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Abstract: Automatic detection of a designated building area (DBA) is a research hotspot in the field 
of target detection using remote sensing images. Target detection is urgently needed for tasks such as 
illegal building monitoring, dynamic land use monitoring, antiterrorism efforts, and military 
reconnaissance. The existing detection methods generally have low efficiency and poor detection 
accuracy due to the large size and complexity of remote sensing scenes. To address the problems of 
the current detection methods, this paper presents a DBA detection method that uses hierarchical 
structural constraints in remote sensing images. Our method was conducted in two main stages.      
(1) During keypoint generation, we proposed a screening method based on structural pattern 
descriptors. The local pattern feature of the initial keypoints was described by a multilevel local 
pattern histogram (MLPH) feature; then, we used one-class support vector machine (OC-SVM) 
merely to screen those building attribute keypoints. (2) To match the screened keypoints, we 
proposed a reliable DBA detection method based on matching the local structural similarities of the 
screened keypoints. We achieved precise keypoint matching by calculating the similarities of the 
local skeletal structures in the neighboring areas around the roughly matched keypoints to achieve 
DBA detection. We tested the proposed method on building area sets of different types and at 
different time phases. The experimental results show that the proposed method is both highly 
accurate and computationally efficient. 
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1. Introduction 
With technological advances in sensor platforms 

and observation loads, remote sensing technology 

applications have gradually expanded. Detecting a 

designated building area (DBA) from a remote 

sensing image fulfills an urgent need in important 

fields such as illegal building monitoring, dynamic 

land use monitoring, antiterrorism efforts, and 

military reconnaissance [1‒3]. 

Remote sensing images are typically large and 

contain complex scenes. Therefore, a DBA detection 

method must be both highly efficient and accurate. 

X. Yao et al. [4] used a target-oriented saliency 

model and a learned condition random field (CRF) 

model to achieve accurate detection of differently 

scaled airport targets in remote sensing images. 

Considering the symmetric nature of circular oil 

depots, A. O. Ok et al. [5] proposed an automated 
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thresholding method that focused on circular regions 

and designed a new measure and a circle support 

ratio to verify the detected circles. Because oil tanks 

appear in remote sensing images as circles and this 

information is insufficient to separate the targets 

from the complex backgrounds, L. Zhang et al. [6] 

proposed a hierarchical oil tank detector that used 

deep surrounding features extracted by a deep 

learning model. However, the aforementioned 

methods are strongly dependent on the feature sets 

for specific target types such as airports or oil tanks. 

In addition, the characterizations of the surroundings 

of each building area in different remote sensing 

images will differ considerably due to the incidental 

angle of the satellite platform, the lighting 

conditions, weather, and other factors. To solve this 

problem, some scholars have recently attempted to 

use local descriptor technologies to match and detect 

building areas. B. Sırmaçek et al. [7] used the Gabor 

filter to extract local feature points and then detect 

urban areas from remote sensing images. C. Tao   

et al. [8] used segmented region information, prior 

knowledge, and scale invariant feature transform 

(SIFT) keypoints to detect airport areas. SIFT [9] is 

one of the most effective local descriptor-matching 

techniques, which makes target detection more 

robust and reliable [10, 11]. However, due to the rich 

variety of ground objects in large remote sensing 

images, the above methods may produce large 

numbers of redundant local descriptors in 

nonbuilding areas that have abundant image textural 

features. On one hand, the large number of features 

adversely affect the efficiency and precision of 

matching and detection. On the other hand, the 

traditional local descriptor-matching methods are 

not effectively designed to represent building area 

characteristics; thus, their matching efficiency and 

accuracy can suffer. Deep learning models have 

recently been applied to object detection [12]. 

However, these methods need to scan and identify 

the whole image with huge computational costs, and 

the building area belongs to the distributed target 

without specific appearance characteristics, which is 

not suitable for detecting by deep learning based 

methods. 

To address the limitations of the above detection 

methods on large and complex remote sensing 

image scenes, this paper presents an effective DBA 

detection method that uses hierarchical local 

structural constraints. This method makes full use of 

the local structural information of building areas. We 

design a hierarchical constraint strategy to screen the 

most reliable candidate keypoints of building areas 

and match the keypoint pairs precisely. The method 

presented in this paper both greatly reduces the 

number of required feature description calculations 

in the redundant nonbuilding areas and   

effectively decreases the number of matching  

point errors to achieve rapid and reliable DBA 

detection. 

2. Detection algorithm 

This paper proposes a DBA detection method by 

using the hierarchical constraints of local structures, 

based on building area features and spatial 

distribution characteristics. Our method is divided 

into two parts. Firstly, to reduce the number of 

keypoints in the nonbuilding areas, we propose a 

keypoint-screening method for suspected building 

areas based on structural pattern descriptions. The 

local pattern feature of the initial keypoints is 

described by a multilevel local pattern histogram 

(MLPH) [13]; then, we use one-class support vector 

machine (OC-SVM) [14‒17] to screen the keypoints 

that exhibit building attributes. Secondly, based on 

local structural similarities, we propose a 

keypoint-matching method to detect the DBA. To 

improve the reliability of keypoint matching in large 

building areas after this rough matching, we achieve 

precise matching by calculating the similarities in 

the local skeletal structures around the keypoints. 

Finally, the DBA can be obtained by using these 

reliable matching pairs of keypoints. Figure 1 shows 

the workflow of our algorithm.
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Rough keypoint matching Calculate local skeleton 
structural similarities 

DBA detection Precise keypoint matching

DBA detection based on the local structural similarity of 
matching keypoints 

Screen keypoints in building areas based on 
the structural pattern descriptors 

Recognizing keypoints in 
the building areas based 
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Extract local 
descriptors from 
building attribute 
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Generate initial 
keypoints 

Large test image 
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designated building target Generate local 

descriptors 

V1,…,Vn

Extract SIFT descriptors in reference image

 

Fig. 1 Workflow of the proposed detection algorithm. 

2.1 Screening of keypoints in building areas based 
on the structural pattern descriptors 

SIFT keypoint matching is a classical 

object-detection method used in natural image 

processing [18], however, it is difficult to apply 

these SIFT keypoints directly to detect the DBA 

from remote sensing images because remote sensing 

images generally present two major difficulties: 

large sizes and complex scenes. During the local 

descriptors extraction stage, the SIFT algorithm 

produces a large number of keypoints in nonbuilding 

areas. These abundant descriptors not only increase 

the amount of calculation required during the 

subsequent matching, but also affect the detection 

accuracy. In this paper, we first filter the keypoints 

in suspected building areas of the remote sensing 

images. This process is divided into the following 

three main steps. 

2.1.1 Generating initial keypoints 

We use the SIFT algorithm to extract the initial 

keypoints from both the reference image and the 

remote sensing test image. SIFT features possess 

valuable properties such as invariance to rotation, 

scaling, affine transformation, illumination, and 

view transformation. The steps to extract keypoints 

are as follows: extreme point detection, precise 

keypoint location, keypoint directional distribution, 

and local descriptor generation [9]. Because remote 

sensing images often include complex and diverse 

types of ground objects, SIFT keypoint extraction 

produces numerous SIFT keypoints. Typical scenes 

include building areas, wooded areas, green spaces, 

and bare ground, as shown in Fig. 2. 
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Fig. 2 Generation of initial keypoints in a typical remote 

sensing scene. 

2.1.2 MLPH descriptor 

Multilevel local pattern histogram (MLPH) [13] 

is an effective local descriptor of local image 

structural patterns. Because the MLPH features of 

neighboring areas around keypoints have obvious 

differences around different ground objects, the 

MLPH descriptor can be used to distinguish the 

keypoints in building areas from those in other areas. 

Based on the initial SIFT keypoints obtained from 

the entire image, we extract the MLPH descriptor of 
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each neighboring area around the keypoints to 

evaluate its corresponding local pattern features. 

MLPH calculation involves three steps: image 

quantization, matrix splitting, and pattern histogram 

generation. Each initial keypoint is compared with 

its neighboring pixels within a window with a size  

h×h. We denote the intensity of the central pixel as 

gc. Then, all the pixel intensities within the window 

are quantized using the following formula to 

produce a pattern matrix:
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where gi is the intensity of pixel i in the local 

window, and t is a predefined threshold. 

The pattern matrix is split into three matrices: a 

“positive matrix” (PM), an “equal matrix” (EM), 

and a “negative matrix” (NM), respectively defined 

by the following functions: 
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(4) 
For each matrix, a subhistogram is calculated 

based on the local pattern. The subhistogram is 

constructed as follows: 

[ ]
1

( ) ( )
N

n

bins k num n kδ
=

= =        (5) 

where bin(k) is the value of the kth bin, N is the 

number of local patterns in the matrix, and num(n) is 

the number of pixels in the nth local pattern. The 

function [ ]δ   yields one if its argument is true and 

zero otherwise. 

To reduce the histogram dimensions and 

increase the identifiability of the local pattern 

histogram, the histogram is merged according to the 

following formula: 
( ) ( 1) [2, 3, , ]vol k B vol k k K= × − ∈,     (6) 

where vol(k) denotes the “volume” of the kth bin in 

the simplified subhistogram, and B is a parameter to 

control the growth rate of vol(k). Our experimental 

value is B = 2. The local pattern histogram is 

obtained by concatenating three simplified 

subhistograms. 

Different scales correspond to different 

thresholds of t. The MLPH is formed by 

concatenating local pattern histograms extracted at 

multiple scales. The growth rate of t is defined as 

follows: 

1
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     (7) 

where T is a parameter to control the growth rate of t, 

M is the total number of levels, and C is the 

maximum contrast value in the image (C = 255). For 

our applications, our experimental values are T = 2 

and M = 5. Thus, the total dimension of the MLPH 

is 

M×3×K. 

The general framework of the method is shown 

in Fig. 3. 

2.1.3 Recognizing keypoints in the building 
areas based on OC-SVM 

Due to the relatively stable structural 

characteristics of building areas, their MLPH 

attributes of the corresponding keypoints are also 

both similar and stable. In contrast, the MLPH 

attributes of other kinds of ground objects in the 

nonbuilding area are diverse and unstable. Using the 

MLPH attribute extracted by the above steps, the 

outstanding OC-SVM classifier [14–17] is applied 

to build a model of the keypoint neighborhoods. 

Firstly, a large number of initial keypoints are 

generated from the data set in the keypoints 

extraction step of the SIFT, and some blocks of the 

neighboring area around keypoints in building area 

are manually selected for OC-SVM training from 
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them. Then, during the keypoint-screening stage, we 

use the trained OC-SVM model to determine 

whether the keypoints belong to the building or 

nonbuilding area. 

 

MLPH

Local pattern
histogram 

Sub-histogramMatrix 
splitting 

Positive 
matrix 

Equal 
matrix 

Negative 
matrix 

Neighboring
keypoints

 
Fig. 3 Extracting MLPH features. From left to right, the panels show the original image, the matrix splitting procedure, the 

subhistograms derived from the split matrices, the local pattern histogram, and the MLPH, respectively. The local pattern histogram is 
formed by concatenating three subhistograms, and the subhistograms are computed based on (6) with B = 2 and K = 5. The MLPH is 
formed by concatenating the local pattern histograms of different scales, and the local pattern histograms are computed based on (7) 
with T = 2 and M = 5. 

Compared with the initial keypoints distribution 

in Fig. 2, after the screening stage, the keypoints in 

the nonbuilding areas in Fig. 4 have been greatly 

suppressed. 
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Fig. 4 Keypoints distribution after screening. 

2.1.4 DBA detection based on the local structural 
similarities of matching keypoints 

After the keypoints in suspected building areas 

are obtained, we propose a stable keypoint-matching 

method based on local structural similarity to 

improve the matching accuracy in large and 

complex remote sensing images. Firstly, based on 

Euclidean distance, we use a keypoint-screening 

method to roughly identify matching pairs. Then, 

because the initial matching keypoints that 

characterize the same building area should contain 

similar local information at the same scale − 

particularly local skeletal structure similarity − we 

adopt this feature to further identify stable matching 

pairs with high structural similarity to obtain the 

DBA. The specific steps are listed below. 

2.1.5 Rough keypoint matching 

As discussed above, we extract the DBA SIFT 

keypoints from the reference image and 

simultaneously extract and screen out the keypoints 

with building attributes from the remote sensing test 

image. Then, we calculate the SIFT matching 

features (128 dimensions) for each extracted 

keypoint. Next, based on the Euclidean distance, we 

perform a rough matching of the filtered keypoints 

to obtain matching point pairs. The matched pairs 

satisfy the following formula: 

( , )

( , )
i j

i k

d R S
thr

d R S
<             (8) 

where Ri and Sj are the SIFT descriptors in the 

reference image and the remote sensing test image, 

respectively, d(Ri, Sj) is the minimum Euclidean 

distance, d(Ri, Sk) is the second smallest distance, 

and thr is a threshold whose value is generally 0.8 in 

our application. 

2.1.6 Precise keypoint matching based on local 
skeletal structural similarities 

Because of the size and complexity of remote 
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sensing images, many mismatches may appear in the 

keypoint pairs after the rough matching process. To 

solve this problem, this paper proposes a precise 

keypoint-matching strategy based on the similarity 

of the local skeletal structure as described below. 

(1) Calculating the skeletal structures of 

neighboring areas around keypoints 

In this paper, a bright and dark linear skeletal 

structure is proposed to describe the features of the 

neighboring areas around matched keypoints. The 

set of matched keypoints in the reference image 

after the rough matching process is defined as:    

P = {pi}, i = 1, 2, …, N, where N is the number of 

roughly matched pairs, and each keypoint pi has 

three attributes: a position [(x, y)], a scale (σ), and a 

direction (o). 

For each keypoint, we calculate the bright and 

dark linear skeletal density of its neighboring areas 

at the corresponding scale and position. The radius 

of the keypoint neighborhood is equal to the radius 

of the corresponding descriptor, which is determined 

as follows: 

oct3 2 ( 1) 1

2

d
radius

σ × × + +
=       (9) 

where d = 4, and σoct is the scale of the keypoint. 

The bright and dark linear skeletons are 

extracted from the neighboring areas around the 

matched keypoints; then, we calculate the density, 

which represents the structural characteristics of the 

local area using the following steps. Firstly, the 

binary image (BM) of the keypoints is calculated  

by using the adaptive threshold segmentation 

method: 
[Otsu( ) ]BM MoP b b= • .       (10) 

We adopt the opening and closing operation for the 

binary image to remove spot noise, fill the holes, 

and obtain the binary image data that reflects the 

main contour. Here, the Otsu is an efficient 

operation for image binarization, f b  denotes 

using the structural elements b to perform the 

morphological opening operation for the image, and 

f b•  denotes using the structural elements b to 

perform the morphological closing operation. 

The bright linear skeleton (morphological 

skeletal operation) is extracted from the foreground 

parts of the neighboring areas around the keypoints 

(those parts whose pixel values are “1”). Then, we 

calculate the density density_br as follows: 
[ ( , ), ]

_
( ) ( )

Mor Mor BM skel spur
density br

row BM col BM
=

×
  (11) 

where Mor(BW, opt) is defined as a morphological 

skeletal operation on the binary image, ( )row   is 

the number of rows in the image, and ( )col   is the 

number of columns. When opt = skel, the skeletons 

have been extracted, and when opt = spur, the burrs 

in the skeletons have been cleared. 

Accordingly, the extracted dark linear skeletal 

area is the corresponding background part of the 

image (the part whose pixel values are “0”), and the 

density density_dr is calculated as follows: 
[ ((1 ), ), ]

_
(1 ) (1 )

Mor Mor BM skel spur
density dr

row BM col BM

−
=

− × −


 

(12) 
where “1” indicates an all-1 matrix with the same 

size as BM. 

When this process completes, the bright linear 

skeletal densities density_br and density_bs, and the 

dark linear skeletal densities density_dr and 

density_ds have been extracted for each candidate 

matching keypoint in both the reference and test 

images. 

(a) (c) (b) (d)

(g) (f) (e)

 

Fig. 5 Process of skeletal structural extraction from the 
neighboring areas around matching keypoints: (a) original 
image, (b) threshold segmentation, (c) opening operation,     
(d) closing operation, (e) skeleton operation, (f) antiskeleton 
operation, and (g) bright and dark line extraction. 
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(2) Calculating the local skeletal structural 

similarity for the matching keypoint pairs 

After the rough matching, because there are 

“many-to-one” matching point features in the 

reference image and the test image, this paper 

calculates the bright and dark linear skeletal 

similarity of each matching point pair to perform 

further screening. We define the similarity of the 

bright and dark linear skeletons among pri, the 

keypoint psi
1, and the corresponding matching 

keypoint (here, the superscripted 1 represents the 

first matching point) from the reference image and 

the test image, respectively as follows: 

1 1 min( _ , _ )
( , )

2 max( _ , _ )

1 min( _ , _ )
.

2 max( _ , _ )

ri si

density br density bs
S p p

density br density bs

density dr density ds

density dr density ds

= × +

               
 

(13) 
Greater similarities in the neighboring skeletal 

structures between the test and reference images 

reflect smaller density value differences (S values 

closer to 1). 

(3) Screening of reliable matching pairs based on 

the similarity 

The unreliable matching pairs are removed, 

including the “many-to-one” and unstable matching 

pairs. Then, we use the maximum value of the 

skeletal similarity S to identify the reliable matching 

pairs. Assume that a keypoint pri in the reference 

image corresponds to multiple matching points 
01 2, , , N

si si sip p p  (where N0 is the number of matching 

points, and N0∈[1, N]) in the test image. We obtain 

the N0 corresponding skeletal similarities 
01 2( , ), ( , ), , ( , )N

ri si ri si ri siS p p S p p S p p  and find the maximum 

value: 

01

0

( , ) max[ ( , ), , ( , )],

[1, ]

Nr
ri si ri si ri siS p p S p p S p p

r N

=
∈


(14) 

which corresponds to the rth similarity in N0. We 

define that the keypoint psi
r is the only proper 

corresponding point to the matching point pri. 

The similarity of skeletal density characterizes 

the structural similarity of the two neighboring areas 

around the keypoints and is used to set the threshold 

T. When a matching pair satisfies 
( , )ro soS p p T<             (15) 

the matching pair is unstable and removed. Our 

experimental value is T = 0.5. Finally, the most 

reliable matching pairs are obtained, and we then 

conduct a precise matching process by using these 

reliable matching pairs. When all the values of S are 

less than the threshold T, we assume that the 

building area does not exist in the test image. 

2.1.7 Extracting the DBA by using the reliable 
matching point pairs 

The structural similarity is sorted according to 

the matching points retained after the similarity 

process, and three pairs with the highest similarity 

are selected as affine transformations to obtain the 

DBA. 

We denote the matching points with the highest 

local skeletal similarity S in the reference picture as 

(x1, y1), (x2, y2), and (x3, y3), and the corresponding 

matching points in the test image as ( 1x ′ , 1y ′ ),  

( 2x ′ , 2y ′ ), and ( 3x ′ , 3y ′ ). Then, we substitute 

them into the affine transformation model as 

follows:

 

11 1 1

21 1 1

32 2 2

42 2 2

3 3 3

3 3 3

0 0 1 0

0 0 0 1

0 0 1 0
.

0 0 0 1

0 0 1 0

0 0 0 1
x

y

mx y x

mx y y

mx y x

mx y y

tx y x

tx y y

′    
    ′    
    ′

        =        ′    
    ′
    

′          (16) 
For convenience, the above equation is 

abbreviated as: Ax=b. A, x, and b represent    

three matrix terms in (16), respectively. Then, the 

least squares solution of the above-determined 

system is 

1T TA b
−

 =  x A A            (17) 

where T denotes the transposition operation. 

Using the affine transformation matrix x, the 

boundary values of the given reference image are 
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substituted into the transformation model to obtain 

the DBA values in the test image. Finally, the DBA 

area is obtained. 

3. Experiments 

3.1 Dataset and experimental setting 

To demonstrate the performance and efficiency 

of the proposed detection method, we designed 

qualitative and quantitative experiments to test the 

method in real and complex remote sensing scenes. 

An optical remote sensing image of Beijing Institute 

of Technology (BIT) taken by Google Earth on June 

28, 2009 was obtained as the DBA template to be 

detected. We identified the stadium (area , a single ①

large-scale building), multiple student apartments 

(area , multiple buildings)② , and the Qiushi lab 

(area , large building) as shown in Fig. 6. Under ③

the influence of the incidence angles, illumination 

conditions, weather, and other factors related to the 

sate l l i te  p la t form a t  d i fferent  t imes ,  the 

characterization of the DBA and its surrounding 

environment will differ greatly between remote 

sensing images, as illustrated in Fig. 6. Therefore, to 

select a large test image for detection, we acquired 

from Google Earth at different times a total of    

30 remote sensing images of the BIT and their 

vicinities, in addition to 10 non-BIT remote sensing 

images. These 40 images represented different 

seasons, different incident angles, different 

illumination conditions, etc. The size of each image 

was 1920 × 1080 pixels. Three DBAs (the template 

areas to be detected shown in Fig. 6) were detected 

from each image to verify the effectiveness of the 

method proposed in this paper. Using SIFT, a large 

number of initial keypoints were generated from the 

data set, and 4000 blocks of the neighboring area 

around keypoints in building area were manually 

selected for OC-SVM training from them. All the 

experiments were programmed by using MATLAB 

2015a. The experimental platform was a personal 

computer (PC) with a 3.70 GHz Intel Core i3 CPU 

and 4 GB of RAM. 
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Fig. 6 DBA image examples of the BIT at different times. 

3.2 Results and evaluation 

3.2.1 Performance analysis of the proposed 
method 

This section presents and discusses the 

experimental results to demonstrate the effectiveness 

of the proposed method. We selected the panoramic 

images of the BIT at different times and detected 

three DBAs from each image by using the approach 

discussed in Section 3.1. The results are shown in 

Fig. 7 (for display convenience, the order of the 

described areas is adjusted to   ). As shown in ② ③ ①

the figure, the initial number of keypoints [Fig. 7 (a)] 

in these complex images at different times is large. 

After screening based on the local structural pattern 

features, the number of keypoints with nonbuilding 

attributes is greatly reduced [Fig. 7(b)]. However, 

many mismatched pairs exist in the initial matching 

pairs: the initial number of matching pairs is shown 

in Fig. 7(c). After the precise matching process based 

on the local structural similarity of keypoints, the 

number of the wrong matching pairs [Fig. 7(d)] is 
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reduced considerably. 

In addition, this paper analyzes the detection 

results of all the 30 large test images of the BIT via a 

quantitative statistics method, as shown in Tables 1 

and 2. It can be observed that the number of 

keypoints has been reduced by approximately 50 % 

on average by screening the keypoints of the 

suspected building attributes in Table 1, and since 

most of the removed keypoints are in nonbuilding 

areas, the final successful matching points are hardly 

affected. In addition, compared with the traditional 

RANSAC algorithm in Table 2, the number of 

correct matching pairs (CP) extracted by using the 

similarities of skeletal structures is larger, and the 

reliability is higher for the same keypoints. 

(a) 

(c) 

(b) 

(d) 

2010.05.04 

9935 

2014.10.18 2017.02.06

8019 10494

5217 3419 5524

②:27 ①:38 ③:15 ②:28 ①:43 ③:19 ②:24 ①:40 ③:16

②:7 ①:7 ③:8 ②:8 ①:14 ③:14 ②:6 ①:11 ③:9
 

Fig. 7 Algorithmic performance: (a) the initial number of 
keypoints, (b) the number of keypoints with nonbuilding 
attributes, (c) the initial number of matching pairs, and (d) the 
number of precisely matched pairs. 

Table 1 Numbers of keypoints. 

Parameter Number 

Initial SIFT keypoints 9765 

Keypoints after screening 4845 

 

Table 2 Algorithmic performance statistics in matching 
stage. 

Parameter Area ① Area ② Area ③ 

Initial matching pairs 18 26 43 

CP of RANSAC 10 11 7 

CP of the proposed method 11 13 10 

 

3.2.2 Performance comparison with typical 
matching detection methods 

To further verify the detection performance of 

the proposed method for the DBA, we compared it 

with the classical SIFT and other typical detection 

methods applied in [19, 20]. We detected three test 

building areas (described in Section 3.1) in the    

40 remote sensing image scenes taken at different 

times (including 30 remote sensing images of the 

BIT and their vicinities, and 10 non-BIT remote 

sensing images). 

When more than 90 % of the DBA area was 
detected, we considered the building area to have 

been detected correctly. We denoted the number of 
correct target detections as Nc, the number of 
mislabeled targets as Nf, and the total number of the 

hand-marketed real targets included in all the test 
images as Nt. The true detection rate (TD) is defined 
as follows: 

/ 100%.c tTD N N= ×          (18) 
The false alarm rate (FA) is defined as

 
/ ( ) 100%.f c fFA N N N= + ×

      
(19)

 
We calculated the numbers of keypoints, the 

values of CP, TD, FA, and the computing times of 

the four compared algorithms. Table 3 reports the 

averages of all these test image indicators. 

Table 3 Performance comparison of different algorithms. 

Method Keypoints CP TD (%) FA (%) Time (s)

Classical SIFT 9508 10 93.3 6.6 5.8 

Method [19] 10452 10 82.2 17.7 3.6 

Method [20] 12785 6 51.1 48.8 1.9 

Proposed 
method 

4643 11 94.4 5.5 3.3 
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As indicated in Table 3, the number of keypoints 

generated by the proposed method for the test 

images, which are large and complex scenes, is 

noticeably less than that of the other compared 

methods, and the proposed method achieved the 

largest number of correct matching pairs. This result 

was attributed to the strong correlation with the 

structural pattern description and local structural 

similarity proposed in this paper. In contrast with the 

other methods, we note that the method proposed in 

[19], which was described the building area 

neighborhood based on 64-dimensional descriptors, 

did not perform as well as the classical SIFT 

128-dimensional descriptors. The descriptors 

generated by the method presented in [20] were 

single-scale and contained no directional 

information. Thus, the descriptors produced by the 

existing methods were not effectively designed for 

building area characteristics. In addition, because 

only the keypoints with building attributes retained 

in the screening step were hierarchically matched by 

the rough and precise matching processes, the 

proposed method achieved the best performance (the 

highest true detection rate and the lowest false alarm 

rate). In contrast, in the method proposed in [19], the 

keypoints were matched by using the Euclidean 

distance and the Hessian matrix trace; however, this 

approach resulted in a low detection rate because of 

the many mismatching pairs produced from the 

complex remote sensing scenes. In terms of 

computational efficiency, the proposed method 

selected only the keypoints with building attributes 

to participate in the subsequent characterization and 

matching operations. Compared with classical SIFT 

and the method proposed in [19], the runtime of the 

proposed method was relatively short. In addition, 

although the method presented in [20] had the 

shortest computing time, there was a substantial gap 

between its performance and that of the other 

compared methods. 

Overall, from a timeliness perspective, the 

proposed method had both higher performance and 

greater reliability. 

4. Conclusions 

The DBA automatic detection technology has a 

wide range of applications; consequently, it has a 

high research value in the remote sensing field. 

However, because remote sensing images are large 

and complex, the traditional building area detection 

methods will produce a large number of redundant 

local descriptors, and the traditional local descriptor- 

matching methods are not designed effectively for 

the characteristics of building areas. To address 

these problems, we presented a hierarchical 

matching method for DBA detection. The proposed 

method first used a rough keypoint-matching 

method based on the MLPH feature description and 

OC-SVM classifier screening to identify the points 

with building attributes. Then, we used a precise 

method that used the skeletal density of the 

neighboring areas around keypoints to represent the 

keypoint’s local structure and match local structures 

with high similarities. To demonstrate the 

performance of this method, we established a 

multitype test database of DBAs at different times 

based on remote sensing data from Google Earth. 

The experimental results showed that the 

keypoint-screening method using structural patterns 

could effectively reduce the computational cost of 

the subsequent local descriptors and largely avoid 

the problem of matching keypoints in nonbuilding 

areas. The precise matching method based on local 

structural similarity effectively removed unreliable 

matching pairs and achieved an accurate DBA 

detection. The proposed method not only guaranteed 

a high detection rate and a low false alarm rate but 

also greatly improved the efficiency of DBA 

detection. 

Nevertheless, this method still has some 

limitations. Although it achieved a good matching 

and detection effect on panchromatic remote sensing 

images in our experiment, its detection 
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performances for other types of remote sensing 

images such as synthetic-aperture radar (SAR) and 

infrared images have not been verified. Our future 

work direction will concentrate on this aspect. 
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