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Abstract Regression test plays a vital role in

software testing by ensuring the quality and stability

of the developed software. During regression test a

large number of test cases are involved thusmaking the

process expensive and difficult. In order to reduce the

cost and time of regression test, test case prioritization

is applied. However in real world scenario multiple

testing criteria and constraint are evolved, such as to

detect all faults within minimum time, and to detect

most severe faults earlier. This takes the test case

prioritization problem turn into multi-objective test

case prioritization paradigm. In this paper an improved

pareto-optimal clonal selection algorithm is proposed

to generate test case order depending on three objective

such as minimum execution time, maximum severity

fault identification and cost-cognizant average per-

centage of fault detected. The experimental analysis is

conducted over an industrial project with seven

different versions for which the proposed approach

generates scheduled test case order. And it is concluded

that the performance of proposed approach is better

than other tested algorithms like random approach,

weighted genetic algorithm, greedy and NSGA-II.

Graphical Abstract

Keywords Pareto-optimal � Multi-objective test
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1 Introduction

In recent software development, the software product

developed undergoes frequent functionality updates
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and modification to meet customers demand. The test

engineers are in need to ensure that the functionality

updates and modification do not affect the other

unmodified part of software. Regression testing is one

of the software testing activities guarantees that the

recent change introduced to the software do not affect

the unchanged part [13]. The basic approach followed

in regression test is to run the entire test suite to

identify faults. Since running entire test suite is time

consuming and expensive, test case management

technique such as test case minimization, selection

and prioritization has emerged. The test case mini-

mization and selection technique selects a subset of

test cases from entire test suite to reduce the

complexity of regression test, but at times it might

reduce the fault detecting capability due to reduction

of test case. In test case prioritization the test cases are

scheduled in an order to meet certain performance goal

without reducing the number of test cases.

Earlier, the objective of test case prioritization is to

find out an order that exposes the faults as earlier as

possible [10]. However the faults considered are of

equal severity and execution time. In real world

scenario, multiple test criteria and constraints are

involved in testing. Since there is no specified criteria

for ideal testing different criteria like code coverage,

fault detection, requirement coverage have been

widely used [14]. Apart from testing criteria, there

also exists multiple constraints. Most of the previous

research considered cost as important constraint. Cost

can be measured in terms of execution time, human

effort, hardware resource but predominantly execution

time is considered for cost. There also situation arises

involving multiple conflicting testing criteria for

instance, in a resource constrained environment, a

tester is in need to find out faults with higher severity

within minimum execution time which forms a multi

objective test case prioritization problem. Previously

most of existing prioritization were single objective

approaches and very fewwith multi-objective test case

prioritization. Malishevsky et al. [2] formulated two—

objective test case prioritization considering code

coverage and cost. Harman et al. [7] proposed the first

multi-objective test suite selection and minimization

problem. In this paper we propose improved pareto-

optimal clonal selection algorithm (I-POCSA) for

solving multi objective test case prioritization. The

proposed algorithm combines pareto-optimality

approach with clonal selection algorithm to solve

conflicting objective effectively. Clonal selection

algorithm have produced better result for multi-

objective problem from various fields and also the

representation of proposed problem in clonal selection

algorithm is much easier. Therefore this gives the

motivation for choosing clonal selection algorithm.

The contribution of the paper is as follows

• Clonal selection algorithm is introduced for the

first time in solving multi-objective test case

prioritization

• An improved pareto-optimal clonal selection

algorithm for solving test case prioritization with

three objective formulation that caters for execu-

tion time, fault severity and APFDc is proposed

• The paper compares the proposed algorithm per-

formance with random algorithm, greedy algo-

rithm, weighted genetic algorithm and NSGA-II

and the result show that the proposed approach

outperform the other algorithm

The rest of the paper is organized as follow: Sect. 2

review the related works and in Sect. 3 the proposed

approach is illustrated. Section 4 presents the empir-

ical study and the results of the study are analyzed in

Sect. 5. Finally Sect. 6 draws some conclusion with

future work.

2 Related Works

In recent time, several researches show that around

50% of total cost of software development has been

spent for testing activities [15]. To optimize the cost

and time spent over the testing activities elbaum et al.

proposed test case prioritization [1]. Test case prior-

itization approaches arranges the test case in order

based on some performance goal. There are numerous

methods available in literature for finding an order for

given test suite. Most of the test case prioritization

technique prioritize test case based on coverage

information obtained from source code. For example,

in functional coverage the test case are prioritized

based on the quantity of function executed by the test

case. Other than code coverage, test case are also

prioritized based on fault exposing potential, that is

test case which is capable of finding more faults are

executed earlier. Test cases are also ordered based on

other software artifacts. Krishnamoorthi and Mary [9]

proposed a prioritization technique considering factors
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such as requirement coverage, implementation com-

plexity, requirement volatility and fault prone.

In modern software development different param-

eters such as code and requirement coverage, faults

severity, available execution time, requirement impor-

tant to client, and so on are considered for prioritiza-

tion which lead to multi-objective test case

prioritization. In recent research, test case prioritiza-

tion problem is formulated as multi-objective opti-

mization problem and solved using variants of multi-

objective evolutionary algorithm [21]. Yoo et al. [8]

defined the first multi-objective test case selection and

reduction problem considering three conflicting objec-

tive such as fault—coverage, code coverage and cost

and solved it using variant of NSGA-II. Mondal et al.

[6] solved the multi-objective test case selection

problem with maximum code coverage, maximum

diversity and minimum test case execution time using

NSGA-II. Zheng et al. [12] proposed multi-objective

test case minimization problem with two conflicting

objectives, such as maximum code coverage with

minimum execution time. In his experimental study,

the performance of four algorithm such as greedy

algorithm, NSGA-II, MOEA/D, and MOEA/D with

fixed value parameter c is compared and the results

prove that MOEA/D performs better than other

algorithm. Wang et al. [18] proposed approach for

solving multi-objective optimal resource allocation

problem using harmonic distance based multi-objec-

tive evolutionary algorithm. Marchento et al. [5]

schedules the test case in an order based on multiple

objective such as discovering the faults earlier within

minimum execution time by using information from

software artifacts. Megala et al. [19] proposed history

based cost cognizant test case prioritization, the

approach uses clonal selection algorithm for generat-

ing test case order based on historical information of

test case such as execution time, fault identified and

severity of fault identified. Recently, Khanna et al.

[20] prioritized test cases in a multi objective

environment for web testing and the performance of

NSGA-II is compared with random algorithm, 2-opt

algorithm, greedy algorithm, weighted genetic algo-

rithm. The recent other multi-objective problem in

software testing activities include multi-objective test

data generation [4], multi-objective test suite reduc-

tion [11], multi-objective requirement engineering

[16] and software product management [17].

Thus, the study of literature reveals that very little

work has been carried out on multi-objective test case

prioritization. NSGA-II, MOEA/D were widely used

to solve multi-objective problem and none of the paper

used immune based algorithm to address multi-

objective prioritization problem. This gives the moti-

vation to apply immune based clonal selection algo-

rithm for first time in solving multi-objective test case

prioritization. The main aim of proposed problem is to

generate an optimal test case order based on multiple

conflicting objective. The clonal selection algorithm

could not handle multiple conflicting objective effec-

tively therefore pareto-optimal concept is hybridized

with clonal selection algorithm to effectively optimize

all conflicting objective simultaneously and proposes

an improved pareto-optimal clonal selection algo-

rithm. To generate optimal test case order the

proposed algorithm takes parameter such as test case

execution time, rate of fault detection per execution of

test case, rate of Severity Detection for generating

scheduled test case order.

3 Proposed Prioritization Approach

In this section the proposed multi-objective prioriti-

zation approach is illustrated. The main goal of this

proposed approach is to find out an order for executing

the test case considering the objective such as within

minimum execution time, maximum faults with high

severity should be identified and also the proposed

order should have a maximumAPFDc value. Since the

proposed problem is a multi-objective NP-hard prob-

lem a nature-inspired meta-heuristic clonal selection

algorithm is used in the proposed approach. This paper

proposes an improved—Pareto optimal clonal selec-

tion algorithm combining clonal selection algorithm

and pareto-optimality concept. Clonal selection algo-

rithm have been used in many engineering problem

and proved its efficacy. Pareto-optimality is a notation

derived from economics and been used widely to

simultaneously solve multi-objective optimization

problem.

The proposed approach initially extracts the infor-

mation about test suite such as execution time of each

test case, fault identified by a test case and the severity

of detected fault. A fault versus test case and fault

versus severity matrix is constructed from the

extracted information. Software profiling tools such
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as Emma are used to calculate execution time. The

architecture diagram of proposed approach in given in

Fig. 1.

In proposed I-POCSA, the test suite is taken as

input and generates set of solution called pareto-

optimal solution as output considering all the three

objective. Since the proposed approach generates a set

of solution as output. All the solutions generated are

equally important and non-dominated to each other.

The proposed I-POCSA algorithm uses the con-

structed matrix and information about test case to find

the test case order which simultaneously satisfy all

three objective. In clonal selection principle, the

problem to be solved is taken as antigen and the

candidate solution are considered as antibody. As

same way in I-POCSA, the optimal set of test case

order to be found is considered as antigen and the

randomly generated sequence of test cases is consid-

ered as antibody. In-POCSA, the antibody is encoded

using permutation encoding, in which each antibody is

a sequence of test case number that represents the

execution order. For example antibody A0 represents

the test case execution order Tc5–Tc2–Tc1–Tc4–Tc3

and antibody A1 is represents test case execution order

as Tc3–Tc5–Tc4–Tc2–Tc1. The antibody representa-

tion is shown in Fig. 2.

The proposed I-POCSA is shown in Algorithm 1.

Initially the I-POCSA initializes the antibody using

the widely used random initialization technique and

for each initialized antibody APFDc is calculated. The

whole population is sorted using the fast non-domi-

nated sorting algorithm of deb [23] and the solution are

placed on different dominance level For Example,

solution on the current pareto frontier are assigned

dominance level of 0 and after taking out these

solution, the fast dominant sorting algorithm calcu-

lates the pareto-frontier for remaining solution; solu-

tion which lies on the current pareto-frontier are

assigned dominance level of 1 and as same way the

whole population is assigned a dominance level which

becomes the basis for selecting the solution for next

generation.

Fig. 1 Architecture of proposed approach

5 – 2 – 1 – 4 - 3 3 - 5 - 4 - 2 - 1

Antibody A0 Antibody A1

Fig. 2 Antibody Representation
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3.1 Selection

In general clonal selection principle, the antibody are

selected from whole population using selection oper-

ator. Selection is a process of selecting a fittest

candidate solution for recombination process from

population, different selection method are available in

literature. In this paper we employ a selection method

which selects the antibody based on rank and crowd-

ing distance. A Crowding distance is said to be the

normalized sum of distance of an individual solution

with other individual solution in respect to each

objective. The selection operator randomly selects two

antibody from whole population and compares with

each other based on rank and the candidate with better

rank is selected. If both the antibody are of same rank

the antibody is compared based on crowding distance.

The antibody with higher crowding distance is

selected so that it leads to wider pareto-frontier. The

recombination operator is applied over selected anti-

body to generate new population.

3.2 Cloning

After selecting set of antibody frompopulation, cloning

is applied over antibody to reproduce new non-domi-

nated solution. Cloning is the process of replicating the

copy of antibody. The number replication is dependent

on the affinity of the antibody. As in I-POCSA

algorithm, we do not assign individual affinity value

for antibody the rank of the antibody is utilized for

cloning. When higher the rank of antibody then more

number of copy is cloned. The clones are generated for

selected antibody based on the following Eq. (1).
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Nc ¼ round
b:Population Size

if

� �
ð1Þ

Nc denotes the total number of clones generated for

each antigen, b is a multiplying factor, Population size

is the total number of antibodies in a population,

round(.) is the operator used to round its argument into

nearest integer, if is the rank of antibody.

3.3 Hyper-Mutation

Once the cloned population is generated, hyper-

mutation operator is applied on the cloned population

to produce new offspring. Hyper mutation is the

process of creating a new solution by mutating the

antibody depending upon the affinity value. The

antibody with lower affinity value are mutated at

higher rate and vice versa. There are different type of

mutation operator available in literature such as static

hyper mutation, inverse mutation and proportional

hyper mutation. In static hyper mutation the antibody

is mutated randomly without considering the affinity

value of antibody but in inverse and proportional

mutation the antibodies are mutated depending on

fitness value. Since the proposed I-POCSA does not

assign fitness value to clone population we choose

static mutation type. A pair-wise mutation belonging

to static type mutation is chosen as hyper-mutation in

proposed algorithm, in which the antibody are mutated

by choosing two random point P1 and P2 and the

position of the chosen point are interchanged resulting

in newer antibody and Fig. 3 shows an example of pair

wise mutation. Once the new generation is generated

the parent and child offspring is combined to form a

new population and the step 2–11 of algorithm is

repeated until the maximum generation is reached.

The set of non-dominated solution which lies on the

dominance level 0 are the solution of the proposed

problem.

4 Discussion on Parameter

To prioritize the given test suite three parameters are

chosen such as execution time, early detection of fault

with maximum severity and average percentage of

fault detected. And this paper do not argue only

selecting these parameter will lead to good result. To

show the importance of chosen parameter a test suite

of five test cases is considered and the test cases are

scheduled based on three objective. The first objective

is to prioritize the test case in an order which detect all

the faults within minimum execution time. The second

objective is to prioritize the test case in an order that

rate of fault detection per execution of test case is

maximized the third objective is to schedule the test

case in order that rate of detection of severe fault per

execution of test case is maximized. The parameters

considered are execution time, Rate of fault detection

per execution of test case and Rate of severity

detection (Table 1).

(I) Execution time The Test case execution time

is taken as the time taken to execute the test

case. Tools such as Emma is used to measure

the test case execution time. In given scenar-

io, execution time is the total time taken by

the sequence of test cases order to detect all

the faults. And Table 2 shows the execution

time of test cases

(II) Rate of fault detection per execution of test

case The rate of fault detection of test case

order is measured by the average percentage

of fault detected with cost and it is the

standard metric used to measure the perfor-

mance of test case order [25]. If d is the

number of faults and n is the number of test

cases then APFDc is defined as [20]

Fig. 3 Pairwise Mutation

Table 1 Sample test case versus fault matrix

Test cases Fault

F1 F2 F3 F4

Tc1 X X

Tc2 X

Tc3 X X

Tc4 X

Tc5 X X X
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APFDC ¼
Xd
i¼1

si �
Pn

j¼pfi
cj � 1=2

� �
pfi

� �� �
Pn

j¼1 cj �
Pm

i¼1 si

ð2Þ

In Eq. (2), Si is the severity of fault i and Cj is

the cost of the test case and pfi is the position

of the test case in the antibody that detect the

fault i first. The APFDc values for sequence 1

in Table 4 is shown below.

(III) Rate of severity detection This parameter

measure the severity of fault detection per

execution of test case. The reason to choose

this parameter is that most severe fault will

have more impact over business criticality.

So earlier detection of severe faults will

improve the performance. To measure the

performance of proposed test case sequence

in terms of severity detection is given below

[20]. n is the number of test case, sud is the

undetected severity, sd is the severity

detected and PT position of test case j in test

suite. The severity detection for sequence 1 in

Table 4 is shown below.

Severity detection ¼
Xn
j¼1

SUD %ð Þ � SD

PT

ð3Þ

10
10

� �
� 9

1
þ

1
10

� �
� 1

2
þ c 0ð Þ þ 0ð Þ þ 0ð Þ

¼ 9:05

The importance of all three parameter is

illustrated with complete scenario below. A

test suite with 5 test cases is considered, the

test case versus fault matrix is shown in

Table 2, the severity of each fault and

execution cost of each test case in shown in

Tables 2 and 3. The complete performance

matrix of scheduled test case order is shown

in Table 4. From Table 4 it is observed that

test sequence 1 is best in respective to all

three objective and test sequence 4 is worst

execution order in terms of all three objec-

tive. Test case sequence 2 proves to be best in

terms of APFDc and severity detection but

has an increased execution time.

5 Experimental Setup

To evaluate the performance of the proposed

approach, an empirical study with sample test cases

is taken for illustrated and inventory management

system (IMS) a real time application developed using

java platform consisting of 28 modules, and approx-

imately 10,000 lines of code, the software was

developed by soft key technologies private limited,

Pondicherry, India. Seven version of the software is

APFDC ¼
2

P5
J¼1 CJ � 1

2

� �
4ð Þ

� �
þ 1

P5
J¼2 CJ � 1

2

� �
1ð Þ

� �
þ 4

P5
J¼1 CJ � 1

2

� �
4ð Þ

� �
þ 3

P5
J¼1 CJ � 1

2

� �
4ð Þ

� �
4þ 1þ 2þ 1þ 3ð Þ � 2þ 1þ 4þ 3ð Þ

¼ 0:7590

Table 2 Test cases versus

execution time
Test case Execution time

Tc1 3

Tc2 1

Tc3 2

Tc4 1

Tc5 4

Table 3 Fault versus

severity
Fault Severity

F1 2

F2 1

F3 4

F4 3
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considered for experimental study. In each version an

addition of functionality, modification and deletion is

done for study. Up to 30 faults of different severity

level were manually injected randomly into the code.

The test suite is generated using the selenium tool

which generates test case which uncover the manually

seeded fault. And the execution time of test case is

calculated using Emma. The severity of the fault were

decided by taking a survey from it professional having

more than 5 years of experience. Twenty five test

engineers were given a questionnaire and based on the

response severity of fault was decided. Initially a fault

free inventory management system is taken has

software under test and randomly fault were seeded

into the system the proposed approach and other

existing approach were applied to analyze the perfor-

mance of the various algorithm. The approach of

manual fault seeding and thereafter identifying the

faults has been widely accepted by the research group

and various studies have followed the same approach

for performance evaluation [20]. The fault verses test

case, execution time matrices and fault severity

matrices were generated with help of software profil-

ing tools. To evaluate the performance of the proposed

approach four existing approaches is been considered

and compared. All the algorithm were implemented

using Mat lab.

5.1 Random Prioritization

Random Prioritization: In Random test case prioriti-

zation the test cases are randomly arranged [3], the

efficiency of the generated test case order is calculated

using Eqs. (2) and (3). The technique blindly orders

the test case due to which for most of the problem

random prioritization does not propose an optimal

result.

5.2 Simple Greedy

Greedy algorithm have been widely used in solving

single objective test case prioritization problem and

also proved its competence [20]. The greedy approach

schedules the test case based on the factor value of

each test case given by (summation of severity/test

case execution time). The test case are sorted in

decreasing order of factor and the efficiency of the

generated test case order is calculated using Eqs. (2)

and (3). The greedy algorithm at many times lead to

sub-optimal solution which is one of the major issue to

be considered.

5.3 Weighted Genetic Algorithm

Weighted genetic algorithm solves multi-objective

problem by assigning weights to each of the objective,

it works similar to normal genetic algorithm. Since the

proposed problem consists of three objective its

considers three weight w1, w2, w3 and the fitness

function is defined as follows

fitness function ¼ W1� 1� a=b
� ��

þW2 � ðcÞ
þW3 � ðx=yÞ

ð4Þ

where a, is the execution time taken by scheduled

order of test cases to discover all the faults; b, is the

total execution time of all test cases in test suite and c,

is the value of APFDc; x, rate of severity of faults

detected of the scheduled order of test cases which

exposes all the faults; y, maximum possible severity

rate. In this equation, all the parameters are given

equal importance. However, if the tester is in need to

give importance to any one parameter the correspond-

ing weights (w1, w2 and w3) are modified. During the

empirical study, all the weights are assumed to be 1

and the values of x/y, z and a/b are normalized between

Table 4 Example of sample test case

Test case execution order (TEi) APFDc observed Rate of severity detection Execution time

TC5–TC4–TC3–TC2–TC1 0.7590 9.05 5.0

TC1–TC2–TC3–TC4–TC5 0.75 6.5 6.0

TC3–TC4–TC2–TC1–TC5 0.731 5.65 7.0

TC5–TC4–TC3–TC2–TC1 0.6368 4.13 7.0

TC3–TC1–TC2–TC5–TC4 0.777 6.26 6.0
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0 and 1, where x/y is to be maximized while z and a/

b are to be minimized. After the execution of all

iterations, the generated solutions are the result of

weighted genetic algorithm sorted based on each of all

three objective resulting. Hence, the 3 solutions are

generated in which one solution has highest APFDC,

another solution has highest severity detection rate and

the last solution has least test cases execution time to

expose all the faults. But the major issue of wga is the

optimal solution distribution is not uniform.

5.4 NSGA-II

NSGA-II is the most popular and commonly used

algorithm by the research community to solve multi

objective optimization problem. NSGA-II is simulta-

neously optimize all the objective even if the objec-

tives are conflicting and works based on genetic

algorithm and uses a fast non-dominated sorting

technique to find and sort the non-dominated solution.

The proposed I-POCSA is similar to NSGA-II, the

difference is instead of genetic algorithm the proposed

algorithm employ clonal selection algorithm.

NSGA-II simultaneously optimize all the objective

even if the objectives are conflicting in nature. The

algorithm returns a set of non-dominated solution

which dominates all other solution in any one of the

objective. For given problem there may exist many

pareto-optimal solution which are equally important

and non-dominated to each other non-dominant solu-

tion. In this empirical study, NSGA-II is implemented

as published earlier in [22–24]; however after the last

iteration, the solutions of the first front, which are non-

dominated among themselves and moreover dominat-

ing all the elements of remaining fronts, are sorted in

the decreasing order of the value of APFDc is

considered as the output of the proposed problem.

Similarly, the elements are also sorted on the basis of

the remaining two parameters; however, APFDc is the

only standard method followed for measuring the

efficacy of prioritized test sequence.

6 Result Analysis and Discussion

From the related work it is evident that only two works

have been conducted in multi objective test case

prioritization and published in reputed journal [5, 20].

The parameter considered in both the papers are code

coverage, requirement coverage, execution time in

[5, 20] cost, fault severity and APFDc is considered.

The parameters considered are cost, fault severity and

APFDc. Since the aim of this work is to propose a new

approach to generate a prioritized test case order in

multi-objective environment and does not argue upon

the parameter selected.

During the experimental study, the performance of

all five algorithm are analyzed and the best results

obtained by executing the five algorithm are shown in

Tables 3, 4 and 5. It has been noted that among the five

existing algorithm, the proposed I-POCSA and

NSGA-II were able to generate optimal solutions for

all the version. While analyzing the behavior of

I-POCSA, the intelligent way of using historical

information and searching the solution based on

multiple objective help to generate optimal solutions.

40 solution were generated in first front out of 9

solution were unique and in second and front out of 69

solution 13 solution were unique and in third front 18

solutions were unique When analyzing the solution in

first front of I-POCSA all the solution are non-

dominant and found to be the optimal solution. When

comparing the solution which lies on first front of

NSGA-II and I-POCSA both the algorithm able to find

a set of non-dominant solution. In certain version

I-POCSA is able to generate best optimal solution. the

test case order generated by WGA and SG are near to

optimum value only for certain version and Random

algorithm is able to generate near optimum value only

for one version out of seven version. In modern

software development there since the algorithm gen-

erates non-dominant set of solution, each solution is

dominating on different parameter. For instance, a

solution may generate test case with maximum

APFDc and another solution which uncover severe

faults earlier than any other solution. Therefore the

non-dominant solution are dominating one another in

any of the parameter. Therefore depending upon the

tester need the solution from non-dominant solutions

are selected. And the algorithm are compared based on

how far the solution generated contributes to different

parameter. When considering the APFDc parameter

Table 5 represents the best APFDc value obtained in

executing the test case order generated by all the

algorithm, inferring from Table 5 it is evident that the

proposed I-POCSA has generated a test case sequence

with highest APFDc value above 98.5 for five version
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and NSGA-II generated a test case sequence with best

optimal value for two versions.

When considering severity as a parameter, the

proposed I-POCSA has generated the best optimal

values for all version and also the NSGA-II has

generated near optimal values for all version

suppressing the weighted genetic algorithm based on

severity have also generated near optimal values for all

version. The greasy and random approach were not

able to generate test case with near optimal value. The

performance of all the algorithm in terms of severity is

shown in Table 6.

Table 5 Performance of algorithms in terms of APFDc applied on all versions of software under test

Version Proposed I-POCSA NSGA-II Weighted genetic algorithm Simple greedy Random Standard deviation (r)
APFDc APFDc APFDc APFDc APFDc

V1 98.73 97.6723 96.546 95.324 94.348 1.5722

MD 2.20594 1.14824 0.02194 - 1.20006 - 2.1760

V2 98.96 99.1 97.271 98.0131 93.5147 2.039

MD 1.5882 1.72824 - 0.10076 0.64134 - 3.8570

V3 99.3241 98.76 98.514 98.88 95.6284 1.3228

MD 1.1028 0.5387 0.2927 0.6587 - 2.5929

V4 99.977 99.765 98.257 99.196 97.731 0.8648

MD 0.9918 0.7798 - 0.7282 0.2108 - 1.2542

V5 97.816 99.1432 97.987 96.5564 95.261 1.3290

MD 0.46328 1.79048 0.63428 - 0.79632 - 2.09172

V6 99.513 98.4969 98.379 95.614 98.6406 0.5119

MD 1.3843 0.3682 0.2503 2.5147 0.5119

V7 99.9125 99.676 99.437 97.2314 96.6111 1.3715

MD 1.3389 1.1024 0.8634 1.3422 - 1.9625

Bold value represents the best APFDc value achieved from all the compared algorithms for each version

Table 6 Performance of algorithms in terms of severity applied on all versions of software under test

Version Proposed I-POCSA NSGA-II Weighted genetic algorithm Simple greedy Random Standard deviation (r)
Severity Severity Severity Severity Severity

V1 130.89 129.4989 128.213 122.938 107.218 4.099

MD 6.4652 2.1552 - 0.1308 - 3.3638 - 5.1258

V2 169.647 169.302 165.905 150.321 140.721 4.210

MD 7.2678 1.9228 - 4.4742 - 3.0582 - 1.6582

V3 176.034 176.032 176.112 166.07 142.453 13.0311

MD 8.6938 8.6918 8.7718 - 1.2702 - 24.8872

V4 183.999 182.357 180.432 160.432 159.418 11.0059

MD 10.6714 9.0294 7.1044 - 12.895 - 13.9096

V5 178.319 177.871 177.233 162.297 169.318 6.2939

MD 5.3114 4.8634 4.2254 - 10.710 - 3.6896

V6 183.434 181.67 177.271 150.013 125.713 11.9140

MD 11.8138 10.0498 5.6508 - 11.607 - 15.9072

V7 183.999 182.17 175.907 167.879 163.876 7.84801

MD 9.2328 7.4038 1.1408 - 6.8872 - 10.8902

Bold value represents the highest severity value achieved from all the compared algorithms for each version
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When considering execution as a parameter, the

proposed I-POCSA produces best result than all other

algorithm for all versions. It is observed that NSGA-II

performs better than greedy, random and weighted

genetic algorithm and produces near optimal value for

all versions. It is also noted that weighted genetic

algorithm have also performed well for most version.

The performance of all the algorithm in terms of

severity is shown in Table 6. To qualitative analyses

the proposed approach a reference pareto-frontier is

constructed and used in comparing different algorithm

based on pareto-front they produce.

The reference-pareto frontier, is constructed by

combining the best of each obtained from all

Table 7 Performance of algorithms in terms of cost applied on all versions of software under test

Version Proposed I-POCSA NSGA-II Weighted genetic algorithm Simple greedy Random Standard deviation (r)
Cost Cost Cost Cost Cost

V1 91.89 92.89 100.23 102.38 103.118 4.9675

MD - 6.2116 - 5.2116 2.1284 4.2784 5.0164

V2 109.47 109.302 113.95 115.21 120.821 4.2490

MD - 4.2806 - 4.4486 0.1994 1.4594 7.0704

V3 76.04 77.032 84.92 86.07 92.35 6.0694

MD - 7.2424 - 6.2504 1.6376 2.7876 9.0676

V4 83.999 84.357 85.432 90.02 99.48 5.8237

MD - 4.6586 - 4.3006 - 3.2256 1.3624 10.8224

V5 118.319 116.871 117.243 122.297 139.18 8.422

MD 4.463 - 5.911 - 5.539 - 0.485 16.398

V6 83.41 85.67 86.271 90.013 115.13 9.7494

MD - 7.6888 - 5.4288 - 4.8278 - 1.0858 19.0312

V7 100.9 102.17 105.117 107.879 103.36 2.4329

MD - 2.9852 - 1.7152 1.2318 3.9938 - 0.5252

Bold value represents the minimum execution time achieved from all the compared algorithms for each version
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approaches result in a hybrid pareto-frontier. Figure 3

shows the pareto-frontier for version 1 and version 2

obtained by implementing proposed I-POCSA,

NSGA-II and reference pareto-frontier constructed.

From the Fig. 3 it is evident that the proposed method

is able to reach the reference pareto-frontier and also

able to find solution that are not found by other

existing methods (Table 7).

7 Conclusion

Most of the existing prioritization technique aims to

order the test case considering a single objective such

as to increase the fault detection rate. In this paper, we

prioritize test case based on multi-objectives, the test

case are scheduled considering three objective such as

to maximize the fault detection rate and rate of severe

fault detection within minimum execution time. This

paper introduces the clonal selection algorithm for first

time to solve multi-objective test case prioritization

and proposes an improved-pareto optimal clonal

selection algorithm. This paper also describes the

benefits of combining Pareto-optimal concept and

clonal selection algorithm. Since the proposed algo-

rithm uses pareto-optimal concept, it generates a set of

non-dominated test case order considering all three

conflicting objective, based on the testers preference

and objective test case order is selected from the

generated test case order. In our experimental study,

we have used a real-time software application to

evaluate the proposed technique and the empirical

results shows that the proposed methodology satisfy-

ingly performs better in comparison with genetic

algorithm based approaches, greedy and random

approach. Finally there are still some research issues

to improve the effectiveness of proposed system by

considering other software artifacts.
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