
PHOTONIC SENSORS / Vol. 8, No. 2, 2018: 168‒175 

 

Research on FBG-Based CFRP Structural Damage 
Identification Using BP Neural Network 

Xiangyi GENG1, Shizeng LU2, Mingshun JIANG1, Qingmei SUI1*, Shanshan LV1, 
Hang XIAO1, Yuxi JIA3, and Lei JIA1 

1School of Control Science and Engineering, Shandong University, Jinan, 250061, China 
2School of Electrical Engineering, University of Jinan, Jinan, 250022, China 
3Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong 

University, Jinan, 250061, China 
*Corresponding author: Qingmei SUI      E-mail: sdusuiqingmei@163.com 

 

Abstract: A damage identification system of carbon fiber reinforced plastics (CFRP) structures is 
investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. 
FBG sensors are applied to construct the sensing network to detect the structural dynamic response 
signals generated by active actuation. The damage identification model is built based on the BP 
neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, 
and the damage states are the outputs of the model. Besides, damages are simulated by placing 
lumped masses with different weights instead of inducing real damages, which is confirmed to be 
feasible by finite element analysis (FEA). At last, the damage identification system is verified on a 
CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied 
damage states. The system provides a practical way for CFRP structural damage identification. 
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1. Introduction 
Carbon fiber reinforced polymer (CFRP) has 

shown great potential in the fields of aeronautics, 

automotive and civil engineering for its outstanding 

performances [1]. However, CFRP materials are 

very susceptible to the invisible structural damage, 

such as delamination or matrix cracking, causing a 

severe decrease in mechanical properties and 

threatening the structural safety. Therefore, the 

structural damage identification of CFRP materials 

is an important guarantee for the safety in service. 

It has been theoretically and practically proved 

that damages in a structure will cause the variation 

of dynamic performances of the whole structure. As 

a global damage identification method, 

vibration-based damage identification is widely used 

[2, 3]. Structures will be excited by external energy, 

and then structural dynamic responses containing 

damage information can be monitored by reliable 

sensors. In recent years, fiber Bragg grating (FBG) 

has become the ideal choice as sensing element to 

realize the damage identification of composite 
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structures for its advantages of precision, 

anti-interference and ease to establish sensing 

network [4‒6]. Okabe and Yashiro [7] 

experimentally and numerically investigated the 

detection of static and fatigue damage extension in 

holed CFRP laminates using embedded FBG sensors. 

An inverse numerical-experimental method was 

developed in [8] to identify the damage based on 

natural frequency changes measured by FBG 

sensors. Wang et al. [9] measured the vibration 

signals under health status and six kinds of damage 

status using FBG sensors, realizing the identification 

of damage existence and severity. 

Afterwards, how to identify structural damage 

states from measured vibration data becomes the key 

issue. The neural network [10, 11] is a potentially 

powerful algorithm because of the ability to learn 

from past experiences and memorize the patterns in 

the form of an associative memory, and the special 

attention has been drawn to damage recognition and 

classification. Li et al. [12] presented a thorough 

investigation into a vibration-based damage 

identification method utilizing dimensionally 

reduced residual frequency response function data in 

combination with neural networks to identify 

locations and severities of damage in numerical and 

experimental beam structures. Yam et al. [13] 

utilized the neural network to establish the  

mapping relationship between the energy variation 

of the structural vibration responses and damage 

status (location and severity), realizing damage 

detection for polyvinyl chloride (PVC) sandwich 

plates. 

Based on the above, we present a simple and 

practical method of CFRP structural damage 

identification. The composite laminate of different 

damage states is excited by active actuation, and the 

FBG sensor network is applied to detect the 

dynamic responses. Eigen frequency changes are 

extracted by the Fourier transform and set to be the 

damage characteristics, which do not require 

pre-analysis of structural model. Then, the back 

propagation (BP) neural network, whose input is the 

damage characteristics and output is the damage 

state, is constructed. Damages in this paper are 

simulated by placing lumped masses with different 

weights, instead of inducing real damages, providing 

an easy and cost saving way for experimental 

researches. 

2. FBG sensing theory and system setup 

2.1 FBG sensing theory 

FBG is formed by regular and periodic 

modulated refractive index along the optical fiber 

core. When a broadband light is propagating in the 

FBG, a narrow-band of the incident light reflects 

back. The wavelength of the reflected light λB 

depends on the effective refractive index of the fiber 

core neff and the grating period Λ as follows [14]: 

eff2B nλ Λ= .             (1) 

Therefore, the reflected Bragg wavelength is 

sensitive to both strain and temperature changes. 

Considering the influence of strain only 

(experiments are conducted under almost constant 

temperature), the Bragg wavelength variation can be 

expressed as 

(1 )B B eP Kελ λ ε εΔ = − ⋅ = ⋅        (2) 

where Pe is the photoelastic coefficient, and Kε is the 
strain sensitivity constant. Equation (2) shows the 
linear relationship between the changes of the FBG 

wavelength and strain evolutions. Therefore, the 
wavelength of the FBG pasted on the structural 
surface will shift because of the structural dynamic 

strain actuated by active excitation approach, which 
means that FBG sensors can accurately detect the 
dynamic response signals containing the structural 

damage information. 

2.2 Demodulation system 

The high-frequency demodulation system in this 

paper is composed of an amplified spontaneous 

emission (ASE) light source without flat processing, 

splitters, circulators, photoelectric conversion and 

amplification circuit, a data processing unit, and a 
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computer, whose diagram is given in Fig. 1. 

Combining with the edge filter demodulation 

principle, the linear segment of the ASE light source 

is used as the edge filter to realize the 

high-frequency demodulation of the dynamic 

response signals (shown in Fig. 2). When the 

reflection peak of the FBG sensor shifts, the 

reflection peak intensity changes correspondingly 

due to the modulation effect of the ASE source 

hypotenuse filter. This change is converted to a 

voltage signal by the photoelectric conversion and 

amplification circuit, and is collected and displayed 

by the computer after being processed by the data 

processing unit. 

 
Fig. 1 Diagram of the FBG high frequency demodulation system. 

Vibration 
signal 

Δλ 

FBG reflection spectrum 

ASE laser spectrum

 
Fig. 2 Principle of edge filter demodulation. 

The CFRP plate used in this work is 500 mm × 

500 mm × 2 mm with its four edges clamped on the 

test bench, and a 300 mm × 300 mm area is selected 

in the center of the specimen as the experimental 

area. Four FBG sensors are pasted on the surface of 

the CFRP plate to construct the sensor networks and 

detect the dynamic responses. The wavelengths are 

1533.27 nm, 1533.27 nm, 1533.28 nm, and   

1533.29 nm. And their locations are (‒150 mm,  

150 mm), (150 mm, 150 mm), (150 mm, ‒150 mm), 

and (‒150 mm, ‒150 mm), respectively. 

2.3 Damage states and simulation 

Experimentally, there are two ways of 

constructing the CFRP structural damages, setting 

actual damages, and inducing simulated damages. 

Actual damages in composites reduce the stiffness 

and produce the same result in dynamic responses as 

mass increase produces (since dynamic response is a 

ratio of stiffness matrix over mass matrix), i.e. a 

shift in the eigen frequencies and the corresponding 

amplitudes [15]. However, the experiments need 

plenty of composites with the same size and 

properties but different damage modes, which is 

costly and hard to achieve. Therefore, the simulation 

of structural damages appears particularly important. 

Besides, the damage simulation can eliminate the 

interference of the CFRP size or properties. So, 

damages in this work are simulated by adding the 

known masses, instead of inducing real damage. 

In order to verify the feasibility, finite element 

analysis is conducted. The four edges of the CFRP 

plate are clamped on the test bench. Structural 

damages are simulated with lumped masses (100 g, 

200 g, and 500 g) placed in the center of the 

experimental area (presented in Fig. 3). Different 

weights of the lumped masses simulate different 

damage degrees. The corresponding damage states 

are defined as states 1 – 4, respectively, as shown in 

Table 1. The finite element results corresponding to 

each damage states are given in Fig. 4, revealing that 

the stress conditions of the composite plate differed 

obviously after applying different lumped masses. 
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With an increase of the weights, the deformation 

range in the center of the CFRP plate expands. 

Therefore, the lumped masses on the composite 

could easily and capably simulate the structural 

damages. 

 
Fig. 3 Damage simulation of clamped CFRP plate. 

Table 1 Definition of damage states. 

State Definition 

1 No damage 

2 100g 

3 200g 

4 500g 

1.74(a) (b) 

(c) (d) 

1.31

0.87

0.44

0.00

Stress 
(MPa) 

 
Fig. 4 Stress cloud charts of (a) ‒ (d): damage states 1 ‒ 4. 

3. Experiments and analysis 

3.1 Signal detecting and preprocessing 

The active actuation approach is adopted to 

identify the structural damage. The excitation is 

non-destructive and carried out by a 25 g steel ball 

impacting the CFRP plate with the form of free fall. 

The actuation point is located on the 1/4 of the 

central axis of the experimental area (marked in Fig. 

5). The actuation height is set to be 100 mm to 

ensure that the excitation energy remained constant 

during each experiment. Then, the dynamic response 

signals of different damage states can be detected by 

the FBG sensor network with the sampling 

frequency of 500 kHz. 

 
Fig. 5 Schematic of the active actuation experiment. 

The prerequisite for the realization of structural 

damage identification is the accurate extraction of 

damage characteristics. Taking the signals of 

different damage states detected by FBG1 as an 

example [Fig. 6(a)], we can find that there are a large 

number of high frequency signal components which 

may be introduced by the light source jitter, internal 

system noise or environment interference during the 

experiments. So, the daubechies4 (db4) wavelet is 

applied in this paper to do the 5-layer discrete 

wavelet transform denoising before identification. 

The fifth layer approximation coefficients a5 of the 

signals are obtained, and the reconstructed signals 

are given in Fig. 6(b). Then, the amplitude-frequency 

characteristics are extracted by the Fourier transform, 

and the results are shown in Fig. 7. It is obvious that 

the frequency responses vary under different 

structural damage states. That is to say, there is a 

certain relationship between the signal 

amplitude-frequency characteristics and the damage 

states. Therefore, the frequency responses can be 

extracted as the damage characteristics. 



                                                                                             Photonic Sensors 

 

172

 

State 3 

4 

−2 

0 

2 

−4 

State 4

State 2State 1 
4 

−2 

0 

2 

−4 

4 

−2 

0 

2 

−4 

4 

−2 

0 

2 

−4 

V
ol

ta
ge

 (
V

) 

V
ol

ta
ge

 (
V

) 
V

ol
ta

ge
 (

V
) 

V
ol

ta
ge

 (
V

) 

0 20 15 10 5 
Time (ms) 

0 201510 5 
Time (ms)

0 201510 5 
Time (ms)

0 20 15 10 5 
Time (ms)  

(a) 

 

State 3 

4 

−2 

0 

2 

−4 

State 4

State 2State 1 
4 

−2 

0 

2 

−4 

4 

−2 

0 

2 

−4 

4 

−2 

0 

2 

−4 

V
ol

ta
ge

 (
V

) 

V
ol

ta
ge

 (
V

) 
V

ol
ta

ge
 (

V
) 

V
ol

ta
ge

 (
V

) 

0 20 15 10 5 
Time (ms) 

0 201510 5 
Time (ms)

0 201510 5 
Time (ms)

0 20 15 10 5 
Time (ms)  

(b) 
Fig. 6 Signals detected by FBG1 (a) before and (b) after 

wavelet transform denoising. 
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Fig. 7 Amplitude-frequency characteristics of signals 

detected by FBG1. 

3.2 BP neural network 

The BP neural network is a kind of multilayer 

feedforward neural network trained by the error 

back propagation algorithm, which is one of the 

most widely used neural network models. It can 

learn and store a large number of input-output model 

mapping, and need not to describe the mathematical 

equation of the mapping relationship in advance. 

The topology of the BP neural network model 

includes the input layer, hidden layer, and output 

layer, as shown in Fig. 8. xj is the input of the jth 

node of the input layer, where 1, 2, ,j M=    … . wij 

and θi are the weight and threshold of the ith node of 

the hidden layer to the input layer, respectively, 

where 1, 2, ,i q=    … . ϕ is the transfer function of the 

hidden layer. ωki is the weight of the kth node of the 

output layer to the ith node of the hidden layer, 

where 1, 2, ,k L=    … . ak and ok are the threshold and 

output of the kth node of the output layer, 

respectively. In this model, the inputs are the 

amplitude-frequency characteristics extracted by the 

Fourier transform, and the output is the damage state 

(state 1, 2, 3, or 4). Its learning rule is the gradient 

descent method, which adjusts the weights and 

thresholds of the network by back propagation, to 

minimize the squares sum of the network error. 

Input layer 

Hidden layer 

Output layer 

Damage state 

a 
ϕ 

φ φ φ

Amplitude-frequency characteristics 

ω1 ω2 ωq

θqθ2 θ1

x1 x2 xM…… 

…… 

w11 wqMw21

wq1 w1M 

w2M

 
Fig. 8 Topology of the BP neural network. 

As shown in Fig. 8, the input of the hidden layer 

ui is as follows: 

1

M

i ij j i
i

u w x θ
=

= + .           (3) 

According to the transfer function of the hidden 
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layer, the output of the ith node of the hidden layer 

can be expressed as follows: 

1

( )
M

i i ij j i
i

y u w xφ φ θ
=

 = = + 
 
 .      (4) 

Therefore, the input of the output layer v is as 

follows: 

1 1 1

q q M

i i i ij j i
i i i

v y a w x aω ω φ θ
= = =

 = + = + + 
 

   .  (5) 

According to (3) ‒ (5), the output of the output 

layer o is as follows: 

1

1 1

( )

( )

q

i i
i

q M

i ij j i
i i

o v y a

w x a

ϕ ϕ ω

ϕ ω φ θ

=

= =

 = = + 
 
 = + + 
 



 
.     (6) 

Assuming that the excepted output of the output 

layer is T, thus the output error e is as follows: 
e T o= − .               (7) 

The training of neural networks is completed 

until the weights and thresholds are constantly 

adjusted until the desired value is reached. 

3.3 BP neural network training 

Under each damage state, 10 experiments are 

carried out, respectively, and 40 groups of dynamic 

response signals are obtained by FBG sensors as 

training samples of the BP neural network. The 

sampling frequency is 500 kHz with 10 000 sampling 

points. After denoising, the amplitude-frequency 

characteristics are extracted by the Fourier transform 

as the input of the BP neural network. After the 

Fourier transform, we find that the energy of the 

frequency response is mainly concentrated on the 

low frequency part. Accordingly, the first 150 

frequency points (0 kHz ‒ 7.5 kHz) is taken as the 

input of the BP neural network, which can also 

reduce the dimension of the BP neural network and 

shorten the computation time. As a result, the 

number of input layer neurons is 150 × 4 = 600, while 

the number of output layer neurons is 1, i.e. the 

structural damage state. 

After the training samples are settled, the 

number of hidden layer neurons should be 

determined. An empirical formula is used as 

follows: 

M n o a= + + .             (8) 

where M, n, and o are the number of hidden layer 

neurons, number of input layer neurons, and number 

of output layer neurons, respectively, and a is a 

constant from 1 to 10. The calculated scope of 

hidden layer neurons is from 26 to 35. Meanwhile, 

Levenberg-Marquardt (LM) algorithm is induced in 

order to solve the problem of slow convergence of 

the gradient descent method. When using the LM 

algorithm for training samples, it is founded that 

when the number of hidden layer neurons is 26, the 

convergence rate is the fastest, so the number of 

hidden layer neurons is set to be 26. For avoiding 

the instability of the system, the learning rate is set 

to be 0.01, and the maximum error rate is 1E‒6. 

Using the above parameters to train samples, the 

authors find that the iteration number changes 

during 5 ‒ 7, so set the iteration number to be 10. 

Figure 9 shows that the training results of the BP 

neural network, revealing that the neural network 

can accurately learn from the 40 groups of training 

samples. 
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Fig. 9 Training results of the BP neural network. 

3.4 Tests of damage identification 

Another 20 experiments under different damage 

states are conducted on the CFRP plate, and the 

dynamic response signals are used as the test 

samples. The frequency characteristics of the test 
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samples are put into the trained network to get the 

test results, which are presented in Fig. 10. It is 

obvious that the trained BP neural network can be 

used to predict the damage states of the test samples 

accurately. 
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Fig. 10 Predicted results of the BP neural network. 

4. Conclusions 

In this paper, the damage identification method 

of CFRP structures based on the FBG sensors and 

BP neural network is investigated and 

experimentally verified. Dynamic response signals 

generated by the active actuation approach are 

captured by a high-frequency demodulation system. 

Lumped masses with different weights are applied 

on the CFRP plate to simulate different damage 

degrees, which are confirmed to be feasible by finite 

element analysis. The BP neural network, whose 

input is the amplitude-frequency characteristic and 

output is the damage state, is designed to identify 

the damage states. Experiments are carried on a 

CFRP plate, and the results showed that the damage 

states are investigated with accurate identification. 

This paper provides a practical and easy way to 

realize the CFRP structural damage degree 

identification. 
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