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Abstract: In this paper, we demonstrate a narrow linewidth random fiber laser, which employs a 
tunable pump laser to select the operating wavelength for efficiency optimization, a narrow-band 
fiber Bragg grating (FBG) and a section of single mode fiber to construct a half-open cavity, and a 
circulator to separate pump light input and random lasing output. Spectral linewidth down to   
42.31 GHz is achieved through filtering by the FBG. When 8.97 W pump light centered at the 
optimized wavelength 1036.5 nm is launched into the half-open cavity, 1081.4 nm random lasing 
with the maximum output power of 2.15 W is achieved, which is more powerful than the previous 
reported results. 
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1. Introduction 

Since the concept of random laser was first 
demonstrated by Letokhov et al. [1] in 1966, 
random lasers have drawn more and more attention. 
As is well-known, two key elements are necessary in 
the traditional laser scheme: a cavity which provides 
positive feedback and a gain medium which creates 
amplification. But in random lasers, there is no 
traditional resonator, which provides random lasers 
with special features compared with conventional 
cavity lasers. In earlier decades, researchers 
obtained random lasing in powder of active crystals 
[2], nanowires [3], and polymers [4]. The simplicity 
of realization of random lasers gives them an upper 
hand over conventional lasers. But such systems 
require high peak powers pump, and the laser 

efficiency is relatively low due to small active areas 
and low directionality, and more importantly, which 
are cumbersome or almost no control over the 
spectral properties of the emission [5]. 

Low-dimensional random systems can be used 
to solve these problems [6] by using optical fibers 
providing a lot of possibilities because of its 
waveguide property. Random lasing was 
demonstrated in the photonic crystal fiber with the 
hollow core filled with a suspension of TiO2 
nanoparticles [7], polymer optical fibers [8], and 
rare-earth doped fiber with randomly spaced 
gratings [9]. 

Recently, Turitsyn et al. [10] proposed a 
radically different branch named random fiber laser 
(RDFL), which operated via extremely weak 
random scattering in a single mode fiber (SMF). The 
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random distributed feedback (DFB) was provided by 
backward random Rayleigh scattering, and the 
amplification was produced by the stimulated 
Raman scattering (SRS) effect. Following this 
research, a number of works were published, in 
which the RDFLs have been designed to have 
characters of high efficiency and high power output 
[11, 12], tunable [13, 14], multi-wavelength [15, 16], 
and polarized output [17, 18]. 

Due to its unique features, RDFL has found a 
large variety of application potentials, such as 
telecom and remote sensing [19‒21]. However, most 
of RDFLs have relatively broad spectra (several 
nanometers). For some practical application fields 
such as coherent sensing and detection, suppressing 
the linewidth is required to increase the system 
performance. Ultra-narrow lasing has been reported 
in a coherent Brillouin random fiber laser [22, 23]. 
As for RDFLs based on Rayleigh scattering and 
Raman amplification, laser generation with a narrow 
linewidth down to 0.05 nm through filtering by the 
FBG was demonstrated in [5], and the 
corresponding highest output power approached  
100 mW level. In this paper, we demonstrate a more 
powerful narrow linewidth (~40 GHz) RDFL by 
employing a higher power tunable pump laser, of 
which the output power reaches more than 2 W, 
which is about one order higher in magnitude than 
that of the previously reported results. 

2. Experimental setup 

Figure 1 shows a schematic diagram of the 
experimental setup. The pump source we employ is 
a tunable fiber laser, which consists of an Yb-doped 
fiber laser (YDFL) with a ring cavity geometry, in 
which we utilize a 1030 nm – 1090 nm tunable 
bandpass filter (T-BPF) to select the operating 
wavelength. To achieve higher output power, a 
standard master oscillator power amplifier (MOPA) 
configuration is used to amplify the seed laser, and 
the maximal power of the tunable fiber laser is about 
9 W. To avoid unwanted feedback that influences the 

former system, an isolator (ISO) is positioned after 
the tunable pump source. The pump light input and 
the random lasing output are separated by a 
circulator. A 1% coupler is used to monitor the pump 
laser operation. A section of 3 km SMF-28e fiber 
functions as the Raman gain medium and the 
distributed feedback mirrors. To achieve narrow 
linewidth generation and decrease the lasing 
threshold, a narrow-band of 0.07 nm fiber Bragg 
grating (FBG) centered at 1081.29 nm is spliced to 
the SMF, which constructs a half-open cavity. So the 
feedback is provided both by FBG reflection and 
distributed Rayleigh scattering. The narrow-band 
lasing output is at the 3rd port of the circulator. To 
eliminate Fresnel reflection, all the end facets are 
cleaved at an angle of 8°. For the sake of simplicity, 
we define lasing output from circulator side and 
FBG side as Output A and Output B, respectively. 

 
Fig. 1 Schematic of the narrow linewidth random fiber laser 

(ISO: isolator; YDF: Ytterbium-doped fiber; WDM: wavelength 
division multiplexing; T-BPF: tunable bandpass filter; LD: laser 
diode; SMF: single mode fiber; FBG: fiber Bragg grating). 

3. Results and discussion 

The wavelength tuning range of the pump laser 
is 1030 nm – 1090 nm. The spectra of lasing at  
1030 nm – 1045 nm are shown in Fig. 2(a), and we 
can see that the amplified spontaneous emission 
(ASE) decreases with an increase in the wavelength. 
The ASE is about 25 dB lower than the signal laser 
at 1030 nm, and this value increases to about 45 dB 
at 1045 nm. Figure 2(b) shows the output power of 
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the tunable fiber laser operating at different 
wavelengths, in which the maximal power of the 
pump laser reaches about 9 W when the wavelength 
is longer than 1033.5 nm, and the power of 1030 nm 
is relatively low because of stronger ASE. 
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Fig. 2 Experimental results of the tunable pump laser:     

(a) spectra from 1030 nm to 1045 nm and (b) output power as a 
function of the wavelength. 

The spectra of the laser emitting from Output A 
at different pump wavelengths are shown in Fig. 3. 
At 1030 nm, the 2nd order Raman Stokes light is 
measured, which is due to high peak power caused 
by the instability of temporal domain. However, 
with an increase in the pump wavelength, the 
spontaneous Raman scattering noise gets stronger. 
When the pump wavelengths are 1035 nm, 1040 nm, 
and 1045 nm, the powers of spontaneous Raman 
scattering noise account for 10%, 52%, and 96% of 
the total output power, respectively. To achieve a 

high enough power of the 1st order narrow linewidth 
emission, it is important to make sure that the 
spontaneous Raman scattering noise is relatively low, 
and no 2nd order Raman Stokes light exists, so we 
experimentally choose 1036.5 nm as the optimized 
operating pump wavelength. 

Figure 4 depicts the output powers dependence 
on the pump power. The threshold pump value is 
about 2.3 W in this case, and the output powers grow 
linearly in both Output A and Output B while the 
pump power is higher than the threshold. When  
8.97 W pump light centered at 1036.5 nm is launched 
into the half-open cavity, we obtain the maximum 
output power of 2.15 W from Output A. At the same 
time, by doing integration based on the spectrum 
data and measuring the total power from Output B, 
residual 1036.5 nm pump power is down to 22 mW, 
and the power of spontaneous Raman scattering 
from Output B is 3.26 W. The power leakage is 
relatively high due to the narrow linewidth of the 
FBG, and the other reason is that the higher the 
generation power is, the more pronounced the 
nonlinear spectral broadening is [24]. Also, it  
cannot achieve narrow linewidth emission from 
Output B. 

The spectrum of Output A at the maximal power 
in Fig. 5(a) shows neither 2nd order Raman Stokes 
light nor pump light, the central wavelength is 
around 1081.4 nm, and the full width at half 
maximum (FWHM) is about 0.16 nm (see the inset), 
which is nearly equal to 40 GHz in this wavelength 
range. The spontaneous Raman scattering noise is 
25 dB lower than the laser line in the output 
spectrum. As shown in Fig. 5(b), the transmitted 
pump light and spontaneous Raman scattering noise 
can be observed in the spectrum of Output B. 

Table 1 shows the 3 dB linewidth and the 
equivalent bandwidth of Output A with different 
output powers, and we can see that the bandwidth 
increases at lower output power while approaches 
stable at higher output power. 
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(d)  
Fig. 3 Spectra of Output A with the maximal output power at different wavelengths of pump light: (a) 1030 nm, (b) 1035 nm,     

(c) 1040 nm, and (d) 1045 nm.
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Fig. 4 Powers of Output A, spontaneous Raman scattering noise 

from Output B, and residual 1036.5 nm versus pump power. 
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(b) 
Fig. 5 Spectrum of (a) Output A and (b) Output B with the 

maximal power. 
Table 1 Output linewidth and equivalent bandwidth. 

Output power 
(W) 

Output linewidth 
(nm) 

Equivalent bandwidth 
(GHz) 

0.026 0.1267 32.51 
0.320 0.1424 36.53 
0.881 0.1529 39.22 
1.310 0.1710 43.87 
1.650 0.1663 42.66 
1.910 0.1671 42.87 
2.150 0.1649 42.31 
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The developed laser system is formed by a 
section of passive fiber with a point reflector (FBG) 
at one end, and it can achieve a narrow spectrum 
following the FBG reflection bandwidth. However, 
the distributed Rayleigh backscattering is extremely 
weak. To achieve laser generation, a sufficient 
feedback is required to satisfy the condition with the 
integral gain overcoming accumulated fiber losses. 
We also find that the narrow linewidth output power 
grows linearly and reaches more than 2 W, having 
approximately 32% slope efficiency. 

4. Conclusions 

In this paper, we investigate the half-open cavity 
random fiber laser to obtain powerful narrow 
linewidth output. We utilize a tunable fiber laser to 
select the operating wavelength for efficiency 
optimization. The feedback in our case is provided 
both by FBG reflection and distributed Rayleigh 
scattering, and the gain is provided by the Raman 
scattering effect along 3 km SMF-28e fiber. As a 
result, we obtain an RDFL with the maximum 
output power of 2.15 W centered at 1081.4 nm, and 
the corresponding bandwidth is as narrow as about 
40 GHz. The demonstrated powerful narrow 
linewidth RDFL has great potential for being used in 
practical applications such as coherent sensing and 
detection. 
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License (http://creativecommons.org/ licenses/by/4.0/), 
which permits unrestricted use, distribution, and 
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provide a link to the Creative Commons license, and 
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