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Abstract Real-time interaction in virtual environ-

ments composed of numerous objects modeled with a

high number of faces remains an important issue in

interactive virtual environment applications. A well-

established approach to deal with this problem is to

simplify small or distant objects where minor details

are not informative for users. Several approaches exist

in literature to simplify a 3D mesh uniformly. A

possible improvement to this approach is to take

advantage of a visual attention model to distinguish

regions of a model which are considered important

from the point of view of the human visual system.

These regions can then be preserved during simplifi-

cation to improve the perceived quality of the model.

In the present article, we present an original applica-

tion of biologically-inspired visual attention for

improved perception-based representation of 3D

objects. An enhanced visual attention model extract-

ing information about color, intensity, orientation, as

in the classical bottom-up visual attention model, but

that also considers supplementary features believed to

guide the deployment of human visual attention (such

as symmetry, curvature, contrast, entropy and edge

information), is introduced to identify such salient

regions. Unlike the classical model where these

features contribute equally to the identification of

salient regions, a novel solution is proposed to adjust

their contribution to the visual-attention model based

on their compliance with points identified as salient by

human subjects. An iterative approach is then pro-

posed to extract salient points from salient regions.

Salient points derived from images taken from best

viewpoints of a 3D object are then projected to the

surface of the object to identify salient vertices which

will be preserved in the mesh simplification. The

obtained results are compared with existing solutions

from the literature to demonstrate the superiority of the

proposed approach.

Keywords Interest point and salient region

detections � Visual attention � Visual perception � 3D
mesh � Simplification � Level-of-detail

1 Introduction

Recent research on the topic of 3D modeling shows a

clear tendency of novel techniques towards user-

centeredness. The fact that the final purpose of the

model is to be examined (and interacted with) by the

users elicited the interest into exploiting and mimick-

ing the human visual capabilities in order to improve

the perceived quality of such models in interactive and

immersive environments.
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Biological and psychological knowledge derived

from human visual mechanisms has already been

successfully employed in various computational

vision systems [1] and in the context of modeling

[2]. Due to its capacity to improve the time and

complexity of a visual scene understanding by iden-

tifying only certain regions of interest for further

analysis, visual attention [3] was a technique of choice

for many researchers on one side to push the envelope

of the current computer vision technology and on the

other side to ameliorate the perceived quality of

models by concentrating the details in the regions that

are subject to observation by a human user. The work

in [4] is an example where the salient regions of video

frames keep higher quality when encoding. The

potential for such computational models of visual

attention stems from their power to extract from a

complex shape a series of discriminative features. The

latter can be successfully used as a basis for classifi-

cation and recognition, which are two significant

problems in the understanding of complex scenes or

for creating selectively-densified object models, that

are denser in the regions subject to observation, as it is

the case of the work proposed in this paper.

There are two types of visual attention models

defined in the literature, namely bottom-up and top-

down attention models. In the case of bottom-up

attention, research has demonstrated the existence of a

series of characteristic features (i.e. color, orientation,

intensity, edges, etc.) in an image that are believed to

capture attention during free viewing conditions,

while the user visualizes a scene without looking for

a specific object or having a specific interest. On the

other hand, top-down attention is engaged once

cognitive factors such as knowledge, expectation,

current goals come into play. Such factors have an

influence on the bottom-up feature and perform a

selection of features that better correspond to the

visual task.

In bottom-up computational models of visual

attention, different modalities (features) which are

believed to be effective in guiding visual attention

system are each encoded into a distinct feature map

referred to as conspicuity map [3, 5–7]. The combi-

nation of conspicuity maps of all modalities then

yields a final saliency map that encodes salient regions

as bright areas against a dark background. It is

believed that the top-down influences are used as

biasing weights when combining conspicuity maps

such that particular properties of an object become

more important and attractive, thus guiding their

observation. In the context of this work, we propose to

make use of these properties in order to construct

perceptually improved 3D object models.

We propose to explore the use of additional features

contributing to human visual attention guidance that

have not yet been confirmed as useful in the context of

3D object modeling. In particular, to go beyond the

classical model of visual attention that is based on

color, orientation and intensity [3, 5], to our previous

work that included information on the contrast,

curvature, symmetry, entropy [6], in this work we

aim to include additional edge information to create an

enhanced visual attention model. Furthermore, in

order to tune our model to the real salient regions

identified by human subjects, and thus simulate the

role of the top-down influences of visual attention, we

propose a solution that makes use of the ground truth

points identified by real users in order to compute the

contribution weight of each feature. Two different

approaches using the structural similarity index and

the Euclidean distance respectively are then proposed

to determine the weight of each feature. In an attempt

to enable the detection of salient regions for new

objects, for which the ground truth points provided by

users are not available, a machine learning algorithm

based on support vector machines (SVM) is trained to

learn the position of salient regions on images (2D)

according to the extracted features. As saliency

computations are applied to images taken from 3D

objects, a procedure is proposed to select the best

viewpoints of objects fromwhich to capture images. In

this procedure, the number of selected view-points is

adaptively selected according to the object complex-

ity. Salient points in 2D are identified from salient

regions of images using an iterative algorithm. Finally,

the 2D salient points extracted from images are

projected back on the surface of 3D objects. These

points and their immediate neighbors will be pre-

served while simplifying the object mesh.

The main contributions of the paper are as follows:

(1) the construction of a visual attention saliency map

from nine different features where the contribution

(i.e. weight) of each feature is determined based on

feedback from human subjects; (2) a learning algo-

rithm to predict the position of salient points from the

extracted features; (3) the determination of best

viewpoints of object according to the level of visual
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saliency to be employed for salient point detection; (4)

determination of number of required view points to

capture the entire surface of objects; (5) an iterative

technique to identify salient points in order of their

saliency from the saliency map; (6) a geometry-based

algorithm to determine the coordinates of salient

points detected in images on the surface of the 3D

object and (7) the automatic determination of the

number of neighbors around each salient point to be

preserved from the simplification.

2 Literature Review

Triangular meshes are widely accepted as one of the

best solutions to represent 3D objects in computer

graphics and virtual reality applications, due to their

fast rendering capability. However, in the case of

complex objects, a very large number of triangles is

required to achieve an accurate representation. The

large number of triangles can inhibit the expected real-

time interaction in virtual environments containing

several objects. Despite ongoing advances in graphic

card performance, this technology still fails in most

cases to provide the desired high interaction speed.

Removing unnecessary details from the distant or

small objects whose minor details are not remarkably

informative is an intelligent solution that can reduce

the complexity of the virtual environment and conse-

quently contribute to achieve and guarantee the

desired real-time interaction. The idea of decreasing

the complexity of 3D objects in computer graphics is

referred to as level of detail (LOD) management [8]. In

this approach, 3D meshes of the objects are simplified

gradually with respect to their distance to the viewer.

In discrete LOD methods [8], multiple copies of the

same object with different resolutions are created

offline, with details uniformly and gradually reduced

based on the distance to the viewer. Subsequently, one

of the copies is selected for presentation according to

the viewer position. A specific data structure consist-

ing of a continuous spectrum of details is used in

continuous LOD methods, through which the desired

level of detail is extracted at run-time. In continuous

level of detail methods, if the appropriate level of

detail for the object is selected dynamically, the

solution is referred to as view-dependent method. All

these methods simplify triangular meshes uniformly

without considering the mesh structure which can

degrade the quality of objects especially for low level

of details. In 3D graphical models, features charac-

terizing the object can sometimes be very small with

respect to the object size (e.g. the tail and the ears of a

dog) and uniform simplification of the models can

completely remove them.

A possible solution to improve the current algo-

rithms is to modify them such that more details are

preserved in regions that are perceptually more

important than others. In this approach, an explorative

algorithm is first applied to the triangular mesh

structure to determine the vertices which are more

important in characterizing the object. The neighbour-

hood of such vertices are then preserved in more detail

during mesh simplification.

The existing saliency detection algorithms basi-

cally explore the geometrical features of 3Dmodels. A

heuristic possible approach to retrieve the salient

vertices of the object is to take benefit from human

visual attention system such that the entire surface of

the object is scanned with a visual attention model to

determine perceptually salient regions. This solution

can yield interesting results as viewers are human

subjects. Authors in [8–11] adopt user input to

improve the quality of local details of resulting model,

for different resolutions. Alternatively, quality adjust-

ments can be made automatically by exploiting

computational models inspired from human visual

perception, and in particular human visual attention

mechanisms [6, 7, 12]. Taking into consideration the

best viewpoints of objects, Rouhafzay and Cretu [7]

uses the classical visual attentionmodel in [3] to detect

salient regions.

In recent years, several researchers are investigat-

ing the computational models of visual attention and

their applications in various fields. As briefly men-

tioned in the introduction, most computational imple-

mentations of visual attention are based on bottom-up,

scene-driven features [13] which are more distinctive

compared to other neighboring features. In the cases

where a voluntary choice of the viewer is involved to

allocate resources to a subset of the perceptual inputs

[14], the solution is referred to as top-down attention

models. In this work, we simulate the effect of top-

down attention using user inputs on saliency points.

Itti et al. [3] takes advantage of three features

namely; orientation, color and intensity to extract

salient features. For this purpose, a center-surround

antagonism is simulated over multi-level

123

3D Res (2018) 9:29 Page 3 of 20 29



decomposition of each feature to yield a saliency map

which encodes saliency as brighter regions on a black

background. Lee et al. [12] applies the same center-

surround paradigm to a curvature metric of vertices of

a 3D model to compute the saliency (the solution is

referred to as Mesh saliency in Sect. 4). Some other

features which are proved to be effective in visual

guidance were tested and validated in a visual

attention model for interest (salient) point detection

in the context of 3D level-of-detail modeling in [6].

Castellani et al. [15] adopt a perceptually-inspired

saliency detector based on Difference-of-Gaussians to

find some sparse salient points; subsequently a Hidden

Markov Model is employed to describe salient points

across different views (this solution is referred to as

Salient points in Sect. 4). Zhao et al. [16] takes

advantage of two perceptual features namely Retinex-

based importance Feature and Relative Normal Dis-

tance to assign a saliency rank to vertices of 3D

objects. In a recent research, Lavoué et al. [17]

generate an eye fixation density map for 3D objects by

tracking human eye fixation on 3D objects and

mapping them onto the surface of 3D shapes.

Other researchers consider the geometric structure

of objects to detect salient regions [18–22]. Godil and

Wagan [18] apply the Scale Invariant Feature Trans-

form (SIFT) to a 3D voxelized model to detect local

saliency (3D-SIFT in Sect. 4). A 3D version of Harris

corners detector is proposed in [19] (3D-Harris in

Sect. 4). The authors of [20] consider scale-dependent

corners as salient points (this solution is referred to

SD-Corners in Sect. 4). Local maxima of the Heat

Kernel Signature are computed over triangular meshes

in [21] to identify salient points (this solution is

referred to HKS in Sect. 4). Mirloo and Ebrahim-

nezhad [22] proposed a hierarchical solution to detect

salient points as vertices with larger average geodesic

distances compared to other vertices of the object and

equally spread on the object surface.

Salient points detected over 3D objects can be

further used in a variety of applications. The guidance

of mesh simplification process, mesh and shape

retrieval [18, 23], matching of objects [15], are some

examples. Luebke et al. provide a survey of polygonal

mesh simplification methods in [8]. Substandard

regions of simplified meshes are retrieved and

improved in [11] through weighting and then by

applying local refinements to the desired region by

users. Kho and Garland [10] apply the quadric-based

simplification algorithm to 3D meshes where the

vertices labeled by users as salient are preserved. The

same simplification algorithm is applied to 3D models

while preserving salient points detected by an

enhanced visual attention model in [6]. Song et al.

[24] bias the simplification process by amplifying the

saliency values in regions of interest. Lee et al. [12]

propose a procedure where the QSlim simplification

algorithm is modified such that important regions are

only removed later during the simplification process.

Eye-fixation is another form of saliency according to

the human-visual attention system which is used for

implementation of a saliency-guided simplification by

Howlett et al. [25]. In this article, the simplification

process uses salient points extracted iteratively from

the saliency map returned by an enhanced-guided

computational bottom-up visual attention and is

biased by constraining a maximum resolution of the

mesh in those regions known to be perceptually

salient.

In the present work, the most salient set of

viewpoints are selected to determine the visually

salient points of 3D models. Another novelty of the

proposed approach is the weighted combination of

nine modalities of visual attention, where the contri-

bution of each modality is chosen according to the

compatibility of each conspicuity map with feedback

from users. We propose an innovative solution to build

a model which combines the nine modalities based on

user feedback. Salient points identified on images are

then projected back to the surface of 3D object using

an original geometrical approach. The local geometric

structure of triangular meshes is also considered to

guide the expansion of salient regions.

3 Framework for Perceptually Improved 3D

Object Representation Based on Enhanced

Guided Visual Attention

Figure 1 summarizes the overall framework proposed

for the construction of selectively-densified 3D objects

characterized by a higher resolution at salient regions

(as identified by the visual attention system). In this

approach, the triangular mesh of a 3D object with a

high number of faces is simplified to a lower number

of faces according to a desired Level of Details (LOD).

In particular, an enhanced visual attention model in

which the contribution weight of each saliency feature
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is found by means of salient points identified by

human subjects is applied to images captured from 18

sets of viewpoints, each containing 4 perpendicular

viewpoints of the object. A number of four viewpoints

is chosen because it allows to cover the entire surface

of the object in each set. Nine conspicuity maps

extracting features that are believed to be relevant for

guiding the human visual attention system are com-

puted over the images. In parallel, a saliency map

based on feedback provided by human subjects is

generated to guide the contribution weighting of

conspicuity maps. The visual saliency level is obtained

for each set, and the set with the highest level of

saliency is selected for salient point detection. The

computation of saliency maps over images taken from

virtual objects will detect a certain level of saliency on

the background around the object due to the local color

and contrast change (i.e. between background and the

object). Consequently, we remove all the salient

information identified over the background to prevent

the selection of salient points which do not belong to

the object. An iterative procedure then determines

salient points on the corresponding saliency maps

from the multiple viewpoints, and the resulting salient

points (2D) are projected back on the surface of object

using a heuristic approach. Investigating the local

geometry of 3D mesh around the salient points, we

adaptively determine the number of preserved neigh-

bors for each salient point such that when the

neighborhood region around the salient point is less

densified, a higher number of neighbor vertices are

preserved. Given the appropriate number of faces for

each copy of an object within a LOD hierarchy, for

which the neural network solution proposed in [6] is

used, the QSlim simplification algorithm is adapted to

simplify only those faces of the objects that do not

contain as vertices the identified interest points and

their immediate neighbors.

3.1 Computational Visual Attention Model

The classical computational model of visual attention

introduced by Itti [3] uses three bottom-up features,

namely intensity, color opponency and orientation as

the main features guiding human visual attention. The

algorithm applies a dyadic Gaussian pyramid to the

intensity channel and to four broadly-tuned color

channels (red, green, blue and yellow) to produce nine

spatial scales for each channel. Then a series of center-

surround differences is calculated between the center

c [ {2, 3, 4} and surround s = c ? d scales, where

d [ {3, 4}. These center-surround operations are

inspired from the fact that human visual system is

more sensitive to the center of an image and less to the

extremities of the visual field. Six feature maps are

constructed. Subsequently, the conspicuity map for

each channel is computed as the across-scale addition

of normalized feature maps [4]. Similarly, the center-

surround operation is applied to four Gabor pyramids

Collection of images from 
18 sets of four 

viewpoints.

Computation of nine 
saliency maps for each 

image.

Generation of Ground 
Truth saliency map.

Computation of guided 
saliency map for each 

image.

Removal of salient 
regions that do not belong 

to the object

Identification of the best 
set of viewpoints.

Addition of 
supplementary viewpoints 

if required.

Identification of salient 
points.

Projection of salient 
points using ray-

intersection.

Determination of number 
of preserved neighbours.

Mesh simplification with 
interest point 
preservation.

Fig. 1 Mesh simplification framework
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with different angles to extract the orientation feature.

The final saliency map (Smap) is obtained as:

Smap ¼ 1

3
Ccolor þ Corientation þ Cintensity

� �
ð1Þ

Five other features including contrast, entropy,

curvature, symmetry and DKL color channel were

added into the classical visual attention algorithm in

[6] to enhance the model. The contrast map is

computed as the luminance variance over a 80 9 80

pixel neighborhood [26]. To obtain the entropy map,

we have first applied a median filter to an image and

then computed the local entropy over neighborhoods

of 9 9 9 pixels. Symmetry information is extracted by

detecting radial and bilateral symmetric points on

images as in [27]. The neighborhoods of symmetric

points are transposed into bright regions on a dark

background and a center-surround operation is applied

to create the final symmetry map. The curvature

conspicuity map is obtained directly in 3D using the

Gaussian-weighted center-surround assessment of

surface curvatures suggested by Lee et al. [12]. The

Matlab virtual camera is turned around each resulting

3D model (with the curvature information encoded in

gray levels, the higher the curvatures, the whiter the

corresponding area) to obtain the curvature conspicu-

ity maps. The color opposition model based on

Derrington–Krauskopf–Lennie (DKL) color space in

[28] is added to provide another color feature that is

more attuned to the capabilities of the human visual

system.

Moreover, according to the literature, edge extrac-

tion is the earliest process in visual object recognition

[29], thus in order to further improve the visual

attention model presented in [6], we also make use of

edge information, as a distinct conspicuity map. For

this purpose, we detect object edges using double

derivation over the image smoothed by a Gaussian

filter (i.e. Laplacian of Gaussian).

Models in the benchmark data set for 3D object

interest points [30] are used for testing. Color infor-

mation is added to the objects as further explained in

Sect. 4. Figure 2 illustrates the nine conspicuity maps

for the model of skull extracted from the dataset.

3.2 Guided Saliency Map Construction

In our previous work and in the vast majority of

publications that work with visual attentionmodels, all

conspicuity maps contribute with the same weight to

construct the saliency map. Exploring top-down visual

attention mechanisms, some authors have proposed

other approaches to combine conspicuity maps. Frin-

trop [14] suggests determining weights as the ratio of

the mean target saliency and the mean background

saliency.

In this work, we aim to determine which charac-

teristics are more effective in guiding human visual

system by using two different approaches that capi-

talize on the points identified as salient by human

subjects in [30] (and that we call ground truth points).

These methods are explained, and the results are

compared in the following sections. In this way, we

simulate the influence of top-down visual attention

that biases the information derived from the bottom-up

features.

3.2.1 Guided Saliency Map Based on Euclidean

Distance

The first approach we are using to determine the

contribution weight of each conspicuity map, Cmap,

to the final saliency map, Smap, is based on the

Euclidean distance between the brightest points of

each Cmap and the ground truth points. To do this,

the n brightest pixels are found for all Cmaps,

where n is the number of visible ground truth points

from a given view point. Then, the average pairwise

Euclidean distance between the brightest points and

the ground truth points is calculated, and the values are

normalized between 0 and 1. The highest weight is

assigned to the Cmap with lowest average Euclidian

distance. In this way, we penalize those points that are

situated further from the ground truth salient points.

The assigned weights according to the average of

normalized Euclidean distance (ED) value (1-average

Euclidean distance) for a selected viewpoint from

model of skull is reported in third column of Table 1.

3.2.2 Guided Saliency Map Based on Similarity Index

A second approach that we have proposed to compute

the contribution of each conspicuity map to the final

saliency map is based on similarity. In particular, we

have generated a saliency map using the ground truth

points (that we called the Ground Truth Saliency map,

GTSmap) and then the similarity between each

conspicuity map, Cmap and this saliency map is
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measured to determine which Cmap will have higher

contribution to final saliency map, Smap.

3.2.2.1 Ground Truth Saliency Map (GTSmap) A

series of researches form neuropsychology have been

conducted to explore the spatial spread of directed

visual attention. Hughes and Zimba [31] revealed a

gradient pattern for allocation of attentional resources,

where each zone is concentrated in the center of focus

and the cortical resource allocation decreases while

increasing the eccentricity. They also mention that the

size of attention zones can also be adjusted according

to circumstances. Hence, taking advantage from the

marked locations on the objects as salient by human

subjects we attempt to reproduce this phenomenon

using an artificial saliency map where the attention

zones are determined by a spatial Gaussian kernel of

size 50 by 50 pixels with a r = 0.15 centered at

interest points. These values are adjusted empirically

such that a round region of saliency is shaded around

each salient point. We first project the visible ground

truth points from each viewpoint to two-dimensional

pixel coordinates. Knowing the location of ground

truth points on the image, we apply Gaussian kernels

Fig. 2 The nine conspicuity maps for the model of skull

Table 1 SSIM values for each conspicuity map

Conspicuity map SSIM values Rank by average ED values

Color 0.1096 0.6417

Contrast 0.7692 0.3941

Curvature 0.7536 0.7929

DKL 0.6389 0.7098

Edge 0.7264 0.5651

Entropy 0.8914 0.7879

Intensity 0.6274 0.4487

Orientation 0.4596 0.6773

Symmetry 0.7235 0.4970
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centered at each ground truth point to assign highest

intensities to the pixels where the ground truth is

projected and lower level to neighborhood pixels,

according to the knowledge that the saliency map

encodes saliency as bright regions. Finally, any pixel

which does not belong to the object surface is set to

zero. Figure 3b depicts the obtained ground truth

saliency map for the model of skull.

3.2.2.2 Similarity Measurement An effective Cmap

should fulfill two requirements; first, it should have

higher intensity in salient areas of the ground truth

saliency map; and second, it should not distract the

visual attention to unwanted regions. Accordingly, we

use the Structural Similarity Index (SSIM) [32], which

highlights similarities between the Cmap and the

Ground Truth Saliency map, GTSmap. The SSIM is

inspired by biology and measures the similarity

between two images by computing contrast,

luminance and structural terms. Table 1 provides the

average SSIM values of the nine Cmaps for 43 models

in the dataset [30]. The SSIM is equal to one for two

identical images. Consequently, in this particular case,

the entropy conspicuity map has the highest similarity

value and should be the most prominent conspicuity

map in the saliency map. This method is denoted SSIM

in Sect. 4.

Table 1 compares the weight values obtained by

SSIM and average Euclidean distance.

3.3 Adaptive Weighting Scheme

Once the corresponding weight for each conspicuity

map is computed using ED or SSIM, it is used as the

assigned weight to construct the final (ground truth

guided) saliency map as follows:

where
P

wConspicuityMaps. is the sum of all weights;

wcol, wcon, wcurv, wDKL, wedg, went, wint, wori and wsym

represent the corresponding weight to color, contrast,

curvature, DKL, edge, entropy, intensity, orientation

and symmetry respectively. Similarly, the conspicuity

maps are denoted in order as Ccol;Ccon;Ccurv etc.

Figure 4 compares the saliency maps obtained by

four different methods namely: Classical Itti [3],

VisAttAll (color, contrast, curvature, DKL, entropy,

intensity, orientation and symmetry with equal

weights) [6], Euclidean Distance based guided VisAt-

tAll (described in Sect. 3.2.1) and Similarity based

guided VisAttAll (described in this Sect. 3.2.2). One

can notice by comparing the saliency maps without

user feedback (Fig. 5b, c) with those obtained when

using the interest points selected by users (Fig. 3a) that

salient points on forehead of the skull model are only

detected by Euclidean Distance and Similarity based

guided saliency maps that take advantage of the user

feedback to determine contribution weights.

3.4 Learning Algorithm to Predict Saliency

Up to now, two solutions were proposed to adaptively

weight the conspicuity maps such that the resulting

saliency map is more compatible with the human

provided ground truth points. In this section, a support

vector machine (SVM) is trained to classify image

pixels as salient or non-salient regions using the nine

conspicuity maps. The role of this machine learning

solution is to build a model to integrate the nine visual

attention modalities such that the output reflects
Fig. 3 aGround truth points, and b ground truth-based saliency
map

Smap ¼ wcol:Ccol þ wcon:Ccon þ wcurv:Ccurv þ wDKL:CDKL þ wedg:Cedg þ went:Cent þ wint:Cint þ wori:Cori þ wsym:CsymP
wConspicuityMaps

ð2Þ
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saliencies detected by human subjects and to predict

the salient points for objects whose ground truth points

are not known a priori.

Each Cmap of size 1200 9 900 pixels is resized to

a 200 9 200 array to reduce its complexity.

Subsequently, each array is converted to a column of

size 40,000 9 1 to form predictor columns. The

GTSmap is also transformed to a 40,000 9 1 logical

array and is used as class labels (i.e. salient and non-

salient).

Fig. 4 a Classical Itti, bVisAttAll Channels, cGuided VisAttAll based on Learning Feature weights and dGuided VisAttAll based on

similarity

Fig. 5 a 200 9 200 pixels

binarized ground truth

salinecy map (200 9 200

pixels target). b SVM output

saliency map
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RapidMiner studio is used for training and testing

purposes. Considering the fact that data is unbalanced

towards the non-salient class, a stratified sampling

approach is used to select a balanced subset of data to

train the SVM. To adjust feature weights before

training the classifier, we exploit the information gain

that computes how much information about the class

membership is gained by knowing each feature.

We have performed several tests for training the

SVM, namely: one SVM for all the objects, one SVM

for each object as well as one SVM for each viewpoint.

The subsampled vectorized feature maps of different

viewpoints are concatenated to construct the training/

testing dataset. To reduce the computational effort,

only 30% of the resulting data is used for network

training and validation. This reduced dataset is

partitioned for tenfolds cross-validation.

In the case when one single SVM was trained to

predict the saliency map for all 43 models, the

performance achieved is of 86.08 ± 4.15%. Tests

were also performed when one SVMwas used for each

object. In this case, 43 SVMs are trained for the 43

models in the benchmark dataset for 3D object interest

points that we are using. The trained support vector

machine is then used to predict the saliency maps for

each object knowing the conspicuity maps. An

accuracy of 93.18 ± 5.11% is obtained for all pre-

dicted saliency maps. During this series of tests, we

have noticed that the determined weight for the

symmetry feature by the information gain feature

weighting changes a lot for different objects. In those

cases where the object extremes have lower deviation

from the central of mass, the symmetry feature has

zero contribution in guiding the classifier. This is the

reason why we are training 43 different SVMs for the

43 models in this work, instead of one single SVM for

all objects. At the same time, as revealed in our testing,

the performance is better when one SVM is used for

each object.

The predicted saliency map is resized back to the

initial size for the rest of process. Figure 5 compares

the support vector machine output (Fig. 5b) with the

binarized GTSmap (Fig. 5a) for the skull model. As

this method results in larger number of salient points,

we evaluated the case when 32 of the salient points

with larger distance to each other, are used for mesh

simplification process, to keep the number of salient

points in the range of the other methods we compare

with. It will be demonstrated in Sect. 4 that the

constructed meshes that preserve the salient points

obtained by this approach have a superior quality

compared to other methods. This method is referred to

as SVM in Sect. 4.

3.5 Adaptive Selection of the Set of Best View

Points

The viewpoints from which we observe an object play

a decisive role in identifying its different features. For

this purpose, we have proposed a best viewpoint

selection algorithm based on the visual-attention

model. The algorithm computes the level of saliency

for 62 viewpoints (18 sets of viewpoints each

containing 4 viewpoints and where 10 viewpoints

are shared between multiple sets leading to 62 distinct

viewpoints). These viewpoints are depicted as red

points in Fig. 6a around the 3D model. The level of

saliency for each view point is calculated as:

Level of Saliency for viewpoints

¼
XN

n¼1

XM

m¼1

Smap n;mð Þ ð3Þ

Once the level of saliency for all the viewpoints is

calculated, to avoid the high computational cost

required to scan each object from 62 viewpoints

which will result in redundant information, we con-

centrate the further processing of each model to a set

of best view-points, while also ensuring the complete

coverage of the object surface. In particular, from the

62 viewpoints, the set of four perpendicular views with

the highest level of saliency is selected for the rest of

the work. Starting from the identified four perpendic-

ular view-points with the highest level of saliency, we

also verify if the whole surface of the object is

captured. If the surface of the object is not captured in

its entirety due to occlusions by other faces, another

viewpoint covering the occluded region is automati-

cally added. To detect occlusions, we use the ray-

intersection algorithm presented in [33], which will be

adopted as well as a part of our 2D–3D projection

algorithm and that is discussed in detail in Sect. 3.9. If

any ray starting from the camera position towards the

object, intersects the model in more than two faces

then there exists an occluded region from that view

point. For this purpose, ten rays in random directions

are beamed toward each object. If for any of these rays,

the number of intersected faces is greater than two,
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that indicates the presence of hidden faces which

won’t be visible to camera when the camera is turned

180� around the object. Thus, in this case, a new view

point is added between the initial view point and the

next view point (i.e. a deviation of 45� with respect to
the occluded viewpoint) to cover the details in the

occluded regions. This procedure is repeated for the

four perpendicular viewpoints resulting in a maximum

of four new viewpoints.

Figure 6b illustrates three rays intersecting the

cactus model in 6, 4 and 4 points respectively from top

to bottom where the occluded regions are shaded in

yellow.

Each collection of four perpendicular viewpoints

plus the complementary view-points is referred to as a

set of viewpoints over which we estimate the average

level of saliency. The set of viewpoints with the

highest average level of saliency is considered as the

best set of viewpoints and is used for the salient point

identification procedure described in the next section.

3.6 Salient Point Selection

The brightest pixels on the saliency map are the most

salient points. In these saliency maps, all pixels in a

salient region have in general close intensity values.

As we don’t want to identify all vertices in a region of

the 3D mesh as salient, the neighborhood of radius

r around the brightest selected pixels are set to

zero [7]. The algorithm repeats iteratively until there

is no pixel with an intensity greater than 90% of the

maximum intensity. Figure 7 illustrates the salient

point selection procedure.

3.7 Projection of Detected Points in Pixel

Coordinates to 3D World Coordinates

The resulting salient points need to be projected back

on the surface of the object. For this purpose, we

propose a simple procedure that allows projecting the

2D salient points on images from different viewpoints

onto the surface of 3Dmodels using the virtual camera

model of Matlab. To simplify the 2D–3D projection,

the virtual camera of Matlab is set to display objects

using the orthographic projection, as the orthographic

rendering gives a clearer measure of distance. In the

orthogonal projection, all lines connecting a point on

the real object to its corresponding point on the image

are parallel. Figure 8 compares the orthogonal and

perspective projection system, as well as the rendering

result for the model of cactus (Fig. 9).

Fig. 6 a Position of camera

for different viewpoints.

b Occlusion detected from a

viewpoint

Fig. 7 Salient point selection procedure in 2D
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The first step in determining the 3D coordinate of a

point in pixel coordinate is to determine the number of

pixels in image that represent one world unit or the

Pixel Per World Unit (PPWU). Figure 10 illustrates

the geometry of the camera with orthogonal projec-

tion, where a represents the camera view angle and

d represents the distance of camera center to the

object. Knowing the camera view angle and the

distance d of camera center to the object, we can find

the height value in the real world which is captured on

the height of the image. Consequently, PPWU can be

computed as:

PPWU ¼ Number of rows of the image

2� d � tan a
2

ð4Þ

For the experimentations, we have positioned the

Matlab virtual camera at distance 10 from the object

targeting to the origin with camera view angle of 6�.
These camera parameters ensure a complete sight for

all objects in dataset while visualizing enough details.

Knowing the Pixel Per World Unit for captured

images we can find the real-world coordinate of the

point on the image plane using simple geometrical

calculations. As depicted in Fig. 10, any arbitrary

point on the captured image can be represented as

P = (xp, yp), where xp and yp are the pixel coordinate

of the point in image array. Dividing xp and yp by the

number of pixels presenting a unit of real world

(PPWU) yields the size of x and y line segments on the

image plane.

x ¼ xp

PPWU
; y ¼ yp

PPWU
ð5Þ

The camera is positioned atO
0
= (Az, El) where, Az

and El are the azimuth and elevation angles of the

Fig. 8 Comparison

between a orthogonal and

b perspective projection

Fig. 9 Camera view angle for orthogonal projection
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camera respectively and the camera movement is

controlled by only changing these two angle values.

The camera rotates around the view axis and its up-

vector points towards the positive z direction (the

angle between the positive z direction and the camera

up vector can vary but remains an acute angle). With

these assumptions, the spherical coordinate of the

arbitrary point p on image plane can be obtained as:

p ¼ d0;El� u;Az� hð Þ ð6Þ

Angles h and u express how much the azimuth and

elevation angles of the point p differ from the azimuth

and elevation angle of the camera center position. The

vector from camera center position to the origin is

perpendicular to the image plane, consequently the

angles h and u in the right-angle triangles OO
0
xp and

OO
0
yp can be calculated as:

h ¼ tan�1 x

d

/ ¼ tan�1 y

d

ð7Þ

The distance between the point p and the origin (d
0
)

is:

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ d2

p
ð8Þ

The value of h and u can be added or subtracted

from El and Az according to the location of the point

p on the image plane quadrants.

The spherical coordinate of the point p is then

converted to Cartesian coordinate for further calcula-

tions as:

x ¼ d0 cos EL� /ð Þ cosðAZ � hÞ
y ¼ d0 cos EL� /ð Þ sinðAZ � hÞ
z ¼ d0 sin EL� /ð Þ

ð9Þ

As previously discussed in orthographic projection,

any line from a point on the image plane in parallel

with camera view axis intersects its corresponding

point in real coordinates. We have adapted the

ray/triangle intersection model introduced by Moller

and Trumbore [33] to find the location of the point

P on the 3D object surface. The algorithm is a fast

solution to find the intersection of a ray passing from a

desired point and in a desired direction and gives the

intersected face. Since for mesh simplification we

need to identify salient vertices, the nearest vertex to

the centroid of the intersected face is considered as the

intersection point.

3.8 Adaptive Selection of Preserved

Neighborhood

In our previous work [6], three immediate neighbors of

all salient vertices where preserved while simplifying

3D meshes. This value was identified by trial and error

and consisted in the computation of an error measure

for various sizes of neighborhoods. The same size of

neighborhood was chosen for all salient points. In this

work, we propose an adaptive selection of number of

reserved salient points according to the structure of 3D

models.

As illustrated in Fig. 11, some regions in 3D

models are denser than others. Preserving three

Fig. 10 2D–3D projection

geometry
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neighbors of a salient point in such dense regions

degrades the quality of simplified mesh, as the

preserved vertices are too close to each other. To deal

with this issue, we propose to compute the distances

between each salient vertex and all its neighbors and

categorize them in three groups, as follows:

if dist\
1

3
distmax NPN ¼ 1

if
1

3
distmax\ dist\

2

3
distmax NPN ¼ 2

if dist[
2

3
distmax NPN ¼ 3

8
>>>>><

>>>>>:

ð10Þ

where NPN is the number of preserved neighbors, dist

is the average distance between a salient point and its

immediate neighbors, and distmax is the maximum

average distance from a salient point to its neighboring

vertices. Figure 13 compares the model of skull for a

simplification to 1500 faces when the NPN changes

adaptively according to mesh density (Fig. 12a) with

the case when NPN is constantly equal to three

(Fig. 12b). The simplification algorithm is explained

in the following section. One can notice that the

adaptive scheme prevents creating unnecessary den-

sity in the areas which are already dense. Moreover,

the quality of mesh is improved as it contains triangles

of roughly equal sizes.

3.9 3D Model Simplification

Once the salient vertices of 3D models are determined

using the previously explained approaches, the

adapted QSlim [34] algorithm is applied to simplify

meshes, while preserving the faces whose defining

edge points are identified as a salient point or as a point

in their immediate neighborhood and the number of

preserved neighbors (NPN) is determined adaptively

according to the mesh density in different regions, as

described in Sect. 3.9. Figure 13 compares the sim-

plified models of the bust model by the original Qslim

algorithm and the adapted version where salient

regions are preserved. One can notice that Qslim

algorithm allows a uniform simplification resulting in

degradation of face details while in adapted version

salient features are preserved even at low resolutions.

Constructed meshes using this solution are denoted as

Adaptive ED (for the method described in Sect. 3.2.1),

Adaptive SSIM (for the method described in Sec-

t. 3.2.2) and Adaptive SVM (for the method described

in Sect. 3.4) respectively, in Sect. 4.

Fig. 11 Different densities in a mesh structure

Fig. 12 Simplified model

of skull for a adaptive NPN

simplification, b NPN = 3

simplification
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4 Experimental Results

To evaluate and compare the quality of the constructed

meshes using the proposed algorithms, we tested our

framework on the dataset for 3D object interest points

[30]. As stated before, the dataset contains 43 models.

It also contains the interest points identified by several

other saliency detectors from the literature (i.e. Mesh

saliency, Salient points, 3D-Harris, 3D-SIFT, SD-

Corners and HKS, described in Sect. 2) which allows a

direct comparison between different methods and the

proposed solution. The dataset provides only the

triangular mesh structure of the objects. We have

added color, specular, diffuse, reflectance and trans-

parency characteristics to each 3D object usingMatlab

graphics adjustment to achieve a more realistic

illustration and to be able to study the impact of the

different color features. One can note that the color

conspicuity map gets the least weight in both SSIM

approach which can be explained by the fact that all

models from the current data set are mono-colored

while the human visual attention system is sensitive to

color opponency, accordingly the conspicuity map in

biased toward the color differences between objects

and the background.

Objects are situated at the center of the coordinates

system. For all experiments the camera is positioned at

distance 10 from the origin with camera view angle of

6�, as explained in Sect. 3.6. The procedure explained
in Sect. 3 is applied to construct the selectively-

densified meshes for all the objects in the dataset. A

few simplification results for two objects extracted

from the dataset, for 3000 and 1500 faces respectively,

are presented in Fig. 14.

To obtain a quantitative measure of quality of the

simplified objects, in the following sections, we

computed a series of error measures.

4.1 Metro Error

To evaluate the proposed approach for mesh simpli-

fication we have adopted the Metro algorithm intro-

duced in [35]. The algorithm measures the distance

between a pair of surfaces using a surface sampling

approach and returns three measures, namely the

maximum, the mean and the root mean square

(Hausdorff) distances from which the mean error is

selected as the evaluation metric in this section. Fig-

ures 15 and 16 compare the mean error metrics for the

proposed methods as well as for other saliency

detectors from the literature for simplification to

1500 and 3000 faces respectively for the 43 models

from the available data set. Error values are reported in

a logarithmic scale.

Fig. 13 Simplified model of bust to 3000, 1500 and 500 faces with Qslim algorithm and adaptive Qslim algorithm
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The experimental results confirm that Metro mean

error for visual attention-based algorithms have a

lower error level compared to the case where other

saliency detectors are used, especially for lower

resolutions of the simplified mesh. The adaptive

selection of the number of preserved neighbors

(Adaptive SSIM, Adaptive ED, Adaptive SVM), results

in a minor decrease in Metro mean error. Using

Fig. 14 Example of constructed meshes with the proposed methods for the models of armadillo and hand

Fig. 15 Metro mean error for simplification to 1500 faces
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structural similarity measurement to determine the

weight of conspicuity maps is slightly more efficient

than the weighting procedure based on Euclidean

distances. The reason is that the SSIM evaluates all the

pixels of conspicuity maps and gives a superior

assessment compared to Euclidean distance which

only evaluates the position of brightest points on

conspicuity maps. The SVM approach is distorted

through image resize operation, but it still gives the

most promising results. One can notice by studying

Fig. 16 that simplifying meshes while preserving

vertices detected by HKS algorithm also produces

high quality models. However the Metro mean error

for the proposed adaptive version of visual attention-

based methods is slightly lower for models simplified

to 1500 faces. Moreover, in the case of simplification

to 3000 faces, all visual attention-based methods

outperform HKS in terms of Metro mean error.

4.2 Perceptual Errors

Since our solution is meant to create perceptually-

improved models, in this section we take advantage of

bio-inspired error metrics to evaluate the quality of

constructed objects. The Structural Similarity Index

method that we have already used in Sect. 3.2.1 to

determine the contribution weight of each conspicuity

map is adopted once more to measure the similarity

between images from the full high-resolution 3D

model and the two constructed selectively-densified

meshes with lower resolutions of 3000 and 1500 faces

respectively. To report the similarity metric in form of

error, the SSIM values are subtracted from one, which

is the similarity measure for two identical images. The

results are compared in Figs. 17 and 18.

The perceptual quality assessment of the simplified

objects in most cases confirms the evaluation provided

by Metro errors except that the perceptual quality of

simplified meshes guided by HKS method is higher

than the one achieved by visual attention approaches.

Table 2 summarizes and compares the results

obtained by the three proposed salient point identifi-

cation solutions, namely the SSIM based guided

saliency map, the ED based guided saliency map and

the SVM based learning approach. The SSIM method

performs better than ED in terms of perceptual errors

and both yield lower error rates compared to Visattall

which assigns equal contribution weight to all fea-

tures. Similar to the case of Metro errors, the adaptive

version of all methods constructs higher quality object

meshes. The overall results prove the superiority of the

visual attention-based approach, in particular at low

resolutions.

Fig. 16 Metro mean error for simplification to 3000 faces
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5 Conclusion

In this paper we proposed the use of a computational

visual attention model that combines nine different

features (which are believed to guide the deployment

of visual attention) according to user inputs (in form of

ground-truth points of interest) to selectively simplify

3D object model for LOD representation. Matlab

camera is turned around an object of interest to collect

images from different viewpoints. Color, contrast,

curvature, edge, entropy, intensity, orientation and

symmetry features of images are employed to create

Fig. 17 SSIM error for simplification to 1500 faces

Fig. 18 SSIM error for simplification to 3000 faces
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the saliency map. The structural similarity between

each conspicuity map and the ground truth saliency

map, and the average Euclidean distance between

bright points on the corresponding conspicuity maps

and the location of salient points reported by users, are

the two approaches developed to determine the

contribution of each feature for guiding visual atten-

tion. Selected salient points are projected on the

surface of 3D model using a geometry-based

approach. A solution is proposed to control the

expansion of saliency in the neighborhood around

detected salient points. The number of preserved

neighbors for a salient point located on a densified

region of triangular mesh is smaller than the number of

neighbors preserved in those cases where the salient

point is situated farther than its neighbors.

The experimental results confirmed that visually

interest points can be reliable to guide the mesh

simplification process for different LOD. The results

are also slightly enhanced in comparison with our

previous version of visual-attention guided simplified

objects.

Funding This work is supported in part by the Natural

Sciences and Engineering Research Council of Canada

(NSERC).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no

conflict of interest.

References

1. Kietzmann, T. C., Lange, S., & Riedmiller, M. (2009).

Computational object recognition: A biologically motivated

approach. Biological Cybernetics, 100, 59–79.

2. Luebke, D., & Hallen, B. (2001). Perceptually driven sim-

plification for interactive rendering. In S. J. Gortler & K.

Myszkowski (Eds.), Rendering techniques. Eurographics.

Vienna: Springer.

3. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-

sased visual attention for rapid scene analysis. IEEE

Transactions on Pattern Analysis andMachine Intelligence,

20(11), 1254–1259.

4. Hadizadeh, H., & Bajic, I. V. (2014). Saliency-aware video

compression. IEEE Transactions on Image Processing,

23(1), 19–33.

5. Frintrop, S., Rome, E., & Christensen, H. I. (2010). Com-

putational visual attention systems and their cognitive

foundations: A survey. ACM Transactions on Applied

Perception (TAP), 7(1), 6.

6. Chagnon-Forget, M., Rouhafzay, G., Cretu, A.-M., &

Bouchard, S. (2016). Enhanced visual-attention model for

perceptually-improved 3d object modeling in virtual envi-

ronments. 3D Research, 7(4), 1–18.

7. Rouhafzay, G., & Cretu, A. -M. (2017). Selectively-densi-

fied mesh construction for virtual environments using sali-

ent points derived from a computational model of visual

attention. In 2017 IEEE international conference on com-

putational intelligence and virtual environments for mea-

surement systems and applications (CIVEMSA), Annecy,

2017 (pp. 99–104).

8. Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson,

B., & Huebner, R. (2003). Level of details for 3D graphics.

Amsterdam: Morgan Kaufmann.

9. Pojar, E., & Schmalstieg, D. (2003). User-controlled cre-

ation of multiresolution meshes. In Proceedings of the

Table 2 Comparison of proposed approaches

Method Summary of the proposed method Average Metro

error for 43

models

simplified to:

Average SSIM

error for 43

models

simplified to:

Advantages

3000 1500 3000 1500

SSIM Structural Similarity index between each

conspicuity map and the ground truth

saliency map is computed as the

contribution weight of each feature

0.0018 0.0035 0.0229 0.0258 Superior feature fusion technique

compared to ED

ED Euclidean distances between brightest

points on each conspicuity map and the

ground truth points are computed as the

contribution weight of each feature

0.0019 0.0037 0.0236 0.0285 Better performance compared to the

case with equally weighted features

(i.e. Visattall)

SVM The saliency map is predicted using a

trained SVM

0.0018 0.0033 0.0221 0.0257 This solution is applicable to predict

the salient points for objects whose

ground truth points are not known a

priori

123

3D Res (2018) 9:29 Page 19 of 20 29



symposium on Interactive 3D graphics (pp. 127–130).

Monterey, CA.

10. Kho, Y., & Garland, M. (2003). User-guided simplification.

In Proceedings of ACM symposium on interactive 3D

graphics (pp. 123–126).

11. Ho, T. -C., Lin, Y. -C., Chuang, J. -H., Peng, C. -H. &

Cheng, Y. -J. (2006). User-assisted mesh simplification. In

Proceedings of ACM international conference on virtual-

reality continuum and its applications (pp. 59–66).

12. Lee, C. H., Varshney, A., & Jacobs, D. W. (2005). Mesh

saliency. ACM SIGGRAPH, 174, 659–666.

13. Borji, A., & Itti, L. (2013). State-of-the-art in visual atten-

tion modeling. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 35(1), 185–207.

14. Frintrop, S. (2006). The visual attention system VOCUS:

Top-down extension. In J. G. Carbonell & J. Siekmann

(Eds.), VOCUS: A visual attention system for object detec-

tion and goal-directed search. Lecture notes in computer

science (Vol. 3899, pp. 55–86). Berlin: Springer.

15. Castellani, U., Cristani, M., Fantoni, S., & Murino, V.

(2008). Sparse points matching by combining 3D mesh

saliency. Eurographics, 27, 643–652.

16. Zhao, Y., Liu, Y., Wang, Y., Wei, B., Yang, J., Zhao, Y.,

et al. (2016). Region-based saliency estimation for 3D shape

analysis and understanding. Neurocomputing, 197(2016),

1–13.
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