results The computations described above were performed for the general homo-
geneous nonlinearity f (u) = cos(θ)|u|p + sin(θ)|u|p−1u where p varied from 2 to 6
by multiples of 0.5 and θ varied from −π/2 to π/8 by multiples of π/8. The choice
of θ was made in order to include nonlinearities with ao < 0, ao = 0 (the purely
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Fig. 9 Plots of dcc over S1 for the nonlinearity given by (4.1) with θ = − 3
8π , where p varies from 2 to

6 by multiples of 1
2 . When p ≤ 4, dcc > 0 everywhere, and when p ≥ 5, dcc < 0 everywhere. When

p = 4.5, dcc changes sign twice
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Fig. 10 Plots of dcc over S1 for the nonlinearity given by (4.1) with θ = − 1
4π (equivalently

√
2 f−), where

p varies from 2 to 6 by multiples of 1
2 . When p ≤ 3.5, dcc > 0 everywhere, and when p ≥ 5, dcc < 0

everywhere. When p = 4 and p = 4.5, dcc changes sign twice

even nonlinearities) and ao > 0, while the choice of p was made to illustrate how the
regions of instability grow as p increases. The results are shown in Figs. 7 through 13
and summarized in Table 1.

Computations over S2. Figure 7 shows dcc over S2 for the odd nonlinearities
f (s) = |s|p−1s. We note that dcc is positive on S2 when p < 5 and negative on
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Fig. 11 Plots of dcc over S1 for the nonlinearity given by (4.1) with θ = − 1
8π , where p varies from 2 to

6 by multiples of 1
2 . When p ≤ 2.5, dcc > 0 everywhere, and when p ≥ 5, dcc < 0 everywhere. When

p = 3, 3.5, 4 and p = 4.5, dcc changes sign twice
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Fig. 12 Plots of dcc over S1 for the nonlinearity f (s) = |s|p , where p varies from 2 to 6 by multiples of
1
2 . When p = 2, dcc > 0 everywhere, and when p ≥ 5, dcc < 0 everywhere. When 2.5 ≤ p ≤ 4.5, dcc
changes sign twice

S2 when p ≥ 5, in agreement with the conclusions of Corollary 5.4. The same was
true for plots of dcc over S2 for all other nonlinearities considered, so the others were
omitted.

Nonlinearities with ao < 0. Figures 8, 9, 10 and 11 show dcc over S1 for nonlin-
earities with θ < 0, i.e. ao < 0. The features common to this group are:
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Fig. 13 Plots of dcc over S1 for the nonlinearity given by (4.1) with θ = + 1
8π , where p varies from 2 to 6

by multiples of 1
2 . It appears that when p = 2, dcc > 0 everywhere, and when p ≥ 5, dcc < 0 everywhere.

When 2.5 ≤ p ≤ 4.5, dcc changes sign once

• when p ≥ 5, dcc < 0 everywhere on S1.
• when p < 5, dcc > 0 for c near c∗, in agreement with Corollary 5.1.
• if dcc changes sign, it does so twice.

Even Nonlinearities Figure 12 shows dcc over S1 for the family purely even non-
linearities f (s) = |s|p. Features shared by this family include:

• when p ≥ 5, dcc < 0 everywhere on S1.
• when p < 3, dcc > 0 for c near c∗, and when p ≥ 3, dcc < 0 for c near c∗.
• if dcc changes sign, it does so twice.

Nonlinearities with ao > 0. Finally, Fig. 13 shows dcc over S1 for θ = π/8. This
is an example of a case where ao > 0 and we have no analytical bound on d near c∗.
Here we observe that:

• when p = 2, dcc > 0 everywhere on S1.
• when p > 2, dcc < 0 for c near c∗.
• when p ≥ 5, dcc < 0 everywhere on S1.
• dcc changes sign at most once.

7 Conclusion

While the stability criteria given in Theorems 3.3 and 3.4 are quite useful, they have
thus far only provided analytic proof of stability and instability in cases where (a) γ
is near zero, (b) c is near c∗, or (c) p is very large (> 10). The numerical results of the
previous section provide a much more detailed picture of the stability situation for the
nonlinearities considered, but do not provide analytical proof of stability or instability.
Based on these numerical results we make the following conjecture.
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Conjecture 7.1 Let f (s) = ae|s|p + ao|s|p−1s with ao < |ae|.
(i) If p = 2, G (β, c, γ ) is stable for all c < c∗.

(ii) If p ≥ 5, Oϕ is unstable for ϕ ∈ G (β, c, γ ) for all c < c∗.
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