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Abstract: The subgrade soil scaling factor (SSSF) shows the basic properties of soil such as stiffness, 
gravimetry, density, and particle distribution, which are essential for disaster prediction and 
geotechnical engineering activities. In this paper, methods used for soil properties analysis are firstly 
summarized, and then a fiber Bragg grating (FBG) sensing technology is introduced. In order to 
acquire the properties and mechanical characteristics of soil accurately, a vibration-based method is 
presented, and an experiment for judging the properties of soil is conducted. As for the experiment, 
an FBG sensor is adhered to the upside of the vibration rod to measure its fundamental frequency. 
The rod vibrates freely at different-depth level of soil, and the changed data of wavelength from the 
FBG sensor are carefully collected. The Winkler spring model is used to analyze the relationship 
between the fundamental frequency and stiffness of soil. The results of this experiment suggest that 
data collected from FBG sensor can reflect vibration situation clearly and quantitatively. Thus the 
SSSF value can be calculated from the frequency-stiffness equation. The experimental results are 
almost identical with the theoretical derivation results. This confirms that the method presented in the 
paper can determine the SSSF effectively. 
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1. Introduction 

The preliminary problem with almost all kinds 
of geotechnical engineering is how to obtain the 
properties and mechanical characteristics of soil 
accurately. At present, methods for researching and 
analyzing soil are mainly indoor experiments and 
in-situ measurements. Firstly, appropriate methods 
and techniques to acquire the characters of soil is 
needed, and only based on it, the data analysis may 
be more consistent with the actual situation.  

As an index to describe the basic physical 
properties of soil such as stiffness, gravimetry, 
density, and particle distribution, the subgrade soil 
scaling factor (SSSF) is widely used in 
geotechnical engineering research and construction. 
A review of technical literatures reveals that the 
methods for measuring SSSF were developed over 
the past years, and many of them were based on the 
Winkler reaction spring model to analyze the soil 
structure. Analysis of laterally loaded beam is 
initially based on the model of representing soil by 
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some discrete springs using Winkler’s beam on the 
elastic foundation approach [1]. Later on, free 
vibration analysis of beams on elastic foundation 
was studied using the Winkler model in [2‒6]. 
Thambiratnam and Zhuge [7, 8] set up a foundation 
model by using the Winkler springs model to 
analyze the beam and foundation whose properties 
changed along the length of beam. Further studies 
are conducted to reveal the response of beams on an 
elastic foundation subjected to static or dynamic 
loads. Zhong et al. [9] presented a simplified 
method for the lateral response of composite 
caisson-piles foundations based on the dynamic 
Winkler model. Gao et al. [10] proposed a mixed 
finite element method for solving contact problems 
of the largely deformed beam on the elastic 
foundation. Hajialilue-Bonab et al. [11] introduced 
the relationship of damping with depth during 
vibration of pile and presented an equation of the 
movement of a beam equivalent to the pile under 
dynamic loading. Zarafshan et al. [12] analyzed a 
vibration-based method to monitor the fundamental 
frequency of the vibration sensor rod so as to 
measure the bridge scour.  

In recent years, the optical fiber sensing 
technology provides a new technology and method 
to analyze the soil in geotechnical fields [13, 14]. 
The fiber Bragg grating (FBG) sensor is especially 
used. FBG sensors have several technical 
advantages in sensitivity, long-distance 
measurement, multiplexing of sensors, and 
immunity to electromagnetic noise compared with 
conventional electrical sensors [15]. Due to these 
advantages, FBG sensors have been widely used in 
geotechnical fields.  

Rodrigues et al. [16] described an FBG-based 
system with embedded displacement and strain 
transducers for long-term monitoring of structural 
performance of concrete. Zhou et al. [17] developed 
an FBG sensing system for scour monitoring of 
foundations of bridge piers and abutments. Li et al. 
[18] performed an investigation onto the feasibility 
of the FBG-based monitoring system mounted in a 
building during construction. Wei et al. [19, 20] 

developed a real-time wheel defect detection system 
by deploying FBG sensors on rail tracks of the Hong 
Kong mass transit railway to gain the track strains 
upon wheel-rail interaction and generate a reliable 
condition index which can reflect the wheel 
condition. Pei et al. [21, 22] proposed an FBG-based 
in-place inclinometer for lateral displacement 
measurement of slopes in accordance with the 
classical indeterminate beam theory which was 
successfully installed in a slope in China for 
long-term displacement monitoring. Kister et al. [23] 
deployed FBG sensors in reinforced concrete 
foundation piles for strain and temperature 
monitoring and structural health condition 
assessment. 

Though many literatures were studied based on 
the Winkler model or FBG sensors, few researches 
were carried on soil properties and then for 
geotechical engineering activities and disaster 
prediction. In this paper, a new method for 
measuring SSSF is introduced. The FBG vibration 
sensor rod with an initial pressure is driven into soil 
to measure the change of wavelength. Therefore, the 
fundamental frequency of the sensor rod can be 
obtained. Furthermore, the Winkler reaction spring 
model is constructed to analyze the stiffness 
distribution of soil, and the method for computing 
the SSSF is described.  

2. FBG sensor 

The FBG sensor is made by exposing the core of 

a single-mode fiber to a periodic pattern of intense 

ultraviolet light. When the fiber is illuminated by 

ultraviolet light at a certain wavelength, the 

refractive exponent of the fiber will be changed. As 

each periodic refraction changes, a small amount of 

light is reflected. All the reflected light signals 

combine to one large reflection at a particular 

wavelength. The wavelength at which this reflection 

occurs is called the Bragg wavelength.  

The Bragg wavelength B  can be calculated by 

eff2B n                  (1) 

where effn  is the effective index of refraction, and 
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  is the grating period. The variation of the Bragg 
wavelength can be expressed as 

   (1 )B B eT p               (2) 

where   is the strain variation, T  is the 

temperature change,   is the coefficient of the 
thermal expansion,   is the thermo optic 
coefficient, and ep  is the strain optic coefficient 
[24]. 

The relationship between the strain   and the 
wavelength shift B  is established through 
calibration and defined by the gauge factor FG . 

/B B

FG

  
 .             (3) 

The calibration process for any of the sensors is 
determined by mounting the sensor to a calibration 

beam to generate a known strain  . The 
wavelength change is measured and the 
corresponding gage factor is calculated by (3). 

Though the gage factor for typical optical fibers can 
be computed through known properties of the 
optical core, calibration is necessary to reduce  

errors [25].  

3. Vibration sensor 

The proposed sensor is shown in Fig. 1. An FBG 
sensor is adhered on the surface of a rod by epoxy 

glue and connected with an interrogator via fiber 
optic cable. The rod is driven into soil vertically. It 
seems like a cantilever beam. The principle of 

detecting soil and analyzing the properties of soil is 
based on measuring the vibration fundamental 
frequency of the cantilever beam.  

Vibrating rod 
FBG sensor

Fiber optic cable

Soil 

 
Fig. 1 Vibration sensor structure. 

The partial differential equation governing the 

motion ( , )u x t  of a beam subjected to dynamic 

pressure ( , )p x t  is as  

2 2 2

2 2 2

( , ) ( , )
( ) ( ) ( )

( , )                                                           (4)

u x t u x t
x A x EI x

t x x
p x t

    
     

  

where  , A, x, E, I, and t are density, area of 

cross-section, position along the length of cantilever 

beam, modulus of elasticity, moment of inertia, and 

time, respectively.  

Assuming ( , ) 0p x t   and ( , ) ( ) ( )u x t Y x F t , 

the partial differential equation shows the free 

vibration of cantilever beam, and it can be 

concluded that  
2

2

2

( )
( ) 0                      (5)

d F t
F t

dt
   

where   is the fundamental natural frequency of 

the beam.  
For the cantilever beam, after substitution of 

boundary conditions as (0) 0Y  , 
(0)

0
dY

dx
 , 

2

2

( )
0

d Y l

dx
 , and 

3

3

( )
0

d Y l

dx
 , the frequency equation 

is as follows: 
cos( )cosh( ) 1n nl l              (6) 

where 
2

4 n
n

A

EI

 
  . 

The frequency of the beam can be calculated as 

follows: 

2
n n

EI

A
 


 , 1,  2,              (7)n    

By solving (6), the eigenvalues are calculated as 

shown in Table 1.  

Table 1 Eigenvalues of characteristic equation. 

1l       2l       3l      4l       5l 

1.875     4.694    7.855    10.996    14.137 

 
So, the fundamental natural frequency for 

cantilever beam is as follows: 

1 2

3.516
.                        (8)

EI

l A



  

For the known properties ( E , I ,  , and A ) 
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of a certain beam, an increase in cantilever length l   

results in a corresponding decrease in the natural 

frequency of the beam. For the sensor rod vibrating 

in soil shown in Fig. 1, it is not completely the same 

as free vibration of a cantilever beam, because the 

cantilever beam is not fixed on the interface between 

soil and air but beneath a certain depth of soil which 

makes the effective length of the cantilever beam 

longer than length l . For this reason, a modification 

of (8) is made as 

 1 2

3.516

( )

EI

l cL A






            (9) 

where L  is the total length of the sensor rod and 

c  is a constant to amend the length of cantilever 

beam. 

The relationship between the fundamental 

frequency and cantilever length after amending are 

shown in Fig. 2. 
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Fig. 2 Relationship between fundamental frequency and 

cantilever length of the beam. 

The vibration response figure at some frequency 

is portrayed in Fig. 3. It can be seen from Fig. 3 that 

the experimental system is an under critically 

damped system.  

The equation of this system can be calculated by 

2
D

Df



               (10) 

where D  is the free vibration frequency of the 

damped system. 
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Fig. 3 Vibration responses at certain frequency. 

Comparing Df  with the undamped vibration 

frequency, we can portray the curves as shown in 
Fig. 4. As can be seen from Fig. 4, the two curves 

agree fairly well. So the system can be assumed as a 
freely undamped vibration system. 
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Fig. 4 Frequency comparison of damped and undamped 

vibration. 

4. Methods 

We construct the analogy model from two 

segments. The soil sensor rod has a total length of L. 
For the segment above the soil which has the length 
of l , an amended cantilever beam is applied as 

explained previously. For the segment embedded in 
the soil, the Winkler reaction spring model is used to 
describe the operational principle of the soil sensor 

as shown in Fig. 5. Realistic establishment of the 
relationship between the fundamental frequency and 
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sensor length provides a practical tool for the 
calibration of the Winkler spring model. The process 
is described herein. 

L 

x1 

x2 

xi 

xn 

0.5a 

a 

Soil sensor rod 

ai0.5a 

l 

K1 

K2 

Ki 

Kn 
Soil

 
Fig. 5 Winkler spring model. 

Assuming the spring constant K and the 
embedded depth of the sensor rod x, the pressure 

( )p x  is expressed as follows: 
( )p x Kx .              (11) 

According to the Winkler spring model, the 
embedded segment of the sensor rod is constrained 

by n  discrete springs with stiffness iK , which can 
be calculated as 

i iK k x Da              (12) 

where ix  is the depth embedded in the soil, k 
 is 

SSSF, D  is the diameter of the sensor rod, and a  
is the soil depth of each spring, as shown in Fig. 5. 

It is then possible to determine the relationship 
between the fundamental frequency of vibration and 
the stiffness of Winkler springs. 

The equation of motion of the sensor rod can be 
expressed as 

+ =mv kv 0              (13) 

where m  is the mass matrix, k  is the stiffness 
matrix, 0  is a zero vector, and v  and v  are the 
acceleration vector and displacement vector, 

respectively. 
The vibration of the sensor rod can be expressed 

as 
ˆ( ) sin( )t t v = v +             (14) 

where v̂  represents the shape of the system, and 

  is a phase angle.  

It is possible to determine the fundamental 

frequency of vibration by solving (15). 
2 ˆ[ ] = 0k m v .            (15) 

which is called an eigenvalue problem. So it can be 

concluded that 
2 0 k m            (16) 

which is called the frequency equation of the system 

[26]. 

5. Experimental program 

The experiment is constructed by filling soil into 

a chamber which consists a 0.75 m high, 0.61 m 

wide, and 0.91 m long cuboid tank. The finely 

granulated silica sand is used in the experiment. 

Some physical properties of this sand are shown in 

Table 2. 

Table 2 Some physical properties of the sand. 

Diameter    Density      Compression 

  (mm)     (g/cm‒3)     modulus (MPa)       

  0.2        1.506           15           0.2 

A vibration sensor rod is driven into soil. The 

length of the sensor rod is 1.525 m, and the diameter 

is 0.01 m. The rod is made with aluminum alloy, and 

the density is 2.54 g/cm‒3. The device SM130 is 

applied for demodulating the wavelength of the FBG 

sensor. The time domain signals are achieved, and it 

could be changed to frequency domain through fast 

Fourier transform (FFT). The experimental setup is 

shown in Figs. 6 and 7. 

 
Fig. 6 Indoor experimental setup. 
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Fig. 7 Laboratory experimental setup. 

We record the initial length of the cantilever 

beam. Then we manually remove the soil at 0.05 m 
step. Each time, we excite the sensor rod to vibrate 
freely by giving it a slight horizontal displacement 
and then releasing it. Then, we write down the 

removed depth of the soil and the frequency 
achieved from the FBG sensor after demodulating 
by SM130. For each frequency, the Winkler spring 

model is applied to get the SSSF, ,k
 by solving 

(16) and (12). It is then possible to construct the 
relationship between fundamental frequency, f , 

and SSSF, k  . A given value of k   indicates the 
properties of soil, as shown in Table 3. So it is very 
important to measure the SSSF value for a judgment 

of the properties of soil. 

Table 3 Reference k  values of the soil. 

No. Sorts of soil k  (kN/ m4) 

1 Silt ( mud) 3000~5000 

2 Silt 5000~10000 

3 Medium sand 10000~20000 

4 Fine sand 10000~20000 

5 Coarse sand 20000~30000 

6 Gravel 30000~80000 

7 Gravel sand 30000~80000 

8 Pebble 30000~80000 

6. Results and discussion 

6.1 Wavelength change and fundamental frequency 

For a certain length of cantilever or a certain 
depth of the rod, the change of wavelength over time 

can be obtained by SM130 as shown in Fig. 8(a). As 
shown in Fig. 8(a), the wavelength of the FBG 
sensor varies periodically and sinusoidally though 

the amplitude reduces. It is pointed out that the 
reduction in amplitude caused by damping of soil 
affects little on the fundamental frequency discussed 
earlier. So the system, can be assumed as a freely 

undamped vibration system and the frequency could 
be achieved by FFT [Fig. 8(b)]. It is easy to read the 
value of frequency from Fig. 8(b). For different 

lengths of cantilever or different depths of the rod, 
the frequencies could be achieved correspondingly. 
At last, experimental data including fundamental 

frequency, cantilever length, and the removed depth 
of soil are recorded in Table 4.  
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Fig. 8 Sensor rod vibration with (a) FBG wavelength change 

and (b) FFT. 
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Table 4 Experimental data record. 

l (m) 
Removed soil 

depth (m) 
Rod depth under the 

soil (m) 
Measured 

frequency (Hz) 

0.775 0.00 0.75 7.20 

0.825 0.05 0.70 6.52 

0.875 0.10 0.65 6.11 

0.925 0.15 0.60 5.43 

0.975 0.20 0.55 5.00 

1.025 0.25 0.50 4.57 

1.075 0.30 0.45 4.28 

1.125 0.35 0.40 3.99 

6.2 Measured frequency and the computed 
frequency 

We could portray the curve of the measured 

frequency over the rod depth according to Table 4. 

Also, the frequency based on (8) in different depths 

of the rod could be computed. The measured 

frequency and the computed frequency are presented 

in Fig. 9(a). As can be seen from Fig. 9(a), there is a 

noticeable difference between these two curves. It is 

because the cantilever beam in this experiment is not 

fixed on the interface of soil and air but beneath a 

certain depth of soil. We thus suggest that the 

frequency should be calculated according to (9), and 

again the comparison curves are shown in Fig. 9(b). 

It is obvious that the difference between two curves 

in Fig. 9(b) decreases significantly. These two 

curves agree well. 
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Fig. 9 Comparison of measured frequency with (a) computed frequency and (b) computed frequency (amended). 

 
 
 
6.3 Fundamental frequency and SSSF 

For each measured frequency, the Winkler spring 

model is applied to get the value of *k  according to 

(12) and (16). And, then, the relationship between 

the fundamental frequency f  and SSSF *k  could 

be portrayed in Fig. 10. It can be seen from Fig. 10 

that an increase in the fundamental frequency results 

in the corresponding increase in SSSF. It can also be 

seen from Fig. 10 that the range of the SSSF we 

measured is between 9 700 kN/m4 and 16 140 kN/m4. 

The results indicate that the measured soil is either 

the medium or fine sand based on Table 3. 

Additionally, the relationship between the 

fundamental frequency and the depth of the sensor 

rod (or removed soil depth) could also be portrayed, 

as shown in Fig. 11. 
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Fig. 10 k* values as a function of the fundamental frequency. 
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Fig. 11 Relationship between removed depth and frequency. 

7. Conclusions 

This paper presents a new method to measure 

the SSSF value which can help us form an 

approximate judgment regarding soil properties. The 

following conclusions can be drawn from current 

work: 

(1) A vibration sensor is designed based on an 

FBG sensor for measuring the fundamental 

frequency of the vibration rod. The rod can be 

assumed as a free cantilever beam which is fixed 

beneath a certain depth of the soil. So a modification 

is made when computing the fundamental frequency. 

(2) The wavelength change of the FBG sensor is 

measured by interrogator SM130. The time domain 

signals could be changed to frequency domain 

through FFT so as to get the fundamental frequency 

of the vibration rod. 

(3) The Winkler reaction spring model is 

adopted to analyze the relationship between the 

fundamental frequency and stiffness of soil. The 

SSSF is calculated by the frequency-stiffness 

equation.  

The experimental results are almost identical 

with the theoretical derivation results. It is 

confirmed that this method can determine the SSSF 

effectively and approximately judge the properties 

of soil. 
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