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Abstract: Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin 
scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method 
can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier 
transform (FFT) based methods provided the data length is not too short. It enables about 3 times 
improvement over FFT at a moderate spatial resolution. 

Keywords: Brillouin optical time-domain reflectometry (BOTDR); auto-regressive (AR) model; spectral 
estimation; distributed fiber-optic sensing 

Citation: Mengyun HUANG, Wei LI, Zhangyun LIU, Linghao CHENG, and Bai-Ou GUAN, “Brillouin Scattering Spectrum Analysis 
Based on Auto-Regressive Spectral Estimation,” Photonic Sensors, 2018, 8(2): 114–118. 

 

1. Introduction 

Brillouin scattering in optical fibers is sensitive 

to temperature and strain. Therefore, Brillouin 

scattering based distributed fiber-optic sensing 

system is very promising for wide range applications 

[1]. Brillouin optical time-domain reflectometry 

(BOTDR) and Brillouin optical time-domain 

analyzer (BOTDA) are two widely employed 

schemes. Normally, BOTDR is of interest in 

practical implementation due to its single-end 

launch and receiving configuration, making it more 

robust in events of fiber fracture. 

To recover temperature and strain information 

from Brillouin scattering signal in BOTDR, one has 

to obtain the distribution of Brillouin frequency shift 

along the fiber, which can be done by spectral 

analysis of Brillouin scattering signal to find the 

frequency of the peak of the Brillouin gain spectrum. 

In many schemes, a frequency scanning 

configuration is employed to find this Brillouin 

frequency shift by measuring the signal strength at 

various frequency points one by one. Obviously, 

such schemes take very long time to finish one 

measurement because tens of frequency points have 

to be measured [2]. To shorten the measurement 

time, broadband schemes can be used by receiving 

all spectra of the Brillouin scattering signal followed 

by spectral analysis through algorithms. Fast Fourier 

transform (FFT) is a popular algorithm in spectral 

analysis of Brillouin gain spectrum (BGS). The FFT 

technique utilizes a wide-bandwidth photodetector 

and a high speed analog-to-digital converter to 

acquire the Brillouin signal in a single measurement. 

Then a section of successive signal is extracted out 

by a window with time length T and is transformed 
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into the frequency domain with the FFT arithmetic. 

The BGS for the corresponding fiber section is 

therefore obtained. Afterwards, the window slides 

with a step of ΔT, and the FFT is performed 

continuously for the extracted signals at different 

time, which results in the evolution of BGS along 

with time. Because BGS at different positions show 

up at different time points in the received signal, the 

evolution of BGS along with time gives the BGS at 

different positions. However, to enhance the spatial 

resolution of BOTDR, one has to use data as few as 

possible, which results in great degradation of 

spectral resolution and hence temperature and strain 

resolution through FFT. Of course one can pad zero 

to data of short length to increase the spectral 

resolution through FFT, which is a widely adopted 

method in FFT-based schemes. The cost of this 

method is highly computational burden and huge 

throughput requirement between computational unit 

and data storage unit. The overall measurement 

speed is therefore seriously degraded. Currently, 

FFT-based schemes can achieve high resolution in 

spatial and in accuracy. However, the measurement 

speed remains a problem [3–7]. 

In this paper, we propose an auto-regressive (AR) 

model based algorithm to estimate Brillouin gain 

spectrum. In particular, Burg algorithm is used.    

It shows that the proposed AR-based Brillouin 

spectral estimation is reliable in estimating the 

Brillouin frequency shift distribution at a resolution 

better than FFT based methods, especially when the 

data length is relatively short to achieve a high 

spatial resolution at a fairly lower computational 

burden [8]. 

2. Theory 

Physically, Brillouin scattering is initiated by 

Langevin noise source that describes the thermal 

excitation of acoustic waves [1]. Langevin noise is 

essentially a white noise. However, due to the 

geometry and the material characteristics of optical 

fibers, the response of optical fibers to acoustic 

waves is highly frequency dependent which shapes 

the spectrum of Langevin noise and manifests as 

Brillouin gain spectrum. The above process can be 

modeled as 
2
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where 2  is a positive scalar standing for 

Langevin noise source, and 
2
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represents the Brillouin gain spectrum. Equation (1) 

shows that Brillouin scattering can be viewed as a 

rational filter with a transfer function ( ) / ( )B A   

to filtering white noise of power 2  to produce 

Brillouin scattering signal [2]. This filtering process 

as shown by (1) can be written in the time domain as 
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where ( )y t  is the filter output, i.e. Brillouin 

scattering signal, and ( )e t  is white noise with 

variance of 2 . 1z  is the unit delay operator. 

Therefore, the problem of Brillouin spectral 

estimation can be reduced to a problem of signal 

modeling by finding ( )A z  and ( )B z . For a 

rational filter, ( )A z  and ( )B z  can be written as 
1

1( ) 1 ... n
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1
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where na  and mb  are the n-th and m-th constant 

coefficients of ( )A z  and ( )B z , respectively. A 

signal ( )y t  described by (2) is an auto-regressive 

moving average (ARMA) signal. It has been shown 

that the covariance of an ARMA signal satisfies the 

following expression [2]: 

1

( ) ( ) 0
n
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r k a r k i

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for k m  where ( )r k  is the k-th order 

autocorrelation coefficient of ( )y t . With an 

assumption of ( ) 1B z   and hence 0m  , the 

signal is assumed to be an auto-regressive (AR) 

signal, and (2) can be rewritten as follows: 

( ) ( ) ( )A z y t e t .            (5) 

The covariance of an AR signal then satisfies (4) 
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for all positive k  and for 0k  , it can be written 

as 

2
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Equations (4) and (6) give the following system 

of linear equations 
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 1 na a  can then be solved from (7) provided 

autocorrelation coefficients of ( )y t  are obtained 

which can be deduced from measured data. With 

 1 na a  obtained, ( )A z  is also known, and 

hence the Brillouin spectrum can be estimated from 

(1).  

For AR-model based spectral estimation, the 

resulted filter is an all-pole filter, making the model 

good at estimating spectrum with peaks. For 

broadband receiving schemes, the spectrum of 

Brillouin scattering signal is composed of narrow 

peaks in a broadband spectrum. Therefore, 

AR-model can well estimate Brillouin gain spectrum. 

There are several algorithms to solve (7) such as 

Yule-Walker method and least square method. In this 

paper, the maxium entropy method, also known as 

Burg algorithm, is employed because it results in 

more reliable estimation of autocorrelation 

coefficients, especially when data length is short [8]. 

3. Experiments 

Figure 1 illustrates the BOTDR experimental 

setup. A coherent detection scheme is adopted. The 

laser is operating at 1550.12 nm with a linewidth less 

than 100 kHz. Its output is split into two branches 

with one for pulse generation through an optical 

switch based on a semiconductor optical amplifier 

(SOA) and the other as local light for coherent 

detection at the balanced detector. The pulse 

generated by the SOA switch is amplified by an 

erbium-doped fiber amplifier (EDFA) before 

injecting into the test fiber. The Brillouin scattering 

signal from the test fiber is directed to the balanced 

photodetector for coherent detection after amplified 

by another EDFA. The resulted signal after the 

balanced photodetector is centered at around    

10.8 GHz which is downcoverted to less than    

500 MHz by a 10.5 GHz local oscillator. The 

downconverted Brillouin scattering signal is then 

acquired at 1 GSps by data acquisition for digital 

processing. The test fiber is 2-km long with one 

section of about 400 m placed in hot water to tune its 

temperature. The width of the optical pulse injected 

into the test fiber is 250 ns. The acquired data in time 

domain corresponding to the heated section are 

extracted for analysis. Burg algorithm derived from 

AR-model is employed in comparison to the results 

by FFT. Brillouin frequency shift is obtained by 

finding the frequency of the spectrum peak [1].  

 
Laser 1:99 EDFA

EDFA

SOA 
switch CIR Test 

fiber

Balanced 
photodetector

1%

99%

Data 
acquisition

Pulse

10.5 GHz local

oscillator  
Fig. 1 BOTDR experimental setup. SOA: semiconductor 

optical amplifier; EDFA: erbium-doped fiber amplifier; CIR: 
circulator. 

Figure 2 shows the calculated Brillouin 

frequency shift by Burg and FFT algorithms for 

several temperatures to compare the accuracies of 

the two methods. 1024 consecutive samples are used 

by algorithms for analysis. For each temperature, the 

measured data is averaged over 2500 pulses. Both 

FFT and Burg algorithms exhibit excellent linearity 

along with temperature. The slopes obtained by the 

two methods are very similar, 1.03167 MHz/  for ℃

FFT and 1.032 MHz/  for Burg. However, Burg ℃

shows better accuracy than FFT. The residual sum of 

squares is 0.753 for Burg while it is 2.476 for FFT. 
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Fig. 2 Calculated Brillouin frequency shift by Burg and FFT 

algorithms for several temperatures. 

Standard deviation is an important indicator of 

resolution of a measurement. Figure 3 shows the 

standard deviation resulted by FFT and Burg 

algorithms based on calculations on 1024 

consecutive samples. To calculate standard 

deviations, 2500 pulses are grouped into 10 groups 

with 250 pulses in each group. Each group results in 

one measurement of Brillouin frequency shift and 

standard deviations are calculated based on these 10 

measurements. Figure 3 shows that Burg results in 

much better standard deviation than that of FFT. 

Standard deviation is highly related to the spectral 

resolution. For FFT of 1024 point at 1 GSps, the 

frequency resolution is about 1 MHz. Therefore, the 

standard deviation of FFT is about 2 MHz. For Burg 

algorithm, standard deviation is dependent on the 

accuracy of the estimation of autocorrelation 

coefficients. With 1024 samples, this estimation is 

quite good and hence leads to a better standard 

deviation. However, when data length becomes short, 

the accuracy of the estimation of autocorrelation 

coefficients degrades, and worse standard deviation 

will be expected. Figure 4 shows this point for 

calculations on 32 consecutive samples. The 

standard deviation of Burg algorithm is worse than 

that of FFT. Note that because only 32 samples are 

used, they are padded by zeros to 1024 samples in 

FFT to achieve a spectral resolution of 1 MHz. The 

standard deviation of FFT is still around 2 MHz 

while it is nearly doubled for Burg algorithm. Figure 

5 illustrates this tendency more clearly by 

calculating the standard deviation of both algorithms 

for various lengths of consecutive samples used for 

calculations. For FFT, the data length is always 

padded to 1024 points. Therefore, the spectral 

resolution of FFT is always 1 MHz, and the standard 

deviation is basically flat at about 2 MHz over all of 

these data lengths. For Burg algorithm, the standard 

deviation is better than that of FFT when data length 

is longer than 128. Shorter data length results in 

more unreliable autocorrelation coefficient 

estimation and hence leads to worse standard 

deviation. Therefore, Burg algorithm derived from 

AR-model can improve measurement accuracy over 

FFT-based algorithms provided the data length is not 

too short. 
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Fig. 3 Standard deviation resulted by FFT and Burg 

algorithms based on calculations on 1024 consecutive samples. 
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Fig. 4 Standard deviation resulted by FFT and Burg 

algorithms based on calculations on 32 consecutive samples. 
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Fig. 5 Standard deviation resulted by FFT and Burg 

algorithms based on calculations at various lengths of 
consecutive samples. 

4. Conclusions 

Burg algorithm derived from AR-model is 

employed to analyze Brillouin scattering spectrum 

in the BOTDR system. Compared with FFT-based 

algorithms, Burg algorithm can improve 

measurement accuracy by lowering measurement 

standard deviation provided the data length is not 

too short. When the data length is longer than 128 

samples, Burg algorithm outperforms FFT in our 

experiments. It then shows that Burg algorithm 

enables high accuracy measurement at a moderate 

spatial resolution. 
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