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Abstract: Compressed sensing leverages the sparsity of signals to reduce the amount of 
measurements required for its reconstruction. The Shack-Hartmann wavefront sensor meanwhile is a 
flexible sensor where its sensitivity and dynamic range can be adjusted based on applications. An 
investigation is done by using compressed sensing in surface measurements with the 
Shack-Hartmann wavefront sensor. The results show that compressed sensing paired with the 
Shack-Hartmann wavefront sensor can reliably measure surfaces accurately. The performance of 
compressed sensing is compared with those of the iterative modal-based wavefront reconstruction 
and Fourier demodulation of Shack-Hartmann spot images. Compressed sensing performs 
comparably to the modal based iterative wavefront reconstruction in both simulation and experiment 
while performing better than the Fourier demodulation in simulation. 

Keywords: Shack-Hartmann wavefront sensor; surface measurement; compressed sensing 

Citation: Eddy Mun Tik CHOW, Ningqun GUO, Edwin CHONG, and Xin WANG, “Surface Measurement Using Compressed 
Wavefront Sensing,” Photonic Sensors, 2019, 9(2): 115–125. 

 

1. Introduction 

The accuracy of surface measurement systems is 

important as they validate the quality of machined or 

polished surfaces. There are many applications with 

functions that depend on the surface geometry, such 

as in mirrors and lenses. The shape of these surfaces 

has also shifted from simple spherical surfaces to 

more complex shapes, leading us to aspherical and 

freeform surfaces. Aspheres and freeform surfaces 

have been gaining popularity due to their ability to 

reduce the size of optical assemblies by reducing the 

number of optical elements required [1]. Important 

considerations for measurement systems include 

lateral resolution, dynamic range, configuration 

complexity, and flexibility [2]. 

Multiple techniques have been developed to 

cover this need, and they can be categorized to 

contact and non-contact based methods [3]. These 

techniques include contacting stylus, interferometry, 

confocal microscopy, structured light techniques, 

scanning electron microscopy, and atomic force 

microscopy among others [4]. Generally, the more 

accurate methods are scanning based methods which 

use either a contact or a non-contact probe. However, 

they are slow as they must scan over the whole 

surface for an accurate measurement [3]. Contact 

probes could also damage the surface of the sample 

during the scanning process [5]. Non-scanning 

methods are faster because they can measure a larger 

area of the surface at a time. Examples include 

phase measuring deflectometry [6], which is a 

structured light technique, interferometry [7], and 

the Shack-Hartmann wavefront sensor [8]. However, 
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the interferometric methods require null lenses, or 

computer-generated holograms, to correct the 

incident wavefront due to its high sensitivity and 

limited dynamic range. 

There are attempts to use the Shack-Hartmann 

wavefront sensor as a surface measurement system. 

This is due to its flexibility where the sensitivity and 

dynamic range of the sensor can be optimized by 

changing the parameters of the lenslet array 

depending on its application [9, 10]. Similar to the 

shearing interferometric systems, the 

Shack-Hartmann wavefront sensor measures phase 

slopes, which are the partial derivatives of the 

surface profile, instead of surface height, thus 

making the system more sensitive [11]. The 

Shack-Hartmann wavefront sensor does not require 

a null lens as it is able to measure the wavefront 

slopes in situ [12]. However, the spot images 

obtained from the Shack-Hartmann wavefront 

sensor could be distorted if there is too much 

variation in the gradient in an area [12, 13]. These 

distorted spots would affect the accuracy of centroid 

calculation and thereafter, the average slope of the 

area. The variation in gradient of the surface could 

also cause crosstalk between lenslets of the sensor 

[14]. This again would affect the accuracy of the 

slope measured due to the error in centroid 

calculation. Therefore, by using the 

Shack-Hartmann wavefront sensor as a general 

surface measurement tool, losses in raw data 

captured should be considered. 

The advantage of compressed sensing is that it 

enables a system to sample a signal at sub-Nyquist 

rate and still be able to fully preserve the 

information of the signal [15]. Several 

implementations of compressed sensing introduce an 

additional constraint to ensure that the partial 

derivatives are continuously differentiable in both x 

and y directions [16]. This form of derivative 

compressed sensing (DCS) has been used in a 

number of applications, including 3D surface 

reconstructions [17], deblurring of images [18], and 

phase unwrapping [16]. In phase unwrapping, DCS 

is used to first recover the partial derivatives of the 

signal from sub critically sampled measurements. 

The recovered slopes are then integrated by solving 

a Poisson equation. The authors note that deciding 

the optimal basis functions to represent gradients, 

and using other constraints in compressed sensing 

are open problems to be solved [16]. DCS is also 

used to estimate the point spread function of an 

imaging system, which then allows the deblurring of 

images obtained from that system. The subsampling 

of partial derivatives is achieved by randomly 

selecting a set of discretized slope measurements 

while the basis function used is a set of wavelets, 

corresponding to a four-level orthogonal wavelet 

transform [17]. Both these applications however 

have a concern on the performance of compressed 

sensing with the presence of side information, which 

in the case of DCS is the cross-derivative constraint. 

This paper proposes the use of compressed 

sensing in the Shack-Hartmann wavefront sensor as 

a surface measurement system. The application of 

compressed sensing in the Shack-Hartmann 

wavefront sensor is possible because the wavefronts 

measured can be expressed in a sparse domain, the 

Zernike domain [19]. Zernike polynomials are the 

primary functions used to describe wavefronts in 

general [20]. Another representation that could be 

used is the wavelet orthobasis function [17]. 

However, expressing the wavefront slopes in the 

Zernike domain would simplify the reconstruction 

as Zernike polynomials are already continuously 

differentiable across x and y directions [21]. Using 

wavelets would require an additional constraint to be 

used like in the case of DCS. Fourier methods are 

also popular in the reconstruction of partial 

derivatives and slope measurements using the focal 

spot images from the Shack-Hartmann wavefront 

sensor [22, 23]. Fourier demodulation of spot 

images is a convenient method for the recovery of 

slope measurements from spot images as a whole 

when compared with the controiding algorithm 
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which is commonly used. These phase slopes could 

then be integrated to obtain the wavefront. The use 

of Fourier based data in compressed sensing has also 

been done in a variety of image reconstruction 

techniques, particularly in magnetic resonance 

imaging (MRI) [24]. Similarly, the image 

reconstruction uses partial derivative measurements, 

which in this case are encoded as Fourier 

measurements. The possibility of this technique 

being used in wavefront or surface reconstruction 

using partial derivative information in the Fourier 

domain could be explored. 

The ability of compressed sensing to recover 

signals accurately from their subcritical 

measurements can be leveraged in applications 

where the amount of data required are large [25] or 

when there are too few measurements. When paired 

with the Shack-Hartmann wavefront sensor, it would 

be possible to use measurements with discarded data 

to reconstruct wavefronts at similar performance 

levels. Higher dynamic range applications when 

paired with partially filled microlens arrays could 

achieve similar sensitivity and accuracy if 

compressed sensing is used. In short, compressed 

sensing allows a variety of reduced sampling 

schemes to be paired with the Shack-Hartmann 

wavefront sensor while achieving a similar level of 

performance. Thus, it is important to investigate the 

accuracy of compressed sensing at existing 

applications and sampling schemes. 

2. Methods 

2.1 Shack-Hartmann wavefront sensor 

The Shack-Hartmann wavefront sensor measures 

the slope of the wavefront using an array of lenslets 

and a camera. These lenslets focus light onto the 

camera and act like an optical lever. The average 

local tilt of the wavefront over the subaperture 

proportionally displaces the focused ray spot on the 

camera. The tilt is measured by comparing the 

difference in positions of the spots obtained from a 

reference wavefront, usually a flat or spherical 

wavefront and the measured wavefront. Figure 1 

shows the schematic diagram of the 

Shack-Hartmann wavefront sensor and the focal 

spot displacement from the aberated wavefront. 

 
Fig. 1 Schematic of focal spot displacement in a 

Shack-Hartmann wavefront sensor. 

Figure 2 meanwhile shows an example of the 

spot image obtained from the Shack-Hartmann 

wavefront sensor. 

 

Fig. 2 Spot image from the Shack-Hartmann wavefront 
sensor. 

Before measuring the local tilt, it is necessary to 

obtain the locations of the focal spots. The locations 

of these spots are determined by calculating their 

centroids along both the x and y axes. The common 

method to obtain the centroids is by using the 

weighted average of the focal spot across the 

subaperture of the sensor with a pixel size of c, 
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using the intensity of each pixel as weights. With i 

denoting the index in the x direction and j denoting 

the index in the y direction, the equation is given as 

follows: 

( )
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min min

max max
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This equation is evaluated after a threshold is 

applied to the spot image. This threshold would 

reduce the background noise and increase the 

accuracy of the centroid calculation. 

The wavefront slopes are calculated based on the 

movement of the focused spot. The local tilt of the 

wavefront causes a shift in the position of the focal 

spot. This approximation is shown in the schematic 

of the focal spot displacement in Fig. 3. The 

relationship among this shift, ∆x, the focal length of 

the lenslet, f ,and the slope is given by the equation 

as follows: 

( ),d x y x

dx f

φ Δ≈ .             (2) 

f 
Microlens Camera sensor

Δx 

 
Fig. 3 Schematic of the focal spot displacement for a single 

lenslet. 

Using these shifts in focal spot locations, the 

slope is obtained and integrated to reconstruct the 

final measured wavefront. The modal wavefront 

reconstruction method uses the least squares method 

to obtain the reconstructed wavefront. The slope 

measurements are arranged into a column vector S. 

Using a set of basis functions E (organized as a 

matrix with the functions as columns) to describe 

the wavefront and given that A is the corresponding 

coefficient (as a column vector), the reconstruction 

is given as follows: 

( ) 1Τ Τ−
=Α Ε Ε Ε S .            (3) 

Using the set of coefficients A, the wavefront W 

is then described by the predetermined basis 

function E as follows: 
=W EA .               (4) 

2.2 Wavefront reconstruction using compressed 
sensing 

The Shack-Hartmann wavefront sensor typically 

measures the gradient ( ),x yφ∇  of the phase map 

( ),x yφ  at discrete points. As shown above, the 

gradient is measured using the difference in position 

of the centroid in the test wavefront compared with 

the centroid in the reference planar wavefront, 

which yields the partial derivatives of the phase map 

in both the x and y directions. The measurements can 

be described as 

,
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where flen is the focal length of the Shack-Hartmann 

lenslet, while i and j are the row and column indices 

of the lenslets. 

Firstly, these raw signals, which are the phase 

slopes across the entire phase map, are represented 

in the Zernike orthonormal basis as 

x xf Zc
x

φ∂ = =
∂

             (7) 

y yf Zc
y

φ∂ = =
∂

             (8) 

where cx and cy are the coefficients in the Zernike 

domain while Z is the matrix transforming the slope 

information into the Zernike domain across the 

entire phase map. Most of the coefficients in cx and 

cy are negligible, and therefore, the equations are 

sparse. This condition enables the use of compressed 

sensing in this application. 

The Zernike polynomials are defined in polar 

coordinates over a unit circle. Their analytical 

definitions can be separated into two parts, the radial 

and the azimuthal functions. In general, they are 
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given as follows: 

( ) ( ), cos( )m m
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The radial function is given as follows: 
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The Zernike polynomials are commonly used to 

describe wavefronts over a circular aperture due to 

their orthogonality over a unit circle. For each 

subaperture or centroid location, the corresponding 

values of the Zernike polynomials are calculated. 

The sampling process of these x and y phase 

slopes involves another linear operator. The phase 

slope measurements are reconstructed separately 

while using the same sampling operator. Therefore, 

for the case of phase slopes in the x direction is 

shown as follows: 
b fψ= .              (12) 

In the above equation, b is a random sample of 

the phase slope f, while ψ  is the sampling operator. 

In this method, the sampling operator is just a subset 

of rows of the identity matrix. This chooses discrete 

values of the phase slope f. The reconstruction of the 

signal is done first by solving 
Ac b′ =                (13) 

where 
A Zψ=                (14) 

and c′ is the recovered coefficient. Solving the above 

equation uses basis pursuit denoising which is an l1 

minimization method and can be represented by 

using the equation as follows: 

2

2 1

1
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2
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 
.    (15) 

Using the recovered coefficient, the signal f is 

then reconstructed as 
f Zc≈ ′ .              (16) 

Overall, the whole process above can be 

summarized by the flow chart in Fig. 4. 

Using the captured spot images, the slopes are 

obtained from the centroids. The relative positions 

are then used to obtain the slope of the wavefront. 

The above equations are used to reconstruct both the 

phase slopes in the x and y directions, and fx and fy. 

The wavefront is then recovered by solving the 

Poisson equation with a least-squares based method. 

 
Fig. 4 Flow Chart of the wavefront reconstruction process. 

The theory of compressed sensing uses the 

sparsity of a signal to enable its reconstruction from 

subsampled measurements. By using a properly 

chosen basis function, a signal could have a 

relatively small number of non-zero elements. This 

is where the Zernike polynomials are particularly 

useful in the application of compressed sensing for 

wavefront reconstruction. A majority of higher order 

Zernike polynomials are negligible, thus making the 

wavefront sparse when represented in the Zernike 

domain. The subsampled measurements meanwhile 

can be as little as 5% [21] of the available 

measurements to reconstruct the wavefront. This 

reconstruction is achieved by using the l1-norm, 

which minimizes the sum of a particular coefficient 

vector. This is done in (15) which takes advantage 

of the sparsity of Zernike coefficients. Also in (15) 

is the constrain that relates the slope measurements, 

b, and the representation of the wavefront, Zc. 



                                                                                             Photonic Sensors 

 

120

Compressed sensing is particularly useful in 

conditions where incomplete or insufficient 

measurements are obtained in a particular 

measurement system which measures a sparse signal. 

Therefore, in this paper, an investigation is done on 

the effect of reduced measurements on the 

reconstruction. 

3. Results and discussion 

3.1 Simulation results 

The performance of the compressed wavefront 

sensing algorithm is first evaluated in a simulated 

setup. 500 random wavefronts are generated using a 

combination of computer-generated Zernike 

coefficients. These surfaces are then reconstructed 

using the compressed wavefront sensing algorithm, 

the Fourier demodulation of Shack-Hartmann spot 

images [23], and an iterative modal-based wavefront 

reconstruction method [26]. Both the modal 

reconstruction technique and compressed wavefront 

sensing use 7 radial orders of the Zernike 

polynomials which have 36 terms. The Fourier 

demodulation meanwhile smoothens up to an eighth 

of the pitch between the simulated lenslets. The 

simulated microlens arrays have sizes ranging from 

25 by 25 lenslets down to 13 by 13 lenslets. A 

circular aperture is used to subsample the available 

lenslets which yield sample sizes of 441 focal spots 

down to 113 focal spots. All three methods use the 

same subsampled focal spots in their phase slope 

reconstructions. The different sizes of simulated 

microlens arrays would therefore sample the 

wavefront at different sample sizes. This is done to 

investigate the effect of reduced sample sizes on the 

performances of these reconstruction methods. 

Photon noises as well as measurement noises are 

added to the simulated microlens images as well. A 

Poisson distribution with a variance equal to the 

intensity of each individual pixel in the spot image is 

used to model the photon noise while a Gaussian 

noise with a variance of 5% of the maximum slope 

measurement is used to model the measurement 

noise. Their performances are then compared in 

terms of their mean squared error relative with the 

original wavefront slopes. 

Figure 5 shows the simulated wavefront. The 

error maps between the reconstructed and original 

wavefront slopes are shown in Figs. 5(c) to 5(e). 

Figure 5(c) shows the error map obtained from 

compressed wavefront sensing while Fig. 5(e) shows 

the error map obtained from the iterative modal 

wavefront reconstruction. 

The reconstruction of the wavefront slopes for 

all methods produces results that are similar to the 

original wavefront. Looking at the error maps of the 

reconstructed wavefront from each method, the error 

from the compressed wavefront sensing algorithm is 

quite consistent across the whole aperture. The 

iterative modal wavefront reconstruction mothod 

meanwhile shows an error which is consistently 

lower than other methods. Overall, across 500 

wavefronts generated, the error maps from these two 

methods are quite similar with higher peaks at the 

edge of the wavefront. The Fourier demodulation 

method produces a higher error in slope 

reconstruction for all sample sizes and wavefronts. 

This behavior is consistent across all 500 wavefront 

slopes reconstructed using all simulated microlens 

array sizes. 

To quantify the relative error between these 

methods, the mean squared error across        

500 wavefront slopes between the reconstructed 

wavefront slopes and the original wavefront slopes 

is obtained for each wavefront and its average 

tabulated. The results are shown in Table 1.    

From Table 1, as the number of samples decreases,    

the general trend is an increase in mean squared 

error. 
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Fig. 5 Comparison of simulated slope reconstructions: (a) the simulated wavefront and its (b) phase slope in the x direction,      
(c) error map using compressed wavefront sensing, (d) error map using Fourier demodulation, and (e) error map using iterative modal 
wavefront reconstruction. 

Table 1 Mean squared error of reconstructed wavefronts 
slopes with different methods at 6 sample sizes. 

Sample size 

Mean squared error (×104) 

Compressed 
wavefront 

sensing 

Iterative modal 
wavefront 

reconstruction 

Fourier 
demodulation

441 1.777 2.709 13.99 

377 2.677 3.417 16.65 

317 3.521 1.707 16.97 

197 1.019 0.7409 17.64 

149 1.993 1.089 20.66 

113 4.903 3.257 25.85 

 
However, there is a reduction in mean error at 

197 and 149 sample sizes for compressed wavefront 

sensing. There is also a drop in mean error for the 

317 and 197 sample sizes for the iterative modal 

wavefront reconstruction. These drops could be 

attributed to the differences in wavefronts used 

during the simulation with different sample sizes. In 

the simulation, a single wavefront is reconstructed 

by all three methods once using only one sample 

size. Therefore, it is possible that the deviation from 

the general trend is caused by the differences in the 

simulated wavefronts. The mean error across the 

methods meanwhile clearly shows that the Fourier 

demodulation performs worst with errors 

consistently 1 order of magnitude higher. The error 

for larger sample sizes are smaller for compressed 

wavefront sensing while at lower sample sizes, the 

iterative modal wavefront reconstruction performs 

better. While it is shown that the error should 
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increase as the sample size decreases, the results 

shown do not contradict the findings. 

3.2 Experimental results 

An experiment is conducted to test the viability 

of the reconstruction process using compressed 

sensing. The measurement setup consists of a laser, 

collimator optics, a beam splitter, and the 

Shack-Hartmann wavefront sensor. The 

Shack-Hartmann wavefront sensor used in the 

experiment, a Thorlabs WFS150-7AR, has an 

effective focal length of 5.2 mm with an array of  

30 by 30 lenslets in the active area. The active area 

of the Shack-Hartmann wavefront sensor used is a 

square grid of 4.76 mm by 4.76 mm. The schematic 

of the surface measurement setup is shown below in 

Fig. 6, and the setup is shown in Fig. 7. 

 
Fig. 6 Schematic of the system setup. 

Laser 

SHWFS

Collimator 

Beam 
splitter 

Test 
object 

Imaging 
lenses

 

Fig. 7 Experimental setup. 

The setup consists of a 532 nm laser diode which 

is collimated using the optics assembly. The 

collimator ensures that the incident wavefront on the 

test object is a plane wave. The beam is then 

transmitted to the test object through a beam splitter. 

The reflection from the test object is then 

transmitted to a set of imaging lenses via the beam 

splitter. The set of imaging lenses are designed to 

have a nominal magnification of 0.5. The   

reflected wavefront then reaches the 

Shack-Hartmann wavefront sensor at the image 

plane of the lenses. 

Using the system setup shown in Fig. 7, the 

performance of compressed wavefront sensing is 

investigated. A total of 4 specimens are used to test 

the accuracy of the reconstruction. These specimens 

are listed in Table 2. 

Table 2 List of test specimens used for the experiment data. 

Lens Focal length Size 

Cylindrical concave 25 mm 6 mm 

Biconvex 200 mm 25 mm 

Biconcave 100 mm 25 mm 

Asphere 11 mm 7.2 mm 

 

The results of the wavefront reconstruction show 

that both compressed sensing and the iterative modal 

wavefront reconstruction could resolve the global 

tilt as well as the curvature of the wavefront. Figure 

8 shows the reconstruction results from the 

biconcave lens. Table 3 meanwhile summarizes the 

results obtained from the reconstructions by using 

both the compressed wavefront sensing and iterative 

modal wavefront reconstruction. 

From Fig. 8, both methods show that they could 

resolve the overall shape of the concave lens. The 

error maps meanwhile show that compressed 

wavefront sensing reconstruction matches the 

overall just as well as the iterative modal wavefront 

reconstruction. The mean squared errors of the 

reconstructions are as follows: compressed sensing 

has a mean error of 0.9145 μm, and the least squares 
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method has a mean error of 1.0648 μm. The 

Thorlabs wavefront sensor meanwhile measures a 

weighted RMS of 20.779 μm with its internal 

reference. 

 
Fig. 8 Comparison of 100mm focal length bi-concave lens reconstruction: (a) reconstruction results, (b) error map using 

compressed wavefront sensing, (c) reconstruction results, and (d) error map using iterative modal wavefront reconstruction. 

Table 3 Performance of compressed wavefront sensing (CS) 
vs iterative modal wavefront reconstruction (LS) for different 
lenses. 

Lens 
Focal 
length 

Mean error CS 
(μm) 

Mean error LS 
(μm) 

Cylindrical 
concave 

25 mm 3.4753 3.7132 

Biconvex 200 mm 0.6333 0.5165 

Biconcave 100 mm 0.9145 1.0648 

Asphere 11 mm 1.3410 1.5487 

 

The errors from both reconstructions are 

comparable with each other with higher errors 

recorded for both the cylindrical lens and asphere. 

The larger error obtained from the reconstruction of 

the cylindrical lens could be caused by the nature of 

the Zernike polynomials used. These polynomials 

are optimized to describe circular patterns with 

waves propagating from the center. The cylindrical 

lens does not have a circular curve. Its gradient is 

zero in one of its axis. 

4. Conclusions 

The use of compressed sensing to aid the 

Shack-Hartmann wavefront sensor as a surface 

measurement system is investigated. The 

performance of compressed sensing is compared 

with that of the iterative modal based wavefront 

reconstruction and the Fourier demodulation of 

Shack-Hartmann spot images. Compressed sensing 

is found to perform similarly to the iterative 

modal-based wavefront reconstruction and better 

than the Fourier demodulation. It is shown 

empirically that compressed sensing when paired 

with the Shack-Hartmann wavefront sensor can 

perform comparably to the modal-based 

reconstruction method as a surface measurement 

device. Further investigations can be made on 

applications with reduced amount of measured data 

at the high dynamic range and sensitivity 

applications using a variety of sampling schemes. 
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