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Abstract: The property of maintaining the lens state of the liquid crystal (LC) lens during the 
switching between positive and negative lens states is made use of in the fast acquirement of 
multi-focus images without magnification change. A depth from focus (DFF) pipeline that can 
generate a low-error depth map and an all-in-focus image is proposed. The depth of the scene is then 
obtained via DFF pipeline from the captured images. The depth sensor proposed in this paper has the 
advantages of simple structure, low cost, and long service life. 
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1. Introduction 

With the continuous development of computer 
vision and sensor technology, more and more depth 
measurement methods have been proposed. 
Mainstream depth measurement methods include 
active depth measurement methods such as time of 
flight (TOF) [1] and structured light [2] and passive 
depth measurement methods such as binocular 
stereo vision [3], depth from defocus (DFD) [4], and 
depth from focus (DFF) [5]. The active depth 
measurement method requires projecting laser or 
encoded light into the scene and obtaining the depth 
by collecting and analyzing the reflected optical 
signal, and the accuracy of such methods is 
relatively high, but it is sensitive to the ambient light. 
The passive depth measurement method needs to 
acquire the scene images and calculate the depth by 
analyzing the parallax, sharpness, or other 

information contained in the images. It relies on the 
texture information of the scene. In the passive 
method, binocular stereo vision obtains depth by 
calculating image parallax and is now widely used 
in smartphone cameras [6], intelligent robots [7], 
truth detection [8], and other fields. However, 
camera calibration and image matching algorithms 
are time-consuming. DFD and DFF both calculate 
the depth by the sharpness of the pixels. DFD 
obtains the depth from two out-of-focus images by 
establishing the relationship between the size of the 
circle of blur and the depth. It has been applied in 
the automatic focusing of cameras [9]. DFF needs 
multi-focus images to estimate the depth, and the 
depth resolution is directly related to the number of 
images. Tens even hundreds of images are often 
used for depth estimation. Lenses are moved to 
capture a multi-focus image stack. However, 
mechanical movements of lenses will reduce the 
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accuracy and the life of the system. Kawamura et al. 
[10] have proposed a DFF method using a liquid 
crystal (LC) lens that achieved focusing by varying 
the driving voltages. The voltages were adjusted 
sequentially to obtain a multi-focus image stack. The 
method was later followed by Li et al. [11] and 
Emberger et al. [12]. The LC lens is slow to respond 
to voltages. It is time-consuming to collect the 
image stack necessary for DFF. The method 
therefore cannot be considered effective. We have 
found that during the switching between the positive 
and negative lens states of the LC lens [13], the root 
mean square (RMS) aberration was below 0.1 
wavelength [14]; lens property remains, while the 
optical power changes with time. Multi-focus image 
stack can then be captured during the switching. 

In this paper, we report a depth acquisition 
method via DFF using an LC lens. The depth is 
extracted from the multi-focus image stack captured 
during the switching, which usually takes only 
several seconds of the LC lens from the positive 
state to the negative state. We propose a depth 
acquisition pipeline to improve the performance of 
Tseng’s model [15] on DFF, and the low-error depth 
map is obtained. In the traditional DFF method [4, 5, 
16], the CMOS (complementary metal oxide 
semiconductor) sensor or lens position is 
continuously changed by a stepper motor to obtain a 
multi-focus image sequence, and the magnification 
between the acquired images is inconsistent. The LC 
lens as a system diaphragm can ensure the 
consistency of magnification between images. In the 
DFF method using an LC lens proposed in [10–12], 
the sequential voltage regulation method is adopted, 
and the image acquisition time is positively 
correlated with the number of images. Using the 
transient property of the LC lens, the DFF method 
reported in this paper makes full use of the time in 
the process of state switching to collect dense 
multi-focus scene images and obtain more accurate 

depth data than the DFD method reported in [17], 
which takes almost the same time to collect the two 
images for the calculation. Therefore, introducing 
the transient property of the LC lens into the DFF 
method can effectively balance the cost, speed, and 
accuracy of depth extraction. 

2. Liquid crystal lens 

The LC lens structure [13] is shown in Fig. 1. 
The main body is three glass substrates plated with 
electrodes, and the thickness of the glass substrates 
is 0.7 mm. There are two ITO (indium tin oxide) 
electrodes and one Cr electrode with a round hole of 
2.0 mm diameter in the center. The bottom surface of 
the glass substrate 2 and the surface of the ITO 
electrode of the glass substrate 3 have a layer of 
polyimide film, and their rubbing directions are 
anti-parallel. The LC (HTW109100-100 from 
JIANGSU HECHENG DISPLAY TECHNOLOGY 
CO. LTD, Δn = 0.259, ne = 1.764, and no = 1.505) of 
30 μm thickness is sandwiched between two glass 
substrates.  
 

Upper ITO electrode

Cr electrode

Lower ITO electrode

Glass substrate 3 

LC layer 

Spacer layer
Glass substrate 2 

Glass substrate 1 

Rubbing directions 

V2 V1 

Φ=2.0 mm 

 
Fig. 1 Structure diagram of the LC lens. 

The LC cell is driven by two voltages V1 and V2. 
The lens properties of maximum positive and 
maximum negative states are shown in Table 1. 

Table 1 Maximum optical power and RMS aberration. 

LC lens state V1 (VRMS) V2 (VRMS) P (m−1) RMS aberr. (λ)

Positive 61 10  5.6 0.087 

Negative 10 100 –4.3 0.088 

A Mach-Zehnder interferometer with a laser 
beam of 532 nm wavelength is used to measure the 
lens properties. Figure 2 shows the interference 
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fringe pattern acquired during the state switching. 
The wavefront of the light beam emitted from the 
LC lens can be reconstructed by interference fringes. 
Then, the wavefront is fitted into Zernike 
polynomial to obtain the optical power and RMS 

aberration of the LC lens. Figure 3 shows the optical 
power and RMS aberration changing with time 
during the state switching. It can be seen that the 
aberration is low and the LC cell is considered to be 
a lens in the state change. 

 

r =1.0 mm 

    
(a)                        (b)                        (c)                        (d) 

Fig. 2 Interference fringe patterns collected during the state switching of the LC lens. The red annular dashed line is the boundary 
of the effective aperture of the LC lens: (a) a reference image used to determine the effective aperture of the LC lens, (b) the LC lens is 
in positive state, (c) the power of the LC lens is approximately equal to 0, and (d) the LC lens is in the negative state. 
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Fig. 3 LC lens property corresponds to two switching modes respectively: (a) the positive to negative lens states and (b) the 
negative to positive lens states. The LC lens starts state switching when the 10th picture is acquired. 
 

3. LC lens imaging system 

As shown in Fig. 4(a), the imaging system is 
composed of a CMOS (complementary metal oxide 
semiconductor) sensor, a main lens of 25 mm focal 
length, and an LC lens. The LC lens is placed in 
front of the main lens with a distance of 5.5 mm. The 
aperture of the LC lens is the diaphragm of the 
system. The CMOS sensor model is MD-50T (the 
resolution is 640×480), and its pixel size is 2.2 μm. 
The image distance v does not change. When the 
focal length of the LC lens changes, objects of 

different distances u are focused, and the 
magnification of the system remains constant [14]. 

The object distance u, the image distance v, and 
the optical power P satisfy the Gaussian formula 

1 1 P
u v

+ =                (1) 

LC main LC mainP P P dP P= + −         (2) 

where Pmain and PLC are the powers of the main lens 
and the LC lens, respectively, and d is the distance 
between the main lens and the LC lens. 

In DFF, the depth resolution is determined by the 
depth of field and the object distance interval of the 
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Fig. 4 LC lens imaging system: (a) configuration of the LC 
lens imaging system and (b) LC lens with a mask. 

neighboring frames. The depth of field is defined by  
2 2

2 2 2 4
2DOF

1
F u P
F u P

δ
δ

=
−

            (3) 

where F is the aperture value and δ is the diameter 
of the blur circle; the pixel size of 2.2 μm is taken as 
the diameter. In this work, we would like to limit the 
error of the depth measurement within 1.0 cm. The 
system initially focuses on the object at 16.4 cm 
distance when the LC lens does not work. When the 
optical power of the LC lens changes from 5.6 m−1 
to –4.3 m−1, objects of the distance from 9.6 cm to   
36.6 cm are focused sequentially, and the depth of 
field changes from 0.1 cm to 1.0 cm, as shown in  
Fig. 5. 
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Fig. 5 Change of object distance and depth of field with 

power. 

During state switching, the changes of the 
distance of focused objects with time obtained from 
Figs. 3 and 5 are shown in Fig. 6. It can be seen that 
it takes 3.3 s and 1.7 s approximately for the LC lens 
to switch from the positive state to the negative state 
and vice versa, respectively. The time needed to 
collect the images for the depth calculation is only 
several seconds and is far less than that for the 
method reported in [10–12]. More uniform distance 
change is observed during switching from positive 
to negative lens state and frames are captured in the 
process for depth calculation. Figure 7 shows 
images captured during state switching. 
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Fig. 6 Change of object distance with time. 

   
(a)  

   
(b)  

Fig. 7 Images captured during positive to negative states 
switching: (a) Scene 1: card, from left to right are the images 
with focus at 10 cm, 20 cm, and 30 cm and (b) Scene 2: 
wallpaper, from left to right are the images focus at 10 cm,     
12 cm, and 14 cm. 

4. Depth from focus 

The idea of DFF is to scan the whole scene with 
the focusing plane along the optical axis and 
estimate the depth using the imaging system 
parameters when the object is in focus. The DFF 
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includes focus measure and depth acquisition, which 
are described in turn below. 

The focus measure is a measure of how much a 
pixel is in focus. In this work, the gradient operator 
is used to evaluate the degree of pixel focus. When 
the influence of noise is not considered, the gradient 
value of the pixel in the focus state reaches the 
maximum. Pertuz et al. [18] evaluated the 
performance of most common gradient operators, 
and the modified Laplacian (MLAP) operator 
proposed by Nayar et al. [5] performed well. 

In the ith image Ii (1≤i≤K), the degree of focus  

FMi (x, y) of the pixel located at (x, y) can be 
calculated as follows: 

( )2

1 2

1( ,  ) ( ,  ),
2 1

(                                ,       ) (4)

i
y rx r

x x

i

r

i

y y r
FM x y ML x y

r

T ML x y T

++

= − = −

=
+

 

≤ ≤

 

where 2r+1 is the window size, and the threshold T 
is to reduce the impact of noise and exposure 
abnormalities. When the value of MLi (x, y) exceeds 
this range, it is set to 0. The values of r, T1, and T2 
are 1, 20, and 230, respectively. MLi (x, y) is the 
gradient of the pixel (x, y) in the image Ii, which is 
defined as follows: 

( ,  ) 2 ( ,  ) ( 1,  ) ( 1,  )

                  2 ( ,  ) ( ,  1) ( ,  1) .

i i i

i i

i

i

ML x y I x y I x y I x y

I x y I x y I x y

= − − − + +

− − − +
(5) 

Obtain the gradient maps FMi (1≤i≤K), and 
then calculate the initial depth map D according to 
the winner-take-all rule (WTA) [19]. WTA rule is 
expressed as 

arg max ( ,  )i
ij FM x y =            (6) 

( )( ,  )D x y u j=              (7) 

where u(j) is the object distance when the image I j is 
acquired, which is obtained from the acquisition 
time of the image I j and Fig. 6. 

However, the focus measure cannot correctly 
reflect the focusing degrees of the weak texture and 

the abnormal exposure regions, and there is a lot of 
noise in the initial depth map D generated by the 
traditional method [5, 20]. The proposed depth 
acquisition pipeline is shown in Fig. 8. 

 

Gradient maps FM Gradient maps FMc 
Final depth map 

Focus measure Guided filter WTA Tseng’s framework

WTA 

Muti-focus images I
Depth map Dc All-in-focus image

 
Fig. 8 Depth acquisition pipeline proposed in this work, with 

the arrow as input or output. 

In the initial depth map D, the depth in the richly 
textured areas of the scene is more plausible, while 
the depth in the untextured areas and abnormal 
exposure areas tend to have errors. In order to 
propagate depth from regions with high reliability to 
regions with low reliability, a cost aggregation 
algorithm based on guided filter is used in this work 
[21, 22]. The image Ii is used as the guide map, and 
the gradient map FMi is used as the processed map 
input into the guided filter. Using the 
edge-preserving property and color linear model of 
guided filter, the gradient of the object edge can be 
propagated to the non-textured area inside the object. 
The output is the gradient map FMc

i, and then the 
depth map Dc can be obtained according to the WTA 
rule. We use Tseng’s optimization framework [15] 
for post-processing. In addition to the depth map Dc, 
the framework needs an all-in-focus (AIF) image of 
the scene. The AIF image is obtained from the 
gradient maps FMc

i(1≤i≤K) and the multi-focus 
images Ii (1≤i≤K), namely: 

arg max ( ,  )i
cij FM x y =             (8) 

AIF( ,  ) ( ,  )jx y I x y= .           (9) 
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After cost aggregation, the noise in depth map 
Dc is much less than the initial depth map D, and 
more correct depth value can be used by Tseng’s 
framework. In other words, our pipeline is less 
reliant on the information in the all-in-focus image, 
which inhibits the replication of textures from the 
all-in-focus image into the final depth map. 

Using a PC with Intel i5-6300HQ CPU and an 
8G operating memory, it takes 150 seconds 
approximately for the depth extraction from      
80 multi-focus images. The guided filter takes more 
than 80% of the time. We are considering using a 
more efficient cost aggregation algorithm to reduce 
time consumption. 

5. Experimental results 

Figures 9(b) and 10(b) show depth maps, in 
which the color from black to white represents the 
distance from the nearest to the farthest. For Scene 1, 
the average depth within the region of interest (ROI) 
inside the cards is selected as the calculated value, 
and the ROI of each card is located inside the white 
box in Fig. 9(a). The depth inside the card maintains 
the consistency, and the depth error is within 4.3%. 
Table 2 shows the error of the depth map of Scene 1. 
For Scene 2, the depth value on a profile with a 
width of 10 pixels and length of 640 pixels is used as 
the calculated value, as shown in the orange line in 
Fig. 10(a). Scene 2 is a scene with smooth depth 
change. The depth value on the profile hardly jumps 
and reverses. Table 3 shows the errors of depth map. 
The average depth error of Scene 2 is 2.1%, and the 
maximum depth error is controlled at 4.1%. 

 
(a)                          (b) 

Fig. 9 Calculation result of scene 1: (a) all-in-focus image 
and (b) depth map. 

10 cm 11 cm 12 cm 13 cm 14 cm  
(a)                           (b)  

Fig. 10 Calculation result of scene 2: (a) all-in-focus image 
and (b) depth map. 

Table 2 Depth error of Scene 1. 

Object distance 
(cm) 

Calculated value 
(cm) 

Relative error 
(%) 

10 10.43 4.3 
15 14.56 2.9 
20 19.14 4.3 
25 24.25 3.0 
30 30.56 1.2 

Table 3 Depth error of Scene 2. 

Relative error Maximum Mean 
Value 4.1% 2.1% 

6. Conclusions 

We find that the LC lens maintains the lens 
property during state switching, and this paper 
proposes to apply the finding to the DFF method. By 
switching the state of the LC lens, the image stack 
required for depth calculation is obtained within 
seconds and the error of depth map calculated from 
it is less than 4.3%. The proposed DFF method is a 
suitable choice for depth measurement systems that 
require low cost and miniaturization. We are 
considering using a large-aperture LC lens with a 
new electrode structure to measure the scene depth 
in a wider range. 
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