
PHOTONIC SENSORS / Vol. 8, No. 2, 2018: 176‒187 

 

Propagation of Electromagnetic Waves in Slab Waveguide 
Structure Consisting of Chiral Nihility Claddings and 

Negative-Index Material Core Layer 

Alaa N. Abu HELAL, Sofyan A. TAYA*, and Khitam Y. ELWASIFE 

Physics Department, Islamic University of Gaza, Gaza, 108, Palestine  

*Corresponding author: Sofyan A. TAYA      Email: staya@iugaza.edu.ps  

 

Abstract: The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers 
are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in 
which the claddings are chiral materials and the core layer is negative index material, is derived. 
Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed 
circularly polarized modes are derived and plotted. We consider both odd and even guided modes. 
Numerical results of guided low-order modes are provided. Some novel features, such as abnormal 
dispersion curves, are found. 

Keywords: Slab waveguides; chiral materials; left-handed materials  

Citation: Alaa N. Abu HELAL, Sofyan A. TAYA, and Khitam Y. ELWASIFE, “Propagation of Electromagnetic Waves in Slab 
Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer,” Photonic Sensors, 2018, 8(2): 
176–187. 

 

1. Introduction 

Left-handed materials (LHMs), also known as 

negative-index materials (NIMs), were demonstrated 

theoretically in 1968 by Veselago [1]. These double 

negative materials with simultaneously negative 

electric permittivity () and magnetic permeability 

() have abnormal properties, such as a negative 

index of refraction, sub wavelength imaging, 

backward wave propagation, and reverse Doppler 

and Cherenkov effects [1‒22]. These materials 

cannot be found in nature but are man-made. 

Because of their novel properties, Pendry and his 

co-authors worked hard to generate NIM and finally 

developed the concept of a perfect lens [9]. The 

main idea to fabricate NIMs is to treat the 

permittivity and permeability separately. Pendry 

used wire array structure to generate negative 

permittivity and split-ring resonator (SRR) structure 

to generate negative permeability [11, 13]. At the 

time when it was quite difficult to obtain a negative 

refractive index of refraction in the visible region, 

Shelby experimentally fabricated the first NIM in 

the microwave region [23]. More and more attention 

to this kind of metamaterial has been drawn due to 

its abnormal properties and possible applications in 

many fields such as cloaking [24], micro strip patch 

antenna [25], wave absorbers [26], and biochemical 

sensors [27‒36]. 

A material with high optical activity can also 

have a negative index of refraction. This property 

makes a material capable of revolving the plane of 

Received: 22 March 2017 / Revised: 25 January 2018 
© The Author(s) 2018. This article is published with open access at Springerlink.com 
DOI: 10.1007/s13320-018-0414-z 
Article type: Regular 



Alaa N. Abu HELAL et al.: Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility 
Claddings and Negative-Index Material Core Layer 

 

177

incident polarized light due to the asymmetrical 

molecular structure. In the beginning of 19th century, 

chiral media were discovered and studied due to 

their optical activity. At the interface between the 

chiral material and achiral material, bi-refraction 

occurs because of the existence of two different 

modes caused by the chiral medium. A chiral 

medium can have a negative index of refraction. If 

the chirality coefficient (κ) is strong and greater than 

the index of refraction at least near the resonant 

frequency, one eigen-wave in the chiral medium 

turns out to be a backward wave, and the 

phenomenon of negative refraction in the chiral 

material occurs. Therefore, chiral materials can 

achieve negative refraction, from which we call 

chiral negative refractive index medium [37].    

The Greek word “chiral” means “hand”: our 

hands are mirror images and they cannot be 

superimposed on each other no matter how hard we 

try. A chiral object cannot be superimposed on its 

mirror image neither by translation nor by rotation. 

The modes in a chiral bulk material can be divided 

into right-handed circular polarization (RCP) and 

left-handed circular polarization (LCP). When a 

linearly polarized light propagates through a chiral 

material, it is decomposed into two orthogonal 

modes known as RCP and LCP. Upon leaving the 

chiral medium, the two modes recombine again, and 

the output is linearly polarized. The effect of the 

chiral medium is to rotate the plane of polarization 

with an angle depending on the thickness of the 

chiral material. Due to the novel features of chiral 

media, intensive interest has been focused on 

waveguide structures comprising chiral materials 

[38‒43]. Waveguide structures comprising chiral 

media were first studied by P. Pelet [38]. They have 

unique propagating properties such as hybrid modes.  

In this work, the properties of guided modes in 

slab waveguides in which the claddings are chiral 

nihility and the core is left-handed metamaterial are 

investigated theoretically. The characteristic 

equations, field profile, and energy flow in the 

waveguide layers of several low-order guided modes 

in the chiral nihility waveguide structure are 

presented. Some unusual properties such as 

abnormal dispersion behavior in the chiral nihility 

waveguide are observed.   

2. Theory of chiral materials 

2.1 Dispersion relations of slab chiral waveguides 

The structure of an asymmetric three-layer slab 

chiral waveguide is shown in Fig. 1. The film has a 

permittivity ε2, permeability µ2, chirality 2 , and 

thickness d. Regions 1 and 3 are semi-infinite chiral 

materials with different refractive indexes and 

chirality. The electric and magnetic fields in the 

chiral material are coupled because of the chirality 

parameter.  

 

Fig. 1 Schematic diagram of three-layer waveguide structure 
having chiral materials.  

The constitutive relations for the chiral media 

can be written as  

0 0 0 0j ,  ji i i iD E H B H E            (1) 

where E , H , D , and B  are the electric field, 

magnetic field, electric displacement, and magnetic 

flux density, respectively. 

In the chiral material, electric and magnetic 

fields can be written as follows: 

E E E   , H H H   .       (2) 

The magnetic fields in chiral material are related 

to the electric fields through  
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j / iH E                  (3) 

where the () symbols correspond to the RCP and 

LCP waves in the chiral medium, respectively. 

/i i i    is the wave impedance in the medium 

i. Substitution (2) and (3) into Maxwell’s equations 

for source-free regions yealds the wave equations 

for RCP and LCP fields as 

 2 2 0i yk E   
            

(4) 

where  0i i ik k n    , 0 0 0k    , and 

0 0/i i in      are effective refractive indexes of 

the two eigen-waves, the wave number in free space, 
and the refractive index of the chiral medium. We 
consider the z dependence of the fields is 

 exp j z .   

Define the parameters ± ,  , and   as 
2 2 1/2

1( )k    , 2 2 1/2
2 ( )k    , and 

2

2 1/2

3
 ( )k  

  . The solutions of the 

longitudinal-field component in (4) and derivation 
of the dispersion relation are shown in Appendix A.  

Next, we will study the dispersion equations of 

guided modes in a three-layer symmetric slab chiral 

waveguide. When the structure shown in Fig. 1 

becomes symmetric, i.e., Region 1 and Region 3 

have the same refractive index and chirality 1 3  , 

1 3  , and 1 3  , the solutions of the 

longitudinal-field component in (4) are shown again 

in Appendix A.  

Other components of the fields are obtained, the 

continuity conditions are applied, and we obtain the 

following dispersion relations as 
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for odd guided modes and 
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(6) 
for even guided modes. 

2.2 Dispersion of three-layer symmetric slab 

achiral core and chiral cladding waveguides  

When the geometry of the waveguide consists of 

an achiral core and chiral claddings, where 2 0  , 

the above parameters become  1 0 1 1k k n    , 

2 2 0 2k n k k   , 2 2 1/2
1( )k    , and 

2 2 1/2
2( )k      , and the characteristics (5) and 

(6) can be written as  

 

 

2 2 2 2
0 1 1 2 22
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k n k
u u

k k k
u u


  

 
  

 

 

 


 

           
     

 

for odd guided modes and 
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for even guided modes.  

When the claddings are chiral nihility media, in 

which the permittivity and permeability tend to be 

zero, the above parameters become 1 0 1k k    ,  

2 2 0 2k n k k   , 2 2 1/2
1( )k      

2 2 2 1/2
0 1( )k    , and 2 2 1/2

2( )k      . The 

dispersion relation given in (7) is divided into two 

equations as 
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1/22 2 2
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0,  1,  2,                                                        (9)
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for LCP odd modes, where m  is mode number. As 

can be seen, m  starts from 0  in RCP odd modes 

and from 1 in LCP odd modes. 

Also, the dispersion relation given in (8) is 

divided into two equations which take the form as 
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for RCP even modes and 
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for LCP even modes. As can be seen, in contrast to 

odd modes, m  starts from 1 in RCP odd modes 

and from 0 in LCP odd modes, because of the 

handedness of chiral meta-material.  

2.3 Guided modes in chiral nihility claddings and 
NIM core waveguide  

Consider that Region 1 and Region 3 shown in 

Fig. 1 are chiral nihility materials and the core is 

NIM. The dispersions (7) and (8) can be splited into 

two dispersion equations corresponding to two 

modes: RCP and LCP. The characteristic relation, 

cut-off frequencies, field profile, and energy in the 

different layers of the waveguide structure of RCP 

and LCP modes are found. We consider both odd 

and even modes.  

2.3.1 Odd modes 

Assume the core layer is negative-index material, 

thus the parameter n2 has a negative value, so the 

dispersion relation given by (7) can be divided into 

two equations as 
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for RCP odd modes and 
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for LCP odd modes. It is noted that, in contrast to (9) 

and (10), m  starts from 0  in LCP odd modes and 

from 1 in RCP odd modes. 

We can obtain the normalized cutoff frequencies 

(V ) by setting 0 1k   in the dispersion relations 

(13) and (14) 
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for LCP odd modes.  

The derivation of the power flow (Poynting 

vector) is given in details in Appendix B for odd 

modes.  

From Appendix B, the energy flow along the 

z-axis can be expressed as  
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for RCP (upper sign) and LCP (lower sign) odd 

modes.  

Inspection of (17) reveals that Sz is positive for 

RCP odd modes and negative for LCP odd modes in 

the surroundings, and positive for both RCP and 

LCP odd modes in the guiding layer. On the other 

hand, we use NIM guiding layer which makes the 

energy flux negative for both RCP and LCP odd 

modes. 

2.3.2 Even modes 

We again assume a NIM in the core of negative 

index n2, so the dispersion relation given in (8) can 

be divided into two equations as 
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for RCP even modes and 
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for LCP even modes. 

We can obtain the normalized cutoff frequencies 

(V) by setting 0 1k   in the dispersion (18) and 

(19) 
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for LCP even modes. 

The derivation of the power flow (Poynting 

vector) is given in details in Appendix C for even 

modes. From Appendix C, the enery flow along the 

z-axis can be expressed as  
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for RCP (upper sign) and LCP (lower sign) even 

modes, respectively. It is obvious from (22) that Sz is 

positive for RCP even modes and negative for LCP 

even modes in the cladding, and positive for both 

RCP and LCP even modes in the core. On the other 

hand, we use the NIM core which makes the energy 

flux negative in the core for both RCP and LCP even 

modes.  

3. Results and discussion 

We can calculate the propagation constants 
numerically from the dispersion relations (13), (14), 
(18), and (19), then the electromagnetic fields and 
the energy flow distribution can be calculated. In 
this section, we use numerical values for the 

parameters in the core and cladding as 1 1 0   , 

1 0.1  ,  2 05 .001i     , 

 2 05 .001i     , and 2 0.   

3.1 Dispersion curves 

The dispersion properties of odd and even 

guided low-order modes are illustrated in Fig. 2, 

where eff 0/n k  is the modal refractive index, 

and 0k d  is the normalized thickness or frequency. 

We assume chiral nihility madium in the 

surroundings and NIM guiding layer waveguide 

structuture. The odd and even modes are represented 

by dashed and solid curves, respectively. For LCP 
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odd and even modes, the dispersion curves increase 

monotonically. The effective refractive index 

incerases monotonically with the normalized 

frequency. The normalized cutoff frequencies 

(points C1 and C2 where eff 1n  ) satisfy (16) or (21). 

However, for RCP odd and even modes, the 

dispersion curves are no longer increasing 

monotonically, but are bent. The cutoff frequencies 

where eff 1n   are not the minimum frequencies 

that waves can propagate. Considering the 

fundamnetal mode where m = 0, there is one solution 

below cutoff frequency (Point 1 C ) for RCP even 

mode in some frequency region. If we consider the 

first guided mode, m = 1, there exist two solutions 

below cutoff frequencies (Points C2 and C3) for both 

RCP even and odd modes in some frequency region. 

Therefore, the cutoff frequencies are no longer really 

“cutoff”. The real “cutoff” frequencies correspond to 

the minimum frequencies (critical Points B and D) 

that guided wave can propagate. As the normalized 

frequency increases from the critical Points B and D, 

dispersion curves split into two branches, which the 

modal index increases with an increase in the 

normalized frequency for upper branch and 

decreases to eff 1n   for lower branch.  
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Fig. 2 Dispersion curves of guided modes in the chiral 

nihility cladding and negative-index material core waveguide. 

3.2 Odd guided modes 

The field profile which shows the amplitudes of 
electric and magnetic fields is illustrated in Fig. 3 at 

normalized thichness 0 2.2k d   for RCP odd first 

mode. Figure 4 illustrates the energy flux 
distribution at normalized thichness 0 2.2k d   for 
RCP odd first mode. As can be seen from Fig. 3, Ez 
and Hz are odd functions of x (sin form) and Ex, Ey, 
Hx, and Hy (cos form) are even functions of x. zS  is 
positive in the cladding and is negative in the core 
due to the NIM core material. However, there are 

two propagation constants at 0 2.2k d  . 
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Fig. 3 Amplitudes of electromagnetic field components at 

0 2.2k d   for RCP odd mode when m = 1, eff 1.6921n  .  

The field profile is plotted in Fig. 5 whereas and 

energy flux distribution is shown in Fig. 6 at 

normalized thickness 0 2k d   for LCP odd 

fundamental mode. As Fig. 5 shows, Ez and Hz are 

odd functions of x (sin form), and Ex, Ey, Hx, and Hy 

(cos form) are even functions of x . As can be seen 

from Fig. 6, zS  is negative in both the guiding 

layer and the surroundings due to the negative 

refractive index of the guiding layer.  
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Fig. 4 Energy flux at 0 2.2k d   for RCP odd mode when  

m = 1: (a) eff 1.6921n   and (b) eff 0.1284n  . 
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Fig. 5 Field profiles at 0 2k d   for LCP odd fundamental 

mode.   
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Fig. 6 Energy flux at 0 2k d   for LCP odd mode when   

m = 0.  

3.3 Even guided modes 

The field profile is plotted in Fig. 7 whereas the 

energy flux distribution is shown in Fig. 8 at 

0 0.5k d   for RCP even fundamental mode. As 

clearly shown in Fig. 7, Ez and Hz are even functions 

of x (cos form), and Ex, Ey, Hx, and Hy are odd 

functions of x (sin form). It is obvious from Fig. 8 

that Sz is positive in the surroundings and is negative 

in the guiding layer as expected.  
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Fig. 7 Field profiles at 0 0.5k d   for RCP even 

fundamental mode.  
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Fig. 8 Energy flux at 0 0.5k d   for RCP even mode when 

m = 0.  

The field profils are shown in Fig. 9, and the 

energy flux distribution is illustrated in Fig. 10 at 

0 3k d   for LCP even first mode. As clearly seen 

from Fig. 9, Ez and Hz are even functions of x (cos 

form), and Ex, Ey, Hx, and Hy (sin form) are odd 

functions of x. As can be seen from Fig. 10, Sz is 

negative in both the guiding layer and the 

surroundings.   
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Fig. 9 Amplitudes of electromagnetic field components at 

0 3k d   for LCP even mode when m = 1.  
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Fig. 10 Energy flux at 0 3k d   for LCP even mode when  

m = 1.   
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4. Conclusions  

The dispersion equations of three-layer 

asymmetric and symmetric chiral slab waveguides 

are derived. We first assume the three layers are 

chiral media. Guided modes in a special case of 

chiral nihility claddings, and NIM core waveguides 

are presented in details. Both the dispersion 

equations for odd and even RCP and LCP guided 

modes in the chiral nihility waveguides are 

examined. For odd and even guided modes, the 

dispersion relations, normalized cutoff frequencies, 

field profiles, and energy flow of RCP and LCP 

modes are derived and plotted. A numerical results 

for typical chirality parameters of several guided 

modes are given. Some novel features such as 

abnormal dispersion curves in the chiral nihility 

waveguides are mentioned.  

Appendix A 

The solutions of the longitudinal-field component in 

(4) can be written as  
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for odd guided modes and 
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for even guided modes, where the parameters ± ,  , 

and   are given be 
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The other field components can be obtained by using 

(2), (3), and (4). Applying the continuity requirement of 

electromagnetic field components at / 2x d  and 

/ 2x d  , the dispersion relations of guided modes in 

three-layer slab chiral waveguide can be derived as 
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for odd guided modes and  
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(4A) 

for even guided modes, where / 2u d  .  

When the structure shown in Fig. 1 becomes 

symmetric, i.e., 1 3  , 1 3  , and 1 3  , the 

solutions of the longitudinal-field component in (4) are 

now written as 
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for odd guided modes and 
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for even guided modes. 

Other components of the fields are obtained, the 

continuity conditions are applied, and we obtain the 

following dispersion relations 
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      (8A) 
for even guided modes. 

Appendix B 

We now derive the energy flow (Poynting vector) in 

RCP and LCP odd modes.  

We can express the electromagnetic fields in explicit 

forms as 
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The minus sign (upper) corrsponds to RCP odd modes 

whereas the positive sign (lower) corrsponds to LCP odd 

modes. A  is a constant.   

The magnetic fields can be calculted in the different 

layers through the relation  

, , , ,
2

j
x y z x y zH E


 

           

(4B) 

for RCP (upper sign) and LCP (lower sign) odd modes.  

The energy flow is simply given by the Poynting 

vector  
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Thus we can express the energy flow along the z-axis 

as 
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for RCP (upper sign) and LCP (lower sign) odd modes.  

Appendix C  

We now derive the energy flow (Poynting vector) in 

RCP and LCP even modes.  
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We can express the electromagnetic fields in explicit 

forms as 
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for RCP (upper sign) and LCP (lower sign) even modes.  

The magnetic fields in the core and the cladding are 

given by (4B). We can express the energy flow along the 

z-axis in the waveguide as 
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 (4C) 

for RCP (upper sign) and LCP (lower sign) even modes, 

respectively. 
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