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Abstract: The ascorbic acid (AA) is a biomarker that can be used to detect the symptoms of severe 
disorders such as scurvy, Parkinson’s, Alzheimer’s, and cardiovascular diseases. In this work, a 
simple and effective sensor model is developed to diagnose the presence of AA samples. To develop 
the sensor, a tapered single-mode optical fiber has been used with the well-known phenomenon of 
localized surface plasmon resonance (LSPR). For LSPR, the tapered region is immobilized with 
synthesized gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnO-NPs) whose absorbance 
peak wavelengths appear at 519 nm and 370 nm, respectively. On the basis of nanoparticles (NPs) 
configurations, two different biosensor probes are developed. In the first one, the sensing region is 
immobilized with AuNPs and named Probe I. In the second probe, the immobilized layer of AuNPs 
is further coated with a layer of ZnO-NPs, and a resultant probe is termed as Probe II. The 
characterizations of synthesized AuNPs and developed fiber probes are done by the 
ultraviolet-visible (UV-vis) spectrophotometer, high-resolution transmission electron microscope 
(HR-TEM), atomic force microscopy (AFM), and scanning electron microscope (SEM). To enhance 
the selectivity, a sensing region of probes is functionalized with ascorbate oxidase enzyme that 
oxidizes the AA in the presence of oxygen. The response of developed sensor probes is authenticated 
by sensing the samples of AA in the range from 500 nM to 1 mM, which covers the range of AA 
found in human bodies, i.e., 40 µM – 120 µM. The performance analysis of the developed sensor 
probes has been done in terms of their stability, reproducibility, reusability, and selectivity. To 
observe the stability of AA, a pH-test has also been done that results in a better solubility of AA 
molecules in phosphate-buffered saline (PBS) solution. 

Keywords: Ascorbic acid; localized surface plasmon resonance; gold nanoparticles; zinc oxide nanoparticles; 
tapered fiber; optical fiber sensor 

Citation: Guo ZHU, Lokendra SINGH, Yu WANG, Ragini SINGH, Bingyuan ZHANG, Fengzhen LIU, et al., “Tapered Optical 
Fiber-Based LSPR Biosensor for Ascorbic Acid Detection,” Photonic Sensors, 2021, 11(4): 418–434. 

 

Received: 30 December 2019 / Revised: 20 August 2020 
© The Author(s) 2020. This article is published with open access at Springerlink.com 
DOI: 10.1007/s13320-020-0605-2 
Article type: Regular 



Guo ZHU et al.: Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection 

 

419

1. Introduction 

The chemical oxidation is one of the most 

common processes within the human bodies that 

leads to the generation of various radicals and 

singlets [1]. Antioxidants, such as ascorbic acid 

(AA), also known as vitamin C, and inhibit 

oxidation are responsible for the proper functioning 

of living organisms [2]. The recommended 

necessary amount of AA is 100 mg to 200 mg per 

day [3]. The healthy human bodies have the 

presence of AA approximately in the range of 40 µM 

– 120 µM [4]. The presence of AA was claimed 

several decades ago in various foods and drinks and 

has been continuously diagnosed for the evaluation 

of its sources. The malnutrition of AA in the human 

body is closely related to severe symptoms such as 

scurvy, Parkinson’s, Alzheimer’s, and cardiovascular 

diseases [5, 6]. Therefore, for the detection of AA, 

several methods have been proposed including 

electrochemistry [7, 8], fluorescence [9, 10], 

calorimetry [11], liquid chromatography [12], and 

ultraviolet-visible (UV-vis) spectrometry [13]. 

However, these methods are not very attractive 

because of their low sensitivity, limited selectivity, 

and complicated procedures. To overcome the 

limitations of the aforementioned techniques, an 

optical fiber technology has been widely used for 

the development of optical biosensors [14]. To 

develop the optical fiber biosensors, several 

techniques are employed such as core mismatching 

[15], tapering [16–19], and gratings [20]. Among all 

the techniques, tapering of the optical fiber attracts a 

lot of attractions due to its easy fabrication and 

higher sensitivity [21]. For instance, a tapered 

optical fiber structure with a diameter of 1 µm was 

used to sense the presence of cancer biomarkers 

with very fine sensitivity [17]. In another structure, a 

tapered optical fiber structure was used to sense the 

presence of glucose solutions in real samples, and 

the attained results were given with a better 

sensitivity and a high autocorrelation [18]. A tapered 

fiber structure with a diameter of 5 µm was used 

with gold nanoclusters as a metallic layer to 

diagnose the availability of biomolecules with a very 

high linearity range of 99.30 % [19]. Recently, metal 

nanoparticles (MNPs) based on tapered optical fiber 

structures have been widely used for the detection of 

biomarkers [22]. Therefore, in this work, gold 

nanoparticles (AuNPs) and zinc oxide nanoparticles 

(ZnO-NPs) immobilized tapered fiber structures 

(TFSs) are used to detect the presence of AA 

samples. On the basis of different combinations of 

NPs, two different probes are developed. In one 

probe, a uniform layer of AuNPs is immobilized 

over the tapered region and termed as Probe I. In 

another one, a layer of ZnO-NPs is immobilized 

over the AuNPs layer and the probe is coined as 

Probe II. Moreover, to reduce the effect of other 

biomarkers and increase the selectivity towards AA, 

the NPs immobilized probes are functionalized by 

ascorbate oxidase (AOx) enzyme. To authenticate 

the response of developed sensor probes, AA 

samples are prepared in the range from 500 nM to  

1 mM and tested through both the developed sensor 

probes. For the validation of the solubility of AA 

molecules, several pH value solutions are prepared 

and tested through the developed probes. The 

complete manuscript is comprised of four major 

sections. Section 1 presents a brief introduction to 

the importance of AA and its detection through 

existing technologies. To develop the sensor probes, 

the used material and methods are discussed in 

Section 2. Thereafter, the results obtained for the 

validation of MNPs solutions and developed sensor 

probes are discussed in Section 3 and this section 

also includes the sensing performance results of the 

developed sensor probes. Finally, the findings of the 

work are concluded in Section 4. 

2. Materials and methods 

2.1 Materials 

Chloroauric acid (HAuCl4), sodium citrate 
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(C6H5Na3O7), and deionized (DI) water are used for 

the synthesis of AuNPs. Zinc Oxide (ZnO) NPs 

(Product no. 721077, Sigma-Aldrich) is used for 

immobilizing the probes with the ZnO-NPs layer. 

Acetone, hydrogen peroxide (H2O2) solution, 

sulphuric acid (H2SO4) solution, ethanol, and 

nitrogen (N2) gas are used for the cleaning of   

fiber probes. (3-mercaptopropyl) trimethoxysilane 

(MPTMS), 11-mercaptoundecanoic acid (MUA), 

N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), 

phosphate-buffered saline (PBS), and ascorbate 

oxidase from cucurbita species (Product No. A0157, 

Sigma-Aldrich) are used for functionalizing the 

probes with a layer of NPs and enzyme. Sodium 

hydroxide (NaOH) is used to maintain the pH. 

Almost all the reagents are of analytical grade and 

purchased from Sigma-Aldrich, Shanghai, China. 

Some common chemicals such as ethanol, nitric acid 

(HNO3), hydrochloric acid (HCl), sulfuric acid 

(H2SO4), acetone (C3H6O), ascorbic acid, glucose, 

urea, D-galactose, and dopamine are purchased from 

a local vendor available at Liaocheng, Shandong, 

China. 

2.2 Fabrication and sensing mechanism of the 
tapered optical fiber structure 

To fabricate the TFSs, a single-mode fiber (SMF) 

is used with an initial core and cladding diameters of 

9 µm and 125 µm, respectively, through the 

advanced anaerobic plasma tapering 

technology-based 3SAE combiner manufacturer 

system (CMS) (3SAE CMS Technologies, Inc., USA 

machine). The tapering of the optical fiber is done to 

increase the outflow of evanescent waves (EWs) 

[23]. The schematic of TFSs is shown in Fig. 1, 

where the length and diameter of the sensing region 

are 4 mm and 40 µm, respectively. The developed 

sensor probes work on the principle of the localized 

surface plasmon resonance (LSPR) phenomenon 

that results from the combination of the surface 

plasmon wave (SPW) and exponentially decaying 

EWs [24]. In a normal region of the fiber, the optical 

signal obeys the principle of total internal reflection 

(TIR), whereas, in the tapered region, the power of 

the signal is exponentially decayed as shown in Fig. 

1. The decaying EW penetrates into the cladding up 

to a few microns and the length is known as the 

penetration length which can be calculated as [25] 

 
Fig. 1 Schematic of tapered optical fiber structure. 
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where θ  is the incident angle of an optical signal 

at the interface between the core and cladding, and 

nco and ncl are refractive indices of the core and 

cladding, respectively. Optical fiber-based 

biosensors are working on the principle of the 

surface plasmon resonance (SPR) phenomenon. The 

SPR phenomenon gets initiated at the interface of 

cladding and coated MNPs, due to the application of 

exponentially decaying EWs. The EWs jiggle the 

MNPs at a higher frequency and sets a wave termed 

as SPWs. When the phases between EWs and SPWs 

match, the phenomenon is termed as SPR. If the size 

of the used MNPs is in the range of the 

nanometer-scale, then SPWs get localized, and the 

resultant phenomenon is termed as LSPR [26]. On 
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the application of a change in refractive index (RI) 

in the vicinity of the sensor head, the phase of 

interacting EWs gets changed and further alters the 

peak resonance wavelength. Therefore, in this work, 

an AA solution is used to change the RI of the sensor 

head and a shift in peak resonance wavelength is 

recorded for the performance analysis of the 

developed sensor probes. 

2.3 Synthesis of gold nanoparticles 

The synthesis of AuNPs is done by obeying the 

Turkevich protocol as discussed in [27]. In brief, 

HAuCl4 (150 µL, 100 mM) is reduced under the 

influence of 1.8 ml (38 mM) sodium citrate solution 

in 14.85 ml of DI water. Firstly, the HAuCl4 is added 

in DI water and heated at 100 ℃ for 15 minutes. As 

the solution starts boiling, sodium citrate solution is 

added under constant stirring. After 5 minutes, the 

color of the solution turns into red wine color that 

primarily confirms the synthesis of AuNPs. 

Afterward, the stabilization of the solution is 

attained by continuing the stirring for the next    

10 minutes. 

2.4 Coating of nanoparticles over the sensing 
region of fiber probes 

For the deposition of NPs over the sensing 

region, a dip coating method is employed. For 

accuracy, all-fiber probes are immobilized with NPs 

with the same solutions. Initially, the fiber probes 

are cleaned by using acetone to remove any organic 

ash and smoothen the cladding surface. Then, the 

cleaned sensing regions of probes are hydrolyzed by 

dipping them in the piranha solution (3:7 v/v of H2O2: 

H2SO4) for 30 minutes [28]. Thereafter, the fiber 

probes are thoroughly rinsed with DI water and 

dried in an oven at 70 ℃ for 20 minutes. After     

4 hours, dried fiber probes are dipped in the 

ethanolic 1% MPTMS solution for the next 12 hours. 

The MPTMS is a silane agent that is useful for the 

adhesion of AuNPs to the available OH groups on 

the fiber surface [29]. Afterwards, the unbound 

molecules of MPTMS are removed by rinsing the 

probes with ethanol and dried by nitrogen gas. Then, 

salinized fiber probes are dipped in freshly prepared 

AuNPs aqueous solutions [22]. 

After 48 hours, the unbound monomers of 

AuNPs are removed by rinsing the probes with 

ethanol and dried by using nitrogen gas. The 

resultant probes are termed as Probe I. In a similar 

manner, the probes termed as Probe II are fabricated 

by depositing a layer of ZnO-NPs over the AuNPs 

immobilized probes. The AuNPs immobilized 

probes are dipped in aqueous solutions of ZnO-NPs 

(5% wt.) for 10 minutes and annealed at 70 ℃ for  

30 minutes [30]. The uniform deposition of the 

ZnO-NPs layer is attained by repeating the process 

three times as shown in Fig. 2. The layer of 

ZnO-NPs is deposited to enhance the RI of the 

sensing region [31]. 

2.5 Characterization 

The synthesized AuNPs and ZnO-NPs solutions 

are first characterized by a UV-vis 

spectrophotometer, a high-resolution transmission 

electron microscope (HR-TEM), and an atomic 

force microscopy (AFM). The UV-vis 

spectrophotometer (HITACHI-U-3310) is used to 

record the absorbance spectrum. The distribution of 

NPs within the solution is determined by HR-TEM 

(Talos L120C, Thermo Fisher Scientific). The 

characterization of the NPs coated fiber probe is 

done by the scanning electron microscope (SEM- 

Gemini, Carl Zeiss microscopy). 

2.6 Functionalization of sensor probes I and II 
with enzyme 

The enzyme functionalization is done to increase 

the specific response of probes towards AA. Initially, 

the NPs coated probes are immersed in an ethanolic 

MUA solution (10 ml, 0.5 mM) for 5 hours. MUA 

immobilize a layer of the carboxylic group over the 

surface of NPs [32]. Afterwards, the activation of 

deposited carboxylic groups is done by treating the 

probes with the 5 ml solution of EDC (200 mM) and 

NHS (50 mM). After 10 minutes, the fiber probes are 
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dipped in an aqueous solution of the AOx solution 

for 12 hours. The esters groups of NHS are reacted 

with the AOx and forms a uniform coating of 

enzyme over the sensing surface as shown in    

Fig. 3 [33]. The stock solution of AOx enzyme       

(100 units/ml) is prepared by dissolving the AOx in 

1 ml of the PBS solution (pH 7.4). From a stock 

solution, 50 µl of AOx enzyme in 4.95 ml of the  

PBS solution is used for the functionalization of 

probes. 
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Fig. 2 Immobilization of nanoparticles over the sensing region of fiber probes. 
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Fig. 3 Functionalization of enzyme over nanoparticles-coated fiber probes. 

2.7 Preparation of the ascorbic acid solution 

To characterize the sensing capabilities of AOx 
sensor probes, various concentrations of AA are 

prepared. The level of AA in the human body is in 
the range of 40 µM – 120 µM. Therefore, solutions 
of twelve different concentrations of AA are 

prepared which consist of the lowest and highest 
concentrations found in human bodies. Firstly, a 

stock solution of 10 mM is prepared by dissolving 

the 0.0353 gm of AA in the 20 ml 1X PBS solution 
(pH 7.4). The AA samples are easily soluble in the 
PBS solution due to its favorable salinity and 

solvent properties [34]. 
Thereafter, the remaining lower concentrations, 

such as 500 nM, 1 µM, 10 µM, 20 µM, 50 µM,   
100 µM, 150 µM, 200 µM, 500 µM, and 1 mM, are 
prepared by diluting the stock solution in PBS. To 
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prepare all the AA concentration solutions, the 1X 
PBS solution is used because pH (7.4) of the 1X 
PBS solution is equivalent to the pH of human 
serum (7.35 – 7.45) [35]. 

2.8 Experimental setup for the detection of 
ascorbic acid 

The response of the developed sensor probes is 

observed by testing the wide concentration of AA 

solutions. The experimental setup is consisting of a 

halogen-lamp light source (HL-1000, Shanghai Wen 

Yi Photoelectric Technology Co., Ltd.) to propagate 

the light signals. Then, the transmitted signal is 

recorded through the HR2000 + spectrometer 

(Ocean Optics Inc., USA). In between the source 

and detector, a sensor probe is spliced by a 

fusion-splicer as shown in Fig. 4. The extended 

views of both the developed sensor probes are also 

shown in the inset of Fig. 4. 
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Fig. 4 Experimental setup for the sensing of ascorbic acid through the tapered fiber sensor probe. 

3. Results and discussion 

3.1 Analysis of the tapered fiber diameter 

The sensitivity of the tapered fiber sensor mainly 

depends on the diameter of the tapered region. The 

analysis is done by fabricating four different 

diameters of tapered fibers such as 25 µm, 40 µm,  

50 µm, and 60 µm. The numerical values of the 

diameter of the fabricated fibers are saved and 

plotted by using MATLAB as shown in Fig. 5. 

Thereafter, the transmitted intensity spectrum is 

recorded through the tapered fiber and plotted 

together as shown in Fig. 6. From the results, it is 

conceived that the lowest intensity counts are 

obtained through the 25 µm diameter tapered fiber. 

The lowest intensity count means the most of the 

power is flowing out from the tapering region that 

will enhance the sensitivity of the developed sensors. 

But, due to the high fragility of the 25 µm diameter 

tapered fiber, it is quite difficult to complete the 

whole fabrication process. It is also ascertained that 

the intensity counts obtained through the 40 µm 

diameter taper fiber is a bit higher than that of the  

25 µm diameter tapered fiber and also easy to 

fabricate the sensor structure. Therefore, for the 

proposed work, the tapered fiber with a diameter of 

40 µm is used to develop the proposed sensor probes. 

Further, to observe the homogeneity of the 40 µm 

tapered fiber structure, four different tapered fibers 

are fabricated and analyzed. From the attained 

results, it can be concluded that the diameter of all 

tapered fiber structures sustains homogeneity as 

presented in Fig. 7(a). The fabricated tapered fibers 

are analyzed in terms of the measurement of 

transmitted intensity, and the results are presented in 

Fig. 7(b). It can be concluded from these results that 

the fabricated fiber probes sustain homogeneity in 

terms of the diameter and peak wavelength. 
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Fig. 5 Diameter analysis of fabricated tapered fiber structures plotted through MATLAB.
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Fig. 6 Transmitted intensity spectra recorded through a different diameter of tapered fiber structures. 
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Fig. 7 Homogeneity analysis of the fabricated tapered fiber structures: (a) diameter analysis and (b) transmitted intensity. 

3.2 Characterization of nanoparticles 

The primary confirmation of NPs is done by 

measuring their absorbance peak wavelengths 

through a UV-vis spectrophotometer. To measure the 

absorbance spectrum, 2 ml (1:1 AuNPs: DI water) of 

the AuNPs solution is poured in a quartz cuvette that 
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has a path length of 1 cm. The quartz cuvette is used 

because of its property of absorbing UV radiation. 

The absorbance peak wavelength for the AuNPs 

appears at 519 nm, as shown in Fig. 8(a). Thereafter, 

the distribution of AuNPs inside the solution is 

observed by capturing an image through HR-TEM, 

as shown in Fig. 8(b). The average size of 

synthesized AuNPs is around (11 ± 0.2) nm as can be 

seen from the histogram presented in Fig. 8(c), 

which is measured by using ImageJ software. 
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(a)                               (b)                                  (c) 

Fig. 8 Characterizations of gold nanoparticles: (a) absorbance spectrum, (b) TEM image, and (c) histogram showing the average 
size of gold nanoparticles is 11 ± 0.2 nm. 

Similarly, 10 µl of the ZnO-NPs solution (20 % wt.) 

is dissolved in 1.99 ml of DI water and used for 

measuring the absorbance peak wavelength that 

appears at 370 nm as shown in Fig. 9(a). The peak 

wavelength at 370 nm corresponds to the formation 

of the ZnO-NPs of size, less than 50 nm. Thereafter, 

the distribution of NPs inside the solution is 

observed from the TEM image as presented in   

Fig. 9(b). The deposition of the ZnO-NPs layer over 

the sensing region provides a larger surface area and 

a better bonding strength [36]. The surface 

morphology of ZnO-NPs is done by capturing an 

AFM image as shown in Fig. 9(c). The high 

roughness can be observed from the result that is 

quite helpful for binding the biomolecules and 

increasing the specificity. 
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(a)                               (b)                                 (c) 

Fig. 9 Characterizations of zinc oxide nanoparticles: (a) absorbance spectrum, (b) TEM image, and (c) AFM image.

3.3 Characterization of nanoparticles coated 
fiber probes 

To excite the LSPR, the immobilization of 

AuNPs over the fiber surface should be uniform 

throughout the sensing region. Therefore, to observe 

and confirm the NPs-coating over the tapered region, 

fiber probes are characterized by capturing the 

images through SEM. For Probe I, an image is 
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captured at the 28X magnification to observe the 

coating of AuNPs over the sensing region, as shown 

in Fig. 10(a). The distribution of NPs over the 

sensing region is observed by taking an image at a 

higher magnification of 50KX (times), as shown in 

Fig. 10(b). From the result, one can easily observe 

the uniform distribution of AuNPs over the fiber 

surface. Similarly, for Probe II, an image is  

captured at the magnification of 50KX to observe 

the distribution of AuNPs and ZnO-NPs       

over the sensing region as shown in         

Fig. 11. 

        
                                               

Fig. 10 SEM images of the nanoparticles-immobilized sensor probe: (a) SEM image of Probe I and (b) gold nanoparticles at the 
surface of the tapered fiber structure. 

 

Fig. 11 SEM image of Probe II, gold, and zinc oxide 
nanoparticles over the surface of the taper fiber structure. 

3.4 LSPR sensing by using the developed probes 

The developed sensor probes are used to sense 

different concentrations of AA solutions from    

0.5 µM to 1 mM. This range completely covers the 

lowest and highest concentrations of AA found in 

human bodies. The testing of all the concentrations 

is done in the ascending order. Before sensing the 

first concentration solution of AA, the probe is 

rinsed with a base solution and dried. After drying 

the sensor head, the respective transmitted intensity 

and wavelength are recorded. Then, the probe is 

rinsed again with a base solution and dried at room 

temperature before measuring the other 

concentration solutions of AA. Likewise, the 

sensing of all the samples is done with both the 

developed sensor probes, and the attained results are 

presented in terms of transmitted intensity spectra 

and linearity range curves. Initially, the 0.5 µM 

concentration of the AA solution is added in the 

vicinity of the sensor head and the respective LSPR 

spectrum is recorded. All the solutions are tested 

three times and their averaged values of LSPR 

spectra are plotted. For Probe I, LSPR spectra are 

plotted in Fig. 12(a). As can be seen from the results, 

the transmitted intensity decreases as the 

concentration of the AA solution increases. In 

contrast, the peak resonance wavelength shows the 

opposite response such that it increases on 

increasing the concentration of AA solutions. To 

plot the transmitted intensity curves, the experiment 

is repeated three times with three different sensor 

probes. Afterwards, the overall spectra are plotted 

by normalizing the plots from each experiment. The 

unusual behavior might be due to different readings 

obtained from different experiments. The variation 

in the transmitted intensity curve and peak 
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resonance wavelength is due to the change in 

imaginary and real parts of the refractive index of 

the sensing layer. This refractive index is varying 

with the addition of different concentration solutions 

of AA. The variation in the transmitted intensity and 

peak resonance wavelength is also due to the AOx 

enzyme. The immobilization is very specific 

towards AA solutions and gets oxidized. Due to the 

oxidation reaction, the products vary the refractive 

index in the vicinity of the sensor head that further 

alters the properties of EWs. These EWs further 

interact with the signal propagating within the probe 

and causes a shift in its amplitude and wavelength. 

But, the overall results of the experiment such as the 

linearity range and sensitivity are concluded from 

the linearity range curve. From the linearity range 

curve, one can easily observe an increase in the 

wavelength with respect to the concentration of AA 

solutions. This inverse behavior is due to the 

reduction in the imaginary part of RI of the sensing 

layer. The response of Probe I shows a good 

linearity with the autocorrelation fitting of 99.24 % 

for the concentrations ranges from 1 µM to 200 µM, 

as shown in Fig. 12(b). Similarly, the performance 

evaluation of Probe II is done by testing all the 

concentrations and the averaged LSPR spectra are 

plotted as shown in Fig. 13(a). This response is due 

to the production of reaction byproducts that can 

change the effective RI of the sensing layer [37]. In 

presented results, the readings of higher 

concentrations are skipped because of non-linearity 

attained in the results. 
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Fig. 12 LSPR sensing of Probe I: (a) transmitted intensity spectra and (b) linearity response of sensor. 
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Fig. 13 LSPR sensing of Probe II: (a) transmitted intensity spectra and (b) linearity response of the sensor. 
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For higher concentrations of the AA solutions, 

the peak resonance wavelength is saturated which is 

due to the filling of available binding sites over the 

sensing layer. It has been observed from Fig. 13(b) 

that the peak resonance wavelength is directly 

proportional to the AA concentrations. This redshift 

response is due to an increase in RI of the real part 

of the sensing layer. The response of Probe II also 

shows a good linearity in the concentration range 

between 10 µM and 200 µM. The linearity response 

of sensor probes is attained with the autocorrelation 

curve fitting of 99.28 %. 

The limit of detection (LoD) [LoD = (3×standard 

deviation/sensitivity)] is a very crucial parameter for 

evaluating the performance of a sensor. It can be 

evaluated on the basis of the calibration curve by 

considering three times of the standard deviation of 

the blank measurement. If a few concentrations of 

the samples have been considered, then LoD can be 

calculated from the calibration curve through 

inverse fitting function to a particular point such as 

the mean value of the blank sample plus three times 

the maximum standard deviation obtained among all 

the experimental points [38]. For Probe I, the 

attained value of standard deviation (SD) is 0.025 3. 

Therefore, the attained LoD of Probe I for sensing 

the AA concentrations from 1 µM to 200 µM is 

12.65 µM. With this LoD, the developed probe can 

sense the concentration of AA found in human 

bodies, i.e., 40 µM to 120 µM. The sensitivity of 

Probe I for the concentrations ranges from 1 µM to 

200 µM is 6 nm/mM, which can be obtained from 

the slope of the linearity curve. In a similar manner, 

the evaluated LoD for Probe II is 25.78 µM for the 

concentration ranges from 10 µM to 200 µM. The 

sensitivity response of Probe II is around        

5.7 nm/mM as obtained from the curve fitting of the 

auto-correlation curve. 

3.5 Performance analysis of the developed 
sensing probes 

To observe the solubility of AA molecules, a pH 

test is also done by dissolving its lowest and highest 

concentrations in different pH values solutions. 

Further, the performance evaluation of the 

developed sensor probes is also done in terms of 

stability, reproducibility, and repeatability. 

3.5.1 pH test 

This test is done to observe the solubility of AA 

molecules in different pH value solutions. The 

solubility is tested by dissolving the lowest and 

highest tested concentrations of AA in five different 

solutions having a pH value of 5 (ethanol),      

7.4 (PBS), 8, 11, and 14. The basic nature solutions 

are prepared by adjusting the pH of DI water by 

using NaOH. Initially, the lower concentration of 

one solution is added in the vicinity of the sensor 

head and the respective spectrum is measured. Then, 

the probe is rinsed with a blank solution with the 

same pH and dried at room temperature. Thereafter, 

the higher concentration of the same solution is 

tested. Likewise, all the solutions are tested and the 

corresponding LSPR spectra are stored. Afterwards, 

the difference in the peak resonance wavelength is 

evaluated from higher to lower concentration and 

plotted with respect to the pH value of the solution 

as shown in Fig. 14. From the results, it is 

ascertained that the maximum difference of the peak 

wavelength is observed when the AA solution is 

prepared in the PBS solution (pH 7.4). Hence, the 

PBS is used to prepare all the AA solutions. 

3.5.2 Stability test 

The stability test is performed to observe the 

response of the developed sensor probes against the 

number of measurements. To perform the test, the 

blank solution (PBS) is tested 15 times through the 

same sensing probe and the respective LSPR spectra 

are recorded. Thereafter, the peak wavelength is 

evaluated from each measurement and plotted with 

respect to the measurements. For Probe I, the 

obtained results for stability tests are presented in 

Fig. 15(a). From the results, it can be observed that 
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the peak wavelength is the same almost for all the 

measurements with an SD of 0.025. Whereas, in 

LSPR spectra plotted for Probe I in Fig. 12(a), the 

attained intensity counts for PBS measurement are 

lower. This is because the PBS measurement is done 

by another sensor probe, whereas the LSPR spectra 

are averaged of three different measurements. In 

reality, the imaginary part of RI reduces on 

increasing the concentration of AA which can be 

easily observed from the spectra presented in inset 

of Fig. 12(a). In a similar manner, the results 

obtained for Probe II are presented in Fig. 15(b). The 

response of Probe II is also very linear that can be 

observed from the evaluated SD of 0.049. The 

attained stability shows that the developed fiber 

sensor probes can be used to measure at least     

15 concentrations with the attained values of SD. 
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Fig. 14 pH test to determine the solubility of AA molecules. 

3.5.3 Reproducibility 

The authentication of the used protocols to 

develop the sensor probes can be done by 

performing the reproducibility test. To perform the 

test, the 1 µM concentration of the AA solution is 

tested by using three different sensor probes and the 

respective LSPR spectra are recorded. Then, the 

result is analyzed on the basis of variation in the 

peak resonance wavelength for all the measurements. 

For Probe I, the obtained results are presented in Fig. 

16(a). From the results, one can easily observe that 

the peak wavelengths of all the measurements are 

almost similar that ensures the good reproducibility 

of the used protocols. Similarly, for Probe II, the  

10 µM concentration of the AA solution is tested 

through three different sensor probes and the 

obtained results are presented in Fig. 16(b). In 

presented results, one can observe the overlapping 

of curves which is due to the similar concentration 

of the AA solution that proves the good 

reproducibility of the developed sensor probes. In a 

comparison of Fig. 15, the curves presented in Fig. 

16 are a bit different because in former one, the 

complete curve are presented, whereas, in the later 

one, curves are zoomed to a particular point to 

clearly observe the spectra. 
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Fig. 15 Stability test: (a) Probe I and (b) Probe II. 

3.5.4 Repeatability test 

It is another important aspect of a sensor to 

observe its responses for similar solutions. To 

perform the repeatability test, two different 

concentrations of AA solutions such as 0.5 µM and 

150 µM are tested twice through the same sensor 

probes. Firstly, the 0.5 µM concentration solution is 

added near to the sensor head and the respective 
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LSPR spectrum is recorded. Then, the probe is 

rinsed with the PBS solution and dried at room 

temperature. Then, the same concentration of the 

solution is tested through the same sensing probe. 
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Fig. 16 Reproducibility test: (a) Probe I and (b) Probe II. 

Similarly, the solution of the 150 µM 

concentration is tested by recording the respective 

LSPR spectra. The change in the amplitude of the 

transmitted intensity spectrum is due to the variation 

in the imaginary part of the refractive index of the 

sensing layer. Moreover, in this work, we are 

claiming the results on the basis of the peak 

resonance wavelength which is similar for the tested 

concentration of the AA solutions. The obtained 

results for Probes I and II are presented in Figs. 17(a) 

and 17(b), respectively. From the results, it is 

ascertained that the peak wavelength for the same 

concentration is not changed, which ensures the fine 

repeatability of the developed probes. 
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Fig. 17 Repeatability test: (a) Probe I and (b) Probe II. 

3.6 Selectivity of the sensor probe 

Selectivity is also a very important aspect of 

biosensors. The proposed sensor is enzymatic in 

nature that is used to detect the AA in human bodies. 

Several biomolecules such as glucose, cholesterol, 

D-galactose, dopamine, and urea are found in the 

human bodies which are used to analyze the 

specificity of the developed sensor probes. Figures 

18(a) and 18(b) show the results of the selectivity 

test of Probes I and II, respectively. To test these 

biomolecules, the solutions of lower and higher 

concentrations as per the linear range are prepared 

by using a PBS solution. Initially, a solution of the 

lower concentration is dropped on the sensor head 

and the LSPR spectrum is recorded. Thereafter, the 

sensor probe is cleaned with the PBS solution and 

dried at room temperature. After 20 minutes, a 

solution of the 200 µM concentration of 

biomolecules is tested with the same sensing probe. 
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Likewise, the experiments are repeated for all the 

mentioned biomolecules. Then, the wavelength is 

extracted from all the measurements and plotted by 

taking the difference between higher and lower 

concentrations of the solution. From the results, it is 

concluded that the developed sensor probes have 

very high selectivity towards AA. The higher 

selective response of the developed probes is 

observed due to the oxidation of AA in the presence 

of AOx enzyme with oxygen, as shown in Fig. 19. 

From the results, one can observe that the glucose 

shows a higher peak in selectivity tests and its 

concentration in human bodies is also up to the mM 

range. Instead of having ascorbate oxidase enzyme 

over the sensing region, the response from other 

biomolecules is only due to the carbon chain 

structures. But in comparison with AA, the response 

of the developed sensor probe is very less for other 

biomolecules which is due to the presence of AOx 

enzyme over the sensing region. 
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Fig. 18 Selectivity test: (a) Probe I and (b) Probe II.

H2O   O2 

HO HO 

HO 

HO O O 

HO 

O O

OO 

HO 
AOx 

 

Fig. 19 Reduction of ascorbic acid in the presence of AOx. 

3.7 Performance study of the proposed sensor 

The performance comparison of the developed 

sensor probes has been done with the existing works 

in terms of the linearity range, detection limit, and 

sensitivity. 

The attained results of the developed sensor 

probes are compared with some of the existing 

studies and presented in Table 1. For instance, two 

different studies are carried out while completely 

covering the available range of AA presents in 

human bodies. The claimed detection limit of sensor 

structures is also good, but there is no discussion 

about the sensitivity of sensor probes [8, 39]. 

Similarly, two different sensor structures based on 

colorimetric schemes are also claiming the better 

detection limit to detect the presence of AA. But, the 

tested range of AA is not covering its complete 

range which is available in human bodies and there 

is no discussion about the attained sensitivity of 

sensor probes [39, 40]. In another work, gold 

nanoclusters are used to sense the presence of AA by 

using the fluorescence technique [41]. The tested 

range of AA solutions is not covering its 

concentration available in human bodies and even 

there is no discussion about the attained sensitivity. 

In our work, we have tested the AA in a very 

wide concentration from 0.5 µM to 1 mM, and for 

the range of 40 µM to 200 µM, the sensor response is 

very fine in terms of its linearity range (99.24 % for 

Probe I and 99.28 % for Probe II) and sensitivity   

(6 nm/mM for Probe I and 5.7 nm/mM for Probe II). 
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Whereas, the sensor probes developed in the present 

work are able to cover the complete range of AA 

found in human bodies with very high sensitivity, 

which is better than those of the compared works. 

Table 1 Performance study of the proposed sensors. 

Material used 
Mechanism 

used 
Linear range 

Detection 

limit 
Sensitivity Ref.

Carbon 

electrode 
Electrochemical 

0.7 μM –  

11.5 mM 
0.24 μM n.r. [39]

Manganese 

(IV) oxide 

(MnO2) NPs 

Electrochemical 
2.64 μM – 

1.5 mM 
0.8 μM n.r. [8]

Reduced 

graphene 

oxide 

Colorimetric 0.8 μM – 60 μM 0.15 μM n.r. [40]

Gold 

nanoclusters 
Fluorescence 0.1 μM – 10 μM 22 nM n.r. [41]

3,3/,5,5/-tetra

methylbenzidine 
Colorimetric 1 μM – 70 μM 0.58 μM n.r. [42]

Probe I LSPR 
1 µM–200 µM 12.56 µM 6 nm/mM This  

work10 µM–200 µM 25.78 µM 5.7 nm/ mM

n.r. – not reported. 

4. Conclusions 

In this paper, a waist diameter of 40 µm of the 

tapered optical fiber structure is fabricated by using 

the plasma technique. To enrich the probes with the 

applications of the LSPR phenomenon and increase 

their biocompatibility, AuNPs and ZnO-NPs are 

immobilized over the sensing region of probes. On 

the basis of two different configurations of NPs, two 

kinds of probes are developed. In the first probe, the 

detection of AA is done by using the AuNPs over 

the sensing region. Whereas, in another probe, the 

layer of AuNPs is further immobilized with a layer 

of ZnO-NPs. The authentication of probes is done 

by testing different concentrations of the AA 

solution ranges from 0.5 µM to 1 mM. The 

validation of the AuNPs and ZnO-NPs solution is 

done by taking the pictures through the 

high-resolution TEM. Thereafter, the confirmation 

of NPs immobilization over the sensing region of 

the developed probes is done by taking the image 

through the SEM. Additionally, the specificity of the 

probes is enhanced by functionalizing them with 

AOx enzyme which is oxidized only in the presence 

of AA. The sensing response of the developed 

probes is ascertained by observing the shift in the 

peak resonance wavelength with respect to different 

concentrations of the AA solutions. Further, the 

authentication of the probes is done by analyzing 

their repeatability, reproducibility, and selectivity. 

The attained values for curve fitting and LoD of 

Probes I and II are 99.24 % and 99.28 %, and   

12.56 µM and 25.78 µM, respectively. Whereas, the 

attained values for the sensitivity of Probes I and II 

for the linearity range of 1 µM – 200 µM and     

10 µM – 200 µM are 6 nm/mM and 5.7 nm/mM, 

respectively. Therefore, from the attained results, it 

is ascertained that the response of Probe I is better in 

terms of its linearity range and LoD. 
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