
3DR EXPRESS

Parallel Computer System for 3D Visualization Stereo
on GPU

Anas M. Al-Oraiqat . Sergii A. Zori

Received: 21 November 2017 / Revised: 25 January 2018 / Accepted: 26 January 2018 / Published online: 3 February 2018

� 3D Research Center, Kwangwoon University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract This paper proposes the organization of a

parallel computer system based on Graphic Processors

Unit (GPU) for 3D stereo image synthesis. The

development is based on the modified ray tracing

method developed by the authors for fast search of

tracing rays intersections with scene objects. The

system allows significant increase in the productivity

for the 3D stereo synthesis of photorealistic quality.

The generalized procedure of 3D stereo image synthe-

sis on the Graphics Processing Unit/Graphics Process-

ing Clusters (GPU/GPC) is proposed. The efficiency of

the proposed solutions by GPU implementation is

compared with single-threaded and multithreaded

implementations on the CPU. The achieved average

acceleration inmulti-thread implementation on the test

GPU and CPU is about 7.5 and 1.6 times, respectively.

Studying the influence of choosing the size and

configuration of the computational Compute Unified

Device Archi-tecture (CUDA) network on the compu-

tational speed shows the importance of their correct

selection. The obtained experimental estimations can

be significantly improved by new GPUs with a large

number of processing cores and multiprocessors, as

well as optimized configuration of the computing

CUDA network.

Keywords 3D visualization �Ray tracing � 3D stereo

image � Synthesis � Graphics processor � Computer

system

1 Introduction

The organization of computer systems for realistic 3D

spatial visualization provides a fundamentally new

organization of the computational process, as com-

pared to the standard 3D graphics pipeline. In the

standard 3D graphics pipeline, the use of complex

methods of synthesis and visualization (such as ray

tracing, etc.) increases the realism of spatial 3D

synthesis. In this regard, modern computer systems

for image synthesis and visualization of the environ-

ment require a high-quality and effective application.

Those methods combine realistic 3D methods with

both traditional visualization mechanism and non-

traditional methods of 3D visualization. It should be

noted that, the methods and algorithms used in such

systems provide high realism of synthesized images

but with a great time complexity, graphics

A. M. Al-Oraiqat (&)

Department of Computer Sciences and Information,

Taibah University, P.O. Box 2898, Medina, Kingdom of

Saudi Arabia

e-mail: anas_oraiqat@hotmail.com

S. A. Zori

Department of Computer Sciences and Technologies,

SHEE «Donetsk National Technical University»,

Donetska oblast, P.O. Box 85300, Pokrovsky, Ukraine

e-mail: sa.zori1968@gmail.com

123

3D Res (2018) 9:7

https://doi.org/10.1007/s13319-018-0159-x

http://orcid.org/0000-0002-1071-6331
http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-018-0159-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-018-0159-x&domain=pdf
https://doi.org/10.1007/s13319-018-0159-x

multiprocessors requirements and a compulsory mod-

ern hardware support for synthesis on multi-core

CPUs. This confirms that the speed and realism of

synthesis in 3D systems visualization is still a

challenging and promising problem [2–4, 12].

3D spatial visualization assumes such a computer

transformation of a scene model (spatial 3D synthesis,

rendering). It creates a fully 3D visual 3D image in a

specific 3D display device (3D visualization device,

3D monitor). The 3D image (spatial visual image) is

then displayed in some way in the 3D display space

and the person perceives it (possibly using additional

interfaces) in bulk.

Currently, the vast majority of 3D synthesis and 3D

imaging/display information systems use the method

of stereoscopic 3D visualization that gives a reason-

able compromise between quality, speed and cost of

3D visualization [2–4, 12, 16]. At the same time, the

most applicable implementation approach, from the

processor core cost point of view for implementing

parallel 3D display information/hardware support

systems, is the implementation on the bases of

Graphical Processing Units (GPUs).

This paper investigates organization of a 3D-stereo

visualization parallel computing system based on the

modified ray tracing method developed by the authors

[2, 3, 14, 16, 17] for fast search of tracing rays

intersections with scene objects and the Compute

Unified Device Architecture (CUDA), i.e., parallel

computing platform and programming model devel-

oped for general computing on GPUs.

2 Organization of the 3D-Stereo Visualization

System Based on the Parallel Graphic Processor

From the practical view point implementation of the

3D stereo visualization system on the GPU, we recall

that the synthesis of 3D stereo images of improved

quality is proposed as a double ray tracing of

independent stereo pair images [1, 2, 15]:

• Parallel independent implementation of the syn-

thesis of frames ‘‘left’’–’’right’’ on the GPU;

• Parallel ‘‘intraframe’’ implementation of the ray

tracing method on the GPU resources allocated for

each channel.

Further (if necessary, taking into account the

specifics of the 3D-display device), the process of

post-processing of the received stereo pair images

(conversion of frames into one of the standard output

formats for 3D-visualization devices) can also be

performed on the GPU. In this regard, the general

organization of the computational process of the 3D

stereo imaging procedure by ray tracing on the GPU

architecture (or GPC graphics cluster) is illustrated in

Fig. 1.

CUDA blocks perform a stereo trace procedure

(StRT) in parallel for the left and right image frames.

All images which are divided into the same number of

raster cluster blocks (BLF–BRF sub-arrays) in which

SIMT ray tracing is also performed in parallel.

It should be noted that the topological organization

of the network and the blocks is not unique and can be

the subject of optimization for a particular GPU

architecture. To preconfigure the configuration, the

CUDA GPU Occupancy Calculator may be used [7].

The mapping of the 3D synthesis procedure to the

GPC can be represented similarly, for example by

placing the BLF and BRF blocks in different clusters.

The main basic procedure for 3D stereo imaging is

the ray tracing [5, 6, 13]. When mapping the archi-

tecture of ray tracing to the GPU architecture, the main

idea is to divide the ray tracing algorithm into several

kernel cores, each one performs only a single specific

task. Also, it is necessary to take into account the

peculiarities of the specific microarchitecture of the

GPU, as well as the features of the ray tracing

algorithm itself. The parallel implementation of the

ray tracing algorithms is complicated due to a large

number of factors, such as possible completion of the

execution threads at different times (in the event that a

part of the rays is absorbed or not crossed surface of

the scene), incoherence in the calculation of secondary

rays and leads to a branching of the streams (if

different rays intersect surfaces that have different

properties and the model of light scattering). It should

also be taken into account that, in order to search for

the intersection of the beam with the surfaces of the

scene and calculate the illumination at the founded

point, the execution flows require regular access to the

description of the scene. So, an efficient organization

of the accelerated structure, the data storage location

in memory as well as the access to it is also an

important factor.

Notice that, in the urgency view of the parallel

organization problem of ray tracing, and primarily on

the GPU, many practical solutions have been proposed

7 Page 2 of 13 3D Res (2018) 9:7

123

in the literature. The most successful in the sense of

universality and qualitative indicators is the global

concept where proposed in [5]. However, the authors

in [5] pointed out that one of the most laborious stages

of visualization is the search for the nearest intersec-

tion of the ray with the objects of the scene and use

accelerated structures to increase the productivity.

In connection with the foregoing, it seems inexpe-

dient to consider and develop approaches for GPU

architecture implementation to general ray tracing

technique (it is sufficient to use the universal

approach, or more narrowly specialized, with the

adopted simplifications), but rather focusing on the

acceleration of the method steps bottlenecks by

displaying them on the GPU architecture.

The general idea of searching for ray intersection

and Axis-Aligned Bounding Box (AABB) is schemat-

ically shown in Fig. 2 [3, 14, 16]. The general

mechanism for mapping the intersection algorithm

proposed in [1, 3, 15] to the GPU architecture is shown

in Fig. 3.

3 Proposed Modified Ray Tracing Method

In order to accelerate the detection of intersection

during ray tracing, a modified ray crossing detection

algorithm with accelerating technique based on the

two-level hierarchy of bounding volumes and AABB

for accelerating multithreaded calculations is pro-

posed. In addition, as a modification of the ‘‘classical’’

CPU
Synchronization of all blocks;
Copy frames (GPU) to frames (CPU);
Delete the allocated memory on the GPU;

GPU

Kernel_StRT

grid

block (0)
thread 0

thread TpB-1

thread 1

...

block (BC/2-1)
thread 0

thread TpB-1

thread 1

...

block (BC-1)
thread 0

thread TpB-1

thread 1

...

block (BC/2)
thread 0

thread TpB-1

thread 1

...
... ...

FRBFLB

CPU
Entering, placing in memory and initializing the necessary task StRT_Data;
//Calculate of the dimension of the problem for GPU - Nst (Nx and Ny – image raster):
Nst:=2*Nx*Ny;
//Set the number of threads T in the block – TpB (T<=maxThreadsPerBlock for GPU)
TpB:=T;
//Determine the number of blocks B for the task – BC:
//total blocks: B[0...BC-1]
//blocks for the left frame: BLF[0…(BC/2-1)]
//blocks for the right frame: BRF[BC/2...BC-1]
BC:=Nst/TpB;
Allocate memory to GPU;
GPU Grid Configuration: blocks=BC, threads=TpB;
//Call a parallel stereo trace function - Kernel_StRT
Kernel_StRT <<<BC,TpB>>> (StRT_Data);

Fig. 1 Algorithm of the

display 3D stereo synthesis

on a GPU/GPC

3D Res (2018) 9:7 Page 3 of 13 7

123

ray intersection search algorithm [3, 4, 6, 14, 16] to

improve the efficiency of its implementation on the

GPU and multithreaded computing devices, the cal-

culation order in the base algorithm is revised and

branches are eliminated when searching for intersec-

tions with AABB (with all intersection predicates

transferred to the end of the procedure) as illustrated in

Fig. 4.

The modified scheme effectiveness was investi-

gated in a single-threaded uniprocessor implementa-

tion. The test configuration platform is shown in

Table 1. As detailed later, comparing the results of

proposed modified method to the methods of

[1, 3, 14–16], the proposed modification of the search

accelerating technique for beam intersections with

scene objects on single-threaded implementation,

although it gives a positive effect (about 3–7%), it

still does not work fast enough for complex scenes

with high resolution. However, the essence of the

modifications made allows more significant accelera-

tion in multi-threaded implementations on multi-core

CPUs and GPU.

Figures 5 and 6 give the experimental results for the

speed evaluation of the proposed modified algorithm.

We study the multithreaded implementation on the

CPU for the test stand in test scenes 2 and 3 (given in

Table 2) as well as various areas of the scene

projection onto the picture plane (mostly non-over-

lapping and ‘‘close’’ objects in relation to the

observer—’’a large area of the projection’’, and vice

versa—’’small area’’).

Figure 7 shows the average achieved acceleration

of multithreaded implementations in comparison with

a single-threaded CPU on a test bench. Let us consider

the experimental results of the proposed modified

algorithm speed estimation for the intersection search

algorithm when it is implemented on the GPU. The

algorithm modifications are developed in accordance

with recommendations for optimization. Among of

these recommendations, the most important is the

reduction of the branching within each individual

block and warp.

It should be noted that configuring the GPU grid is

in general an ambiguous task since the solution of this

Fig. 2 Principle of operation of the ray intersection search algorithm with AABB

7 Page 4 of 13 3D Res (2018) 9:7

123

task may directly affect the performance of the

program executed by the GPU. In order, to determine

the theoretical estimation of the multiprocessor load-

ing degree and the configuration of the GPU comput-

ing network, the CUDA SDK Occupancy Calculator

software has been used [7]. According to the theoret-

ical estimate, the maximum load of the multiprocessor

(100%) is possible when less than 10 registers per

string are used with a block sizes of 192, 256 or 384

threads. The GPU multiprocessor can be loaded in

CPU
Synchronization of all blocks;
Getting Results from GPU;
Deleting the allocated memory on the GPU;

GPU

Kernel_Intersect

grid
block (0)

thread 0

thread TpB-1

thread 1

...

block (1)
thread 0

thread TpB-1

thread 1

...

block (BC-1)
thread 0

thread TpB-1

thread 1

......

CPU
Entering, placing in memory and initializing the necessary AABB_Task_Data;
//Calculate the dimension of the GPU-task - Rays (Nx and Ny – image raster):
Rays:=Nx*Ny;
//Set the number of threads Т in the block – TpB (T<=maxThreadsPerBlock for GPU)
TpB:=T;
//Determine the number of blocks B for the task – BC:
BC:=Rays/TpB;
Allocate memory to GPU;
GPU Grid Configuration: blocks=BC, threads=TpB;
//Call the parallel intersection search function - Kernel_Intersect
Kernel_Intersect <<<BC,TpB>>> (AABB_Task_Data, Rays);

Fig. 3 General mechanism

for computing the

intersections on the GPU

bool Intersect(AABB &bbox, Ray3 &ray) {
Vector3 nearPlaneDistances = (bbox.Min - ray.Origin) * ray.InversedDirection;
Vector3 farPlaneDistances = (bbox.Max - ray.Origin) * ray.InversedDirection;
float nearDistance, farDistance;
nearDistance = min(nearPlaneDistances.X, farPlaneDistances.X);
nearDistance = max(nearDistance, min(nearPlaneDistances.Y, farPlaneDistances.Y));
nearDistance = max(nearDistance, min(nearPlaneDistances.Z, farPlaneDistances.Z));
farDistance = max(nearPlaneDistances.X, farPlaneDistances.X);
farDistance = min(farDistance, max(nearPlaneDistances.Y, farPlaneDistances.Y));
farDistance = min(farDistance, max(nearPlaneDistances.Z, farPlaneDistances.Z));
return farDistance >= nearDistance && farDistance >= 0;

}
float max(float a, float b)
{ return (abs(a-b) + a + b) / 2); }

float min(float a, float b)
{ …. }

Fig. 4 Modified algorithm

for checking the intersection

between the AABB and the

ray tracing

3D Res (2018) 9:7 Page 5 of 13 7

123

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 flow 2 flow 4 flow 1 flow 2 flow 4 flow

T
he

 in
te

rs
ec

tio
n

se
ar

ch
 ti

m
e,

(s

)

 Scene 2 (close) | Scene 3 (close)

Fig. 5 Intersection search

time: large area of the scene

projection on the display

with CPU

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

1 flow 2 flow 4 flow 1 flow 2 flow 4 flowT
he

 in
te

rs
ec

tio
n

se
ar

ch
 ti

m
e,

 (s
)

 Scene 2 (long away) | Scene 3 (long away)

Fig. 6 Intersection search

time: small area of the scene

projection on the display

with CPU

1.4

1.5 1.5
1.6

1.4

1.5 1.5
1.6

2 flow
(close)

2 flow
(far)

4 flow
(close)

4 flow
(far)

2 flow
(close)

2 flow
(far)

4 flow
(close)

4 flow
(far)

3enecS2enecS

Fig. 7 Average achieved

acceleration compared to

single-threaded

implementation with CPU

Table 1 Tested configuration

OS CPU RAM GPU

Windows 8 Ultimate, x64 Intel Core 2 Quad Q9100 @ 2.26 GHz 3 GB DDR3 NVIDIA GeForce G110 M

(16 CUDA cores)

Table 2 Characteristics of

test scenes
Characteristic Scene 1 Scene 2 Scene 3

Form of objects Sphere Pyramid Icosahedron

Number of objects 200 210 70

Amount triangles in the form 0 6 20

7 Page 6 of 13 3D Res (2018) 9:7

123

67% by using 16 registers per string and a block sizes

of 192, 256 or 512 threads. The greater number of

dedicated registers per string leads to a decrease in the

load of the GPU multiprocessor to 50% when the

registers number is between 17 and 20. However, the

lower one is about 33% when the registers number is

between 21 and 32 (as shown in Table 3 and Fig. 8 as

well as Table 4 and Fig. 9).

The experimental results performed on these two

configurations show that, with a theoretical multipro-

cessor load of 100%, the execution speed of the entire

algorithm is less than the case of the GPU network

configurations with a 67% load (it was chosen for

further experiments). One of the reasons is the

intensive use of the global memory with a small

number of allocated registers. However, it should be

noticed that, this doesn’t mean that its speed is

optimal. Experimental studies on the optimization of

the computational process in the CUDA network (as

used for the GPU experiment, and on other more

powerful GPU architectures) have not been carried out

yet. Therefore, the obtained experimental estimates

can be further improved when implemented on new

GPUs with a large number of processing cores and

multiprocessors with an optimization of the configu-

ration of the computing CUDA network.

To perform and accelerate the formation of a

standard stereo frame (anaglyph conversion of

Table 3 GPU network

configuration characteristics

(100% congestion)

Threads per block 192 256 384

Registers per thread 10 10 10

Active threads per multiprocessor 768 768 768

Active warps per multiprocessor 24 24 24

Active thread blocks per multiprocessor 4 3 2

Occupancy of each multiprocessor 100% 100% 100%

Table 4 GPU network configuration characteristics (67%

congestion)

Threads per block 128 256 512

Registers per thread 16 16 16

Active threads per multiprocessor 512 512 512

Active warps per multiprocessor 16 16 6

Active thread blocks per multiprocessor 4 2 1

Occupancy of each multiprocessor 67% 67% 67%

Fig. 8 Impact of varying

the block size and register

count per thread on warps

for a multiprocessor load of

100%

3D Res (2018) 9:7 Page 7 of 13 7

123

separate frames of a pair into a stereo frame) and

actual visualization, they have been implemented on

the GPU.

At the first stage, the obtained separate stereo pair

frames are converted into a combined anaglyph image.

To do this, we need to do the following (as illustrated

in Fig. 10):

• Generate an initial data in the GPU memory.

• Perform post processing calculations on the GPU.

• Return results to the main program of the visual-

ization node.

The computing scheme is shown in Fig. 11. The

computations on the GPU occur in parallel with the

use of all available graphics card capacities. Parallel

processing of byte arrays of synthesized left and right

images is performed as well as the process of merging

two arrays into one by their anaglyph transformation.

After that, the result of the last operation is stored in

the original byte array of the left image and returned to

the main program of the module.

An experimental study of the created software

module for anaglyph transformation has been carried

out. To do this study, test images (left and right angles)

of the scene rendering (a light source and 3 spheres)

are computed with 3D Max application software. The

obtained result, shown in Fig. 12, confirms the

performance of the program module.

4 Experimental Results

The experimental results for the speed increasing

estimate of the modified algorithm on the test system,

as compared to the base version implemented on the

GPU architecture [1, 14, 15], are shown in Figs. 13

and 14. The experiment and estimates are given for the

case when the area of the scene projection on the

Fig. 9 Impact of varying

the block size and register

count per thread on warps

for a multiprocessor load of

67%

Write pixel arrays to the
GPU memory

Left frame Right frame

Returning results to the
main program

GPU Parallel
processing

Fig. 10 Schematic diagram of the anaglyph transformation

module

7 Page 8 of 13 3D Res (2018) 9:7

123

picture plane is large, since previous experiments and

performance measurements have shown that this

situation is the most computationally complex.

It can be seen that the modified algorithm gives a

performance gain in relation to the basic version

starting from 27 to 32% when it is implemented on the

GPU of the test bench (single-threaded CPU imple-

mentation showed a performance gain of 3–7% [3],

while the optimized implementation on the specific

architecture of the GPU is not conducted.

The results of experimental studies of the imple-

mentation time on the CPU/GPU test system and the

achieved acceleration of the proposed modification of

the intersection search algorithm are shown in

leftKernel leftKernel leftKernel leftKernel

rightKernel rightKernel rightKernel rightKernel

KernelAnaglyph KernelAnaglyph KernelAnaglyph KernelAnaglyph

…

…

…

Fig. 11 Anaglyph

conversion to GPU

Fig. 12 The result of the GPU–anaglyph transformation

29%
30%

32% 32%

27% 27%
28%

30%

Acceleration (Scene 2) Acceleration (Scene 3)

Fig. 14 Efficiency of modification, GPU

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

GPU, modified (Scene 2) GPU, base (Scene 2)

GPU, modified (Scene 3) GPU, base (Scene 3)

Fig. 13 Intersection search time (modified-base implementa-

tion), GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
he

 in
te

rs
ec

tio
n

se
ar

ch
 ti

m
e,

 (s
)

CPU, 1 T Core (Scene 2) CPU, 4 HT Core (Scene 2)
GPU, 16 CUDA Core (Scene 2) CPU, 1 T Core (Scene 3)
CPU, 4 HT Core (Scene 3) GPU, 16 CUDA Core (Scene 3)

Fig. 15 Intersection search time (small area of the scene

projection on the display)

3D Res (2018) 9:7 Page 9 of 13 7

123

Figs. 15, 16, 17 and 18. Figures 17 and 18 summarize

the performances evaluation of the software imple-

mentation of the modified beam intersection search

algorithm with AABB and allow a comparison of the

time scores that were obtained when it was executed

on four threads on a CPU (4 cores) and on a test GPU

(16 CUDA cores).

The implementation on the test GPU allowed

obtaining an average acceleration of 75 times to the

variant without the use of Axis Aligned Bounding

Box (AABB) techniques. Once again, it should be

noted that the obtained experimental estimates can be

significantly improved when implemented on new

GPUs with a large number of processing cores and

multiprocessors. Also, it can optimize the computing

CUDA network configuration.

An experimental prototype of the 3D-stereo visu-

alization system by the ray tracing method has been

carried out using the developed algorithm and archi-

tecture means successfully solving the problem of 3D

stereo images synthesizing.

To perform a comparative evaluation of the visual

realism of the obtained experimental images, it is

necessary to generate reference images of test scenes

by ray tracing in one of the software packages using

physically correct ray tracing renderers. The devel-

oped prototype of the 3D stereoscopic synthesis

software system uses the ray tracing method based

on the Whitted algorithm [13]. It does not generate

some highly realistic global lighting effects realized

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T
he

 in
te

rs
ec

tio
n

se
ar

ch
 ti

m
e,

 (s
)

CPU, 1 T Core (Scene 2) CPU, 4 HT Core (Scene 2) GPU, 16 CUDA Core (Scene 2)
CPU, 1 T Core (Scene 3) CPU, 4 HT Core (Scene 3) GPU, 16 CUDA Core (Scene 3)

Fig. 16 Intersection search

time (large area of the scene

projection on the display)

1.56

7.51

1.59

7.47

1.50

6.95

1.49

6.93

1.61

8.08

1.68

8.01

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

CPU (4 HT Core) GPU (16 CUDA Core) CPU (4 HT Core) GPU (16 CUDA Core)
Scene 2 | Scene 3

Average acceleration Min Max

Fig. 17 The achieved

acceleration compared to the

CPU in 1T Core Mode

4.63 4.65

5.02
4.97

4.82 4.81

4.40
4.50
4.60
4.70
4.80
4.90
5.00
5.10

3enecS2enecS

Min Max Average acceleration

Fig. 18 Acceleration of the GPU (16 cores) in relation to the

CPU (4 cores)

7 Page 10 of 13 3D Res (2018) 9:7

123

by powerful physically correct renderers, such as

FryRender, Indigo Renderer, Kerkythea Rendering

System, Maxwell Render and so on. The main task of

the development is to test the efficiency of the

proposed algorithmic tools on the level of proposed

architectural implementation of the GPU synthesis for

3D stereo images by ray tracing and on the level of the

developed modification for the search technology

accelerating for ray intersections with AABB.

In this regard, to determine the comparative eval-

uation of the obtained images visual realism, the

generation of ‘‘reference’’ images of the test scene

(separately for the left and right frames) and the

method for determining the normalized mean square

error of the NMSE of the visual difference between the

reference and experimental images [10] by the mental

ray rendering are used by ray tracing in the 3Ds Max

package [11]. The render settings correspond basically

to the settings of the software implementation, the

developed prototype of the software system. Standard

point and area light sources are used for realization of

caustics rectilinear trace taking into account the

refractive index. The final collection method is

implemented using the Final Gathering module.

According to this technique, the visual difference

between the two images can be estimated by the

normalized mean-square error (NMSE) that can be

calculated as follows:

NMSE

¼
P

i R ið Þ1�R ið Þ2
� �2þ G ið Þ1�G ið Þ2

� �2þ B ið Þ1�B ið Þ2
� �2

P
i R ið Þ1
� �2þ G ið Þ1

� �2þ B ið Þ1
� �2

ð1Þ

where i denotes the pixels number in the image and

(R1(i), G1(i), B1(i)), (R2(i), G2(i), B2(i)) are the color

intensities of the red, green and blue components in the

ith pixel in both formed images (left and right).

In computer graphics, when such testing images

estimates are used [11]: if the NMSE value is not more

than 0.0001, then the visual images do not differ from

each other; if the NMSE is in the range

[0.0001–0.00025], then the two images are slightly

different; if the NMSE is in the range

[0.00025–0.001], then the images have visually

noticeable differences; if the NMSE is greater than

0.001, then the two images are significantly different

from each other.

Comparison of this criterion of the reference and

experimental images generated by the system (given

in Fig. 19) has showed a NMSE value of 0.00021. This

means that the images have insignificant visual

differences and are explained by the impossibility of

complete identity of the render settings in the refer-

ence and experimental systems with the ray tracing

synthesis (closed, non-disabling rendering optimiza-

tion and the implementation of the applied shaders in

3Ds Max, the built-in mechanism for generating

‘‘soft’’ area shadows and anti-aliasing in mental ray,

etc.).

Examples of some images formed by the system are

shown in Fig. 20.

A system operation study showed that:

1. The developed prototype program system 3D-

stereo visualization using the proposed algorith-

mic and architectural means successfully solves

the problem of synthesis of 3D-stereo images.

2. Synthesized image views have minor visual

differences as compared to the standard and

calculated 3D’s Max rendering engine, related to

the impossibility of a complete identity of the

render settings of the reference and experimental

systems.

3. About 70% of the time is spent on solving the

computational problem while a considerable part

of the time (up to 30%) is spent on transferring

data between the central processor and the graph-

ics card for computation and performing the

visualization process.

4. With the increase of the computational complex-

ity of the scene, the time for processing increases

as well and the dependency is almost linear.

5. When using a single video card and GPGPU

computations, the processes of scene computa-

tion, post-processing and visualization that actu-

ally occur sequentially, ultimately slow down the

whole process.

6. The study of the influence of the choice of the size

and the configuration of the computational CUDA

network on the computational speed shows the

importance of their correct assignment.

3D Res (2018) 9:7 Page 11 of 13 7

123

5 Conclusions

The proposed architecture of a parallel computer

system for realistic 3D stereo visualization of 3D

scenes is accelerated by the method of ray tracing on

the GPU and a generalized procedure for 3D stereo

synthesis is displayed on the GPU/GPC.

The efficiency of the proposed solutions under the

GPU implementation is compared to the single-

threaded and multithreaded implementations on the

CPU test stands. The results of the studies mainly

showed the following:

Themodified algorithm gives a performance gain in

relation to the base version from 27 to 32% when

implemented on the GPU test bench (single-threaded

CPU implementation showed a performance gain of

3–11%), while optimized implementation on a specific

architecture used by the GPU was not carried out. The

generalized results of software performance evalua-

tions showed that the overall average achieved accel-

eration for multi-threaded implementation on test

GPUs and CPUs is about 7.5 and 1.6 times, respec-

tively. The developed prototype program system 3D-

stereo visualization proposed algorithm and architec-

ture means successfully solves the problem of 3D

stereo images synthesis. In this case, the synthesized

images have an insignificant visual differences in

comparison to the standard and the calculated 3Ds

Max raisers (NMSE = 0.00021). It is probably due to

the impossibility of obtaining complete identity of the

render settings of the reference and experimental

systems. When using a single video card and GPGPU

Fig. 19 Reference and generated image by the software system

(b) right ang

(b)

(a)

(a) right angle (c) 3D- stereo (anaglyph)

le (c) 3D- stereo (anaglyph)

Fig. 20 Synthesized 3D stereo images of test scenes

7 Page 12 of 13 3D Res (2018) 9:7

123

calculations, the processes of scene calculation, post-

processing and visualization actually occur sequen-

tially. This behavior ultimately slows down the whole

process. It is noted that the obtained experimental

estimates can be significantly improved when new

GPU architectures with a large number of processing

cores and multiprocessors are implemented, as well as

optimizing the configuration of the computing CUDA

network. Nonetheless the study of the influence of the

choosing the size and configuration of the computa-

tional CUDA network on the computational speed

shows the importance of their correct assignment

[1, 8, 9, 15].

References

1. Al-Oraiqat, A., & Zori, S. (2016). 3D-visualization by

raytracing image synthesis on GPU. International Journal

of Engineering Science and Technology (IJEST), 8(6),

97–104.

2. Al-Oraiqat, A., Bashkov, E., & Zori, S. (2018). Spatial

visualization via real time 3D volumetric display tech-

nologies (p. 120). Saarbrücken: LAP LAMBERT Academic

Publishing.

3. Bashkov, E., & Zori, S. (2016). Systems of spatial visual-

ization of environment. Science Bulletin of Donetsk

National Technical University, Krasnoarmiysk, 1(1),

20–45.

4. Blundell, B., & Schwarz, A. (2002). The classification of

volumetric display systems, characteristics and pre-

dictability of the image space. IEEE Transactions on

Visualization and Computer Graphics, 8(1), 66–75.

5. Bogolepov, D., Ulyanov, D., Sopin, D., & Turlapov, V.

(2013). Optimization of the bidirectional path trace method

for modeling the optical experiment on a graphics proces-

sor. Scientific Visualization, 2(5), 1–15.

6. Cook, R., Porter, T., & Carpenter, L. (1984). Distributed ray

tracing. ACM SIGGRAPH Computer Graphics, 18,

137–145. https://dl.acm.org/citation.cfm?id=808590.

7. CUDA. (2007). Occupancy Calculator Helps pick optimal

thread block size. https://devtalk.nvidia.com/default/topic/

368105/cuda–occupancy–calculator–helps–pick–optimal–

thread–block–size/. Accessed Jul 11, 2017.

8. Hong, G.-S., Hoe, W., Kim, B.-G., Beak, J.-W., & Kwon,

K.-K. (2016). Stereo matching performance analysis of cost

functions on the graphic processing unit (GPU) for perva-

sive computing. Journal of Engineering and Applied Sci-

ences, 11(7), 1480–1487.

9. Hong, G.-S., & Kim, B.-G. (2017). Novel local stereo

matching technique based on weighted guided image fil-

tering (WGIF). Displays (Elsevier), 49, 80–87. https://doi.

org/10.1016/j.displa.2017.07.006.

10. Meyer, L., & Klassen, R. (1998). A comparison of two

image quality models. In Human Vision and Electronic

Imaging III (Vol. 3299, pp. 98–109). SPIE. https://doi.org/

10.1117/12.320101.

11. Murdock, K. L. (2010). 3Ds Max 2010 Bible (p. 1312).

Mission: SDC Publications. https://dl.acm.org/citation.

cfm?id=1795691.

12. Samarin, A. (2005). Modern three-dimensional image dis-

play technologies. Modern Electronics, 2, 2–7.

13. Shirley, P., & Morley, R. (2003). Realistic ray tracing (Vol.

235). Boca Raton: CRC Press.

14. Zori, S. A. (2015). Volumetric visualization by ray tracing

algorithm with two-level hierarchy of limiting volumes and

AABB. Bulletin of DonNTU, Donetsk, 2(21), 5–10.

15. Zori, S. A. (2016). GPU-implementation of parallel com-

puting system 3D stereo imaging using the ray tracing

method. Information Processing Systems: Collected Works,

Kharkiv, 6(143), 201–204.

16. Zori, S., & Porfirov, P. (2015). Productivity increasing of

realistic ray tracing stereo-image synthesis. Journal of

Qafqaz University, Mathematics and Computer Science,

3(1), 30–38.

17. Zori, S., Zaporozhchenko, I., & Grigorev, M. (2013).

Analysis of ways to reduce the computational complexity of

ray tracing algorithm and methods of its parallel imple-

mentation. Digital Signal and Image Processing, 4,

352–357.

3D Res (2018) 9:7 Page 13 of 13 7

123

https://dl.acm.org/citation.cfm?id=808590
https://devtalk.nvidia.com/default/topic/368105/cuda%e2%80%93occupancy%e2%80%93calculator%e2%80%93helps%e2%80%93pick%e2%80%93optimal%e2%80%93thread%e2%80%93block%e2%80%93size/
https://devtalk.nvidia.com/default/topic/368105/cuda%e2%80%93occupancy%e2%80%93calculator%e2%80%93helps%e2%80%93pick%e2%80%93optimal%e2%80%93thread%e2%80%93block%e2%80%93size/
https://devtalk.nvidia.com/default/topic/368105/cuda%e2%80%93occupancy%e2%80%93calculator%e2%80%93helps%e2%80%93pick%e2%80%93optimal%e2%80%93thread%e2%80%93block%e2%80%93size/
https://doi.org/10.1016/j.displa.2017.07.006
https://doi.org/10.1016/j.displa.2017.07.006
https://doi.org/10.1117/12.320101
https://doi.org/10.1117/12.320101
https://dl.acm.org/citation.cfm?id=1795691
https://dl.acm.org/citation.cfm?id=1795691

	Parallel Computer System for 3D Visualization Stereo on GPU
	Abstract
	Introduction
	Organization of the 3D-Stereo Visualization System Based on the Parallel Graphic Processor
	Proposed Modified Ray Tracing Method
	Experimental Results
	Conclusions
	References

