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Abstract: The use of near infrared, high intensity femtosecond laser pulses for the inscription of 
long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in 
photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that 
impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric 
femtosecond laser inscriptions are compared and the polarization characteristics of long period 
gratings and their responses to external perturbations are reported. 
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1. Introduction 

Long period gratings (LPG) result from periodic 
refractive index variations inscribed axially along 
the core of an optical fiber and consequently guided 
light is coupled out of core region, where it interacts 
with a potentially infinite number of cladding modes. 
Due to phase matching that occurs between the core 
and cladding modes, this interaction occurs between 
discrete modes, producing a characteristic loss 
spectrum that also occurs at discrete wavelengths 
[1–6]. The index modulation change within the core 
of a single mode optical fiber can vary depending 
upon the inscription method used, tending to be in 
the range of 10–4 to 0.1, whereas the period for LPGs 
is typically between 100 μm and 600 μm. The 
inscription can be induced by using ultra-violet laser 
irradiation (using photosensitive single mode optical 

fiber) [1]; through fusion arc or laser heating 
inscription (for non-photosensitive optical fiber   
[7, 8], with an inscription mechanism dominated by 
compaction and structural change) or more recently 
by femtosecond lasers [9–11], where in the near 
infrared (from 800 nm to 1100 nm) the dominant 
inscription mechanism appears to be a combination 
of effects that include void creation, material 
compaction, and the photo-elastic effect induced by 
thermal strain. There is significant interest in the use 
of high intensity femtosecond laser pulses for 
inscribing fiber gratings, where the principal 
advantage is the potential for grating inscription in 
any fiber type without preprocessing or special core 
doping. 

The formation of grating structures in photonic 
crystal fiber (PCF) has proven difficult, as the holey 
fiber structures that allow wave-guidance to impair 



Kyriacos KALLI et al.: Sensing Properties of Femtosecond Laser-Inscribed Long Period Gratings in Photonic Crystal Fiber 

 

229

and scatter the femtosecond inscription beam. 
Therefore the consistent manufacture of long period 
gratings in photonic crystal fiber is the subject of 
considerable research interest due to their potential 
applications as filters and sensing devices, 
responsive to strain, temperature, bending and 
refractive index. Compared to fiber Bragg grating 
(FBG) sensors, LPGs have more complex spectra, 
usually with broader spectral features. 

On the other hand they are intrinsically sensitive 
to bending and refractive index. Perhaps more 
importantly, the design of fiber and the choice of 
grating period can have a considerable influence on 
the sensitivity of various parameters, for example 
allowing the creation of a bend sensor with minimal 
temperature cross-sensitivity. This is not readily 
possible with FBG sensors. Here we compare the 
effects of symmetric and asymmetric femtosecond 
laser inscriptions on LPG wavelength spectra and 
report on the characterization of the gratings to 
external perturbations. 

2. Fabrication of grating devices 

A series of LPGs with the same period, 400 μm, 
were fabricated in endlessly single mode (ESM) 
fiber from Crystal Fiber A/S. Several devices were 
made with approximately the same inscription pulse 
energy of (450±20) nJ; a few other devices were 
written with energy ranging from 410 nJ to 650 nJ 
that required various grating lengths to obtain 
maximum strength attenuation bands.  

The refractive index changes were induced by 
using a femtosecond laser producing a 1 kHz train of 
150 fs pulses at 800 nm. 

The femtosecond laser radiation was focused on 
a predetermined point near the fiber core with a 
×100 (NA=0.55) microscope objective, whilst the 
fiber was translated in a direction parallel to the 
fiber axis. The translation speed was 100 μm/s. A 
cylindrical lens (f=100 mm) was placed in close 
proximity to the microscope objective to circularize 
the laser beam at the point of inscription, as shown 

in Fig. 1; other details of the experimental setup can 
be found elsewhere [9]. As a result of previous 
investigations into the spectral characteristics of 
femtosecond laser inscribed LPGs in conventional 
single mode fibers [12], it was anticipated that 
devices would be strongly polarization dependent 
and so the light used to monitor the grating growth 
during fabrication was polarized, as shown in    
Fig. 1(b). The polarization of the light was adjusted 
to maximize the polarization dependent LPG 
attenuation bands. For the inscription of symmetric 
LPGs the laser focal point was centered on the fiber 
core, whereas the focal inscription point was moved 
off-axis using the translation stage to inscribe 
asymmetric LPGs. 
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Fig. 1 (a) Optical layout of femtosecond inscription 

scheme(1—shutter; 2—half-wave plate; 3—Glan prism; 4—

×100 microscopic objective; 5—two alignment 3D translation 

stages; 6—fiber core; 7—high precision computer controlled 2D 

stages; 8—CCD-cameras) and (b) schematic of the system 

monitoring LPG transmission spectra during fabrication. 

3. Laser inscription images 

After inscription, the LPGs were examined with 
differential interference contrast microscope and the 
modified regions of the fiber were identified, as 
shown in Fig. 2. The consistent placement of the 
inscription laser beam was achieved by precise 
control of the translation stage system, thus ensuring 
that LPGs with the same transmission spectra were 
inscribed. 
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 Asymmetric LPG Symmetric LPG

Endless single mode photonic crystal fiber  
Fig. 2 Images of inscribed sections of photonic crystal fiber, 

showing asymmetric and symmetric (centered on the core) 
inscriptions. 

4. Transmission spectra and polarization 
dependence 

Typical examples of femtosecond laser inscribed 
LPG transmission spectra are shown in Fig. 3 (one 
where the structural modification of PCF appears to 
be radially symmetric to the fiber axis and the other 
where the structural modification is asymmetric, 
being displaced from the fiber axis). The plots show 
the variation of the spectra obtained by adjusting the 
polarization of illuminating light to obtain the 
strongest coupling response to each of the 
attenuation bands presented in the spectrum. 
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(b)  
Fig. 3 Typical transmission spectra of femtosecond laser 

inscribed LPGs (period: 400 μm) in PCF: (a) asymmetrical 
inscription (laser energy: 410nJ) and (b) symmetrical inscription 
(laser energy: 470 nJ), highlighting the variation in response to 
input polarization. 

The variations in resonant wavelength between 
two polarization states for the attenuation band close 
to 1590 nm were 1.4 nm for symmetrically written 
LPG and 6.4 nm for asymmetric one with figures of 
0.5 nm and 4.1 nm, respectively, for stop bands at 
1350 nm. 

The polarization dependence appears to have 
two main contributions: one is related to the 
symmetry of inscription and the other is related to 
the power of inscription. The birefringence varies 
from 10.2 nm to 1.4 nm over the laser inscription 
energy range used, as shown in Fig. 4. 
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(b)  
Fig. 4 Observed maximum wavelength separation of key 

attenuation bands due to polarization, as a function of laser 

inscription energy: (a) 1600 nm and (b) 1350 nm. The lines are 

linear regressions showing the increasing trend in birefringence 

with laser inscription energy. 

5. Curvature sensitivity 

To examine the curvature sensitivity of LPGs, 
the devices were exposed to controlled bending, 
without fiber twist, by using the rig shown in Fig. 5. 
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For asymmetric LPGs, the inscribed perturbation 
was oriented below the fiber axis in the plane of 
induced bending. We described the bending as 
convex bending (a positive curvature) when the fiber 
was bent upwards and concave bending (a negative 
curvature) when the fiber was bent downwards  
(Fig. 5). The bend sensitivity of these LPGs were 
investigated with a broadband light source and a 
polarizer, which in turn was connected to a 
polarization controller; the light from this 
arrangement illuminated the LPGs and observations 
of transmitted spectra were made using an optical 
spectrum analyzer. The polarization controller was 
used to maximize coupling of illuminating light into 
one of attenuation bands present in the transmission 
spectrum of the LPG, and each attenuation band 
could be studied at a time. 
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Fig. 5 Curvature test rig used to bend the fiber, giving it 

positive (convex) curvature and negative (concave) curvature. 

The symmetrically inscribed LPGs exhibit    
no dependence on bend sensitivity with fiber 
orientation, while asymmetrically inscribed LPGs  

display directional bend sensitivity to some 
attenuation bands. The transmission spectra of such 
a LPG (that used for Fig. 3(a)) are shown in Fig. 6.  
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Fig. 6 An example of the curvature response of transmission 

spectra for an asymmetrically inscribed LPG written in PCF 

(period = 400 μm, length = 96 mm, inscription power = 410 nJ); 

LPG was subjected to (a) concave and (b) convex bending. 
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Fig. 7 (a) and (b) Spectral sensitivity to curvature of both observed attenuation bands for an asymmetrically inscribed LPG in PCF 

(period = 400 μm, inscription energy = 410 nJ, length = 9.6 mm) for both convex ending and concave bending.   
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Spectral sensitivity of two attenuation bands are 
shown in Fig. 7. The asymmetrically inscribed LPGs 
in PCF generate some attenuation bands which 
display a clear directional sensitivity (Fig. 7(a)), 
whilst others are much closer to giving a 
symmetrical response (Fig. 7(b)). The E-field 
profiles of the modes in this PCF have been 
investigated [13] and show dramatic variations in 
the radial distribution of the E-field with mode order, 
implying that we can expect radically different 
behavior from the various modes. 

6. Temperature sensitivity 

The temperature sensitivity was also investigated. 
The LPGs were placed on an insulated Peltier cooler 
and the temperature induced wavelength shift of the 
attenuation bands was recorded. Temperature 
sensitivity of 5.7×10–3

 nm/℃  for the attenuation 
band at 1350 nm and 4.2×10–3

 nm/ ℃  for the 
attenuation band at 1600 nm which are lower values 
compared to those reported for LPGs in SMF-28 
fiber [12] and are in approximate agreement with the 
results of other studies on PCF based LPGs [7, 8], as 
shown in Fig. 8.  
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Fig. 8 Spectral sensitivity to temperature for two attenuation 

bands of the asymmetrically inscribed LPG in PCF (period = 

400 μm, inscription energy = 410 nJ, length = 9.6 mm). 

7. Conclusions 

A series of symmetric and asymmetric LPGs 
were inscribed in PCF using a femtosecond laser 
system. The asymmetric LPGs were found to be 
spectrally sensitive to bend orientation with 

particular attenuation bands yielding a spectral 
curvature sensitivity of –11.4 nm•m for a concave 
bend and 7.0 nm•m for a convex bend, with low 
temperature sensitivity. The great advantage with 
this PCF is the low temperature cross-sensitivity, 
however, there is an issue with the polarization 
dependence of the attenuation bands. All LPGs 
exhibit spectral birefringence ranging from 1 nm to 
10 nm, which appears to be related to the inscription 
method and the laser energy used to fabricate the 
LPG. This suggests that these devices have the 
potential to be used as curvature sensors with high 
resolution. 
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