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Abstract Recent study shows that substitution box

(S-box) only cannot be reliably used in image

encryption techniques. We, in this paper, propose a

novel and secure image encryption scheme that

utilizes the combined effect of an algebraic substitu-

tion box along with the scrambling effect of the Arnold

transform. The underlying algorithm involves the

application of S-box, which is the most imperative

source to create confusion and diffusion in the data.

The speciality of the proposed algorithm lies, firstly, in

the high sensitivity of our S-box to the choice of the

initial conditions which makes this S-box stronger

than the chaos-based S-boxes as it saves computa-

tional labour by deploying a comparatively simple and

direct approach based on the algebraic structure of the

multiplicative cyclic group of the Galois field.

Secondly the proposed method becomes more secure

by considering a combination of S-box with certain

number of iterations of the Arnold transform. The

strength of the S-box is examined in terms of various

performance indices such as nonlinearity, strict

avalanche criterion, bit independence criterion, linear

and differential approximation probabilities etc. We

prove through the most significant techniques used for

the statistical analyses of the encrypted image that our

image encryption algorithm satisfies all the necessary

criteria to be usefully and reliably implemented in

image encryption applications.

Keywords S-box � Galois field GF(28) � Primitive

element � Arnold transform � Image encryption

1 Introduction

Increased traffic of confidential information over

internet demands high level of security for safe

communication. This has become the most challeng-

ing problem of the recent world to keep secret data

protected from the adversaries.

Shannon [1] laid the foundation of modern cryp-

tography. Cryptography is known as the science of

changing the useful information into dummy data so

that except for the intended recipient, nobody can

access the secret information. Mainly there are two

classes of cryptography; symmetric key cryptography

and the asymmetric or public key cryptography. This
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classification is based on the keys. In symmetric key

cryptography same key is used on both the ends to

encrypt and decrypt information. However in asym-

metric key cryptography there are two different keys

known as the private key and the public key.

It has been established in literature that the

substitution box (S-box) is a standout in symmetric

key cryptography and is a widely used mechanism in

any substitution-permutation network as a source to

produce nonlinearity [2, 3]. Due to indispensable

involvement of the S-box, many algorithms have been

presented for the construction of safer and more

reliable S-boxes [2, 4–6]. In addition, applications of

S-boxes in digital image encryption, steganography

and watermarking have become quite popular and

influential in recent years [7–9].

Zhang et al. [10] studied the S-box-only encryption

algorithm and proved that S-box-only cipher is

cryptographically vulnerable. Keeping this fact in

view, we propose an image encryption algorithm that

utilizes the composition of a particular S-box along

with the scrambling effect of the Arnold transform.

The algorithm used for S-box is associated with the

structural properties of the Galois field. The design

algorithm uses the iterative applications of exponent

of the primitive element of the Galois field.

In recent literature, chaos has been extensively used

in construction of stronger S-boxes [8, 10–13],

because of its most dominating feature of sensitivity

towards the initial conditions. Our proposed strategy is

also highly sensitive to the choice of the initial

conditions but in our case, we reach the same

performance efficiency results by applying a compar-

atively simple and direct method that utilizes some

prime properties of the Galois field structure. We

determine the cryptographic significance of this S-box

by several dominating performance indices used in

literature such as bit independence, strict avalanche,

nonlinearity, linear and differential approximation

probability tests. We compare the performance of this

S-box with some prevailing algorithms also. It is

however true that even depicting outstanding perfor-

mance indices, the S-box-only image encryption is not

efficient. We in this paper present an image encryption

algorithm using the application of a highly efficient

substitution followed by 10 iterations of the Arnold

transform. To the best of our knowledge, the presented

idea is novel and not been discussed in the existing

literature. The results obtained by this strategy are

tested through highly significant measures used for

this purpose and we conclude that the anticipated

technique is potentially strong and can be reliably used

for further encryption applications.

The material distribution is as follows. Section 2

deals with the properties of the used Galois field and

their application in the construction of a substitution

box. In Sect. 3 we discuss and compare the crypto-

graphic significance of the newly synthesized S-box.

The basic concepts regarding the Arnold transform are

presented in Sect. 4. Section 5 presents the detailed

algorithm used for the image encryption. In Sect. 6 we

test the strength of the proposed scheme using statistical

analyses and lastly Sect. 7 presents the conclusion.

2 Algorithm for S-box

The intent of this section is to presents the design

principle of our S-box. In this regard, we prefer to give

a view of some fundamental facts.

Galois field GFðpnÞ: where p is a prime number, is

expressed as a factor ring Fp½X�=ðf ðxÞÞ where f ðxÞ 2
Fp½X� is a degree n irreducible polynomial. ForGFð28Þ
we choose a degree - 8 irreducible polynomial

f ðxÞ ¼ x8 þ x6 þ x5 þ x4 þ 1 2 F2½X�. We know that

the multiplicative group G of the resultant field

GFð28Þ is cyclic and hence each nonzero element of

the field can be expressed as a power of the generator

g ¼ 00000010.

Nowwe state the construction process for the S-box

where an 8� 8 S-box is a vectorial Boolean function

S : GFð28Þ ! GFð28Þ.
In the proposed construction we use a specific non-

linear, iterative map / defined on the GFð28Þ, given
below:

/ðxjÞ :

g/ðxj�1Þ : 1� j� 254; j 6¼ 230; 234;

g/ðxj�1Þþ12 : j ¼ 230;

g/ðxj�1Þþ18 : j ¼ 234;

0 : j ¼ 255:

8
>>><

>>>:

ð1Þ

The above expression shows that the outputs of this

map depend upon the chosen initial condition. This

sensitivity towards the change of initial conditions

makes this map compatible with the chaotic maps,

however, it is clear that this map is quite straightfor-

ward and easy with the implementation and
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computation view point. In our calculations, we set the

initial condition /ðx0Þ ¼ 1. For the convenience,

every element of the multiplicative cyclic group G

of the associated Galois field is expressed in terms of

exponents of the generator g in Table 1. Some

calculations are explained below, which lead to the

corresponding S-box elements (Table 2).

/ðx0Þ ¼ 1 ðthe initial conditionÞ;
/ðx1Þ ¼ g/ðx0Þ ¼ g ¼ 2;

/ðx2Þ ¼ g/ðx1Þ ¼ g2 ¼ 4;

/ðx3Þ ¼ g/ðx2Þ ¼ g4 ¼ 16;

/ðx4Þ ¼ g/ðx3Þ ¼ g16 ¼ 243:

It is an extremely desirable feature of an S-box to be

invertible so that the process could be reverted

accordingly. For invertibility property, the involved

Boolean function is required to be bijective. It is

evident from the expression of / that our map is

bijective and hence the S-box in invertible. The

inverse S-box is shown in Table 3, which is extracted

from Table 2. The values in Table 2 give the outputs

/ðxÞ ¼ y, where 0� x� 255. Clearly, /�1ð/ðxÞÞ ¼
/�1ðyÞ ¼ x shows that in the inverse S-box, the value

at yth position should be x. Following this rule the

inverse S-box values are obtained (Table 3).

Our next goal is to analyse the cryptographic

performance of the new S-box. In the following

section we discuss some well-known analysis tech-

niques to figure out the strength of our S-box.

3 Performance Analysis of S-box

In this section, we analyze the newly synthesized

S-box through some widely accepted parameters

including nonlinearity, bit independence, strict ava-

lanche, linear and differential approximation proba-

bilities. We compare the results with the prevailing

S-boxes i.e., AES S-box, Affine Power Affine (APA)

S-box, Gray S-box, Skipjack S-box, Xyi S-box and

Residue Prime S-box.

3.1 Nonlinearity

The nonlinearity measure [6] determines the smallest

distance of the reference function from all the affine

functions.

The numerical values are presented in Table 4,

showing an average nonlinearity value 103.5. A

comparison of the nonlinearity results with other

S-boxes is shown in Table 6 and Fig. 1. Clearly, the

nonlinearity of the proposed S-box lies in a highly

acceptable range.

Generally chaos-based algorithms are employed to

increase the complexity and nonlinearity of the S-box.

In order to prove the forte of the newly synthesized

S-box, we compare its nonlinearity with some chaos-

based S-boxes as well to show the effectiveness of our

model (see Table 5).

3.2 Strict Avalanche Criterion

According to SAC, a function S : GFð2nÞ ! GFð2nÞ
would be regarded as reliable if the probability of

change in output-bits is 1 / 2 for a single input-bit

change. The results are presented in Table 4, showing

that our S-box fulfils the requirements of SAC. Table 6

and Fig. 2 compare these results with other S-boxes.

3.3 Linear and Differential Approximation

Probabilities

Linear approximation probability is a measure that

calculates the unevenness of an event. It is mathemat-

ically defined by:

LP ¼ max
Cx;Cy 6¼0

#fxjx:Cx ¼ SðxÞ:Cyg
2n

� 1

2

�
�
�
�

�
�
�
�;

where x represents all possible inputs to the S-box and

Cx and Cy give the parity of the input and output bits

respectively.

The differential uniformity demonstrated by an S-

box is determined through the differential approxima-

tion probability test [2]. The mathematical differential

approximation probability is:

DP ¼ #fx 2 XjSðxÞ � Sðx� DxÞ ¼ Dyg
2n

� �

;

where Dx and Dy represent the input and output

differentials respectively. The results of both LP and

DP and their comparisons are given in Tables 4, 6 and

Figs. 3, 4. It is evident that in the LP measure, our

S-box is better than the Xyi S-box and is pretty similar

to the Residue Prime S-box. However for differential

approximation probability it is much better than the

3D Res (2017) 8:26 Page 3 of 14 26

123



Table 1 Exponential

representation and the

elements of G

x 2 G gn x 2 G gn x 2 G gn x 2 G gn x 2 G gn

1 g255 52 g22 103 g102 154 g52 205 g91

2 g1 53 g42 104 g23 155 g166 206 g103

3 g231 54 g12 105 g82 156 g108 207 g29

4 g2 55 g140 106 g43 157 g202 208 g24

5 g207 56 g62 107 g177 158 g50 209 g25

6 g232 57 g227 108 g13 159 g48 210 g83

7 g59 58 g131 109 g169 160 g212 211 g26

8 g3 59 g75 110 g141 161 g134 212 g44

9 g35 60 g185 111 g89 162 g41 213 g84

10 g208 61 g191 112 g63 163 g139 214 g178

11 g154 62 g147 113 g8 164 g226 215 g27

12 g233 63 g94 114 g228 165 g74 216 g14

13 g20 64 g6 115 g151 166 g190 217 g45

14 g60 65 g70 116 g132 167 g93 218 g170

15 g183 66 g123 117 g72 168 g121 219 g85

16 g4 67 g195 118 g76 169 g78 220 g142

17 g159 68 g161 119 g218 170 g112 221 g179

18 g36 69 g53 120 g186 171 g105 222 g90

19 g66 70 g80 121 g125 172 g223 223 g28

20 g209 71 g167 122 g192 173 g220 224 g64

21 g118 72 g38 123 g200 174 g241 225 g249

22 g155 73 g109 124 g148 175 g31 226 g9

23 g251 74 g114 125 g197 176 g158 227 g144

24 g234 75 g203 126 g95 177 g65 228 g229

25 g245 76 g68 127 g174 178 g117 229 g57

26 g21 77 g51 128 g7 179 g250 230 g152

27 g11 78 g107 129 g150 180 g244 231 g181

28 g61 79 g49 130 g71 181 g10 232 g133

29 g130 80 g211 131 g217 182 g129 233 g138

30 g184 81 g40 132 g124 183 g145 234 g73

31 g146 82 g225 133 g199 184 g254 235 g92

32 g5 83 g189 134 g196 185 g230 236 g77

33 g122 84 g120 135 g173 186 g206 237 g104

34 g160 85 g111 136 g162 187 g58 238 g219

35 g79 86 g222 137 g97 188 g34 239 g30

36 g37 87 g240 138 g54 189 g153 240 g187

37 g113 88 g157 139 g101 190 g19 241 g238

38 g67 89 g116 140 g81 191 g182 242 g126

39 g106 90 g243 141 g176 192 g237 243 g16

40 g210 91 g128 142 g168 193 g15 244 g193

41 g224 92 g253 143 g88 194 g164 245 g165

42 g119 93 g205 144 g39 195 g46 246 g201

43 g221 94 g33 145 g188 196 g215 247 g47

26 Page 4 of 14 3D Res (2017) 8:26

123



Residue Prime S-box and pretty close to the Skipjack

and Xyi S-boxes.

3.4 Bit Independence Criterion

The independent behavior of the pair of variables and

the changes in input bits are considered as important

factors of bit independence criterion [17]. According to

this criterion, input bits are transformed exclusively, and

then output bits are scrutinized for their independence.

Bit independence is one of themost desirable properties

in any cryptographic structure. The increasing indepen-

dence between bits is of greatworth to attain a high level

of complexity and perplexity in a system.

The results of BIC are given in Table 4 and are

compared in Table 6 and Fig. 5. It is evident that, in

BIC, our S-box has similarity with the Xyi S-box. By

analyzing the results presented in Table 4, it is quite

clear that the proposed algebraic substitution box has

upended cryptographic features and can be usefully

implemented in encryption applications. Table 6

witnesses that when compared with AES, APA, Gray,

Skipjack, Xyi and Residue prime S-boxes, our new

S-box is wisely alike the formerly prevailing S-boxes.

4 Arnold Transform

Arnold transform is used for encryption of digital

images to increase the spread of pixel intensities

[18–20]. For any square image of size M �M,

encryption using the Arnold transform can be given as:

Table 1 continued x 2 G gn x 2 G gn x 2 G gn x 2 G gn x 2 G gn

44 g156 95 g18 146 g110 197 g171 248 g149

45 g242 96 g236 147 g239 198 g99 249 g216

46 g252 97 g163 148 g115 199 g86 250 g198

47 g32 98 g214 149 g127 200 g248 251 g172

48 g235 99 g98 150 g204 201 g143 252 g96

49 g213 100 g247 151 g17 202 g56 253 g100

50 g246 101 g55 152 g69 203 g180 254 g175

51 g135 102 g136 153 g194 204 g137 255 g87

Table 2 S-box 1 2 4 16 243 90 222 86 199 133 232 6 64 224 41 162

136 102 103 206 186 120 84 213 49 79 35 9 226 164 194 153

189 83 210 40 81 140 55 101 139 163 97 137 204 150 129 182

191 61 28 223 172 251 23 104 237 192 122 33 94 63 112 170

218 119 42 53 69 152 230 185 60 14 216 249 225 82 105 171

197 125 121 168 142 220 173 135 51 77 236 96 252 46 195 67

38 72 117 178 214 98 99 198 250 179 221 43 106 39 144 227

57 229 228 114 74 165 245 25 209 20 13 108 156 44 212 160

34 188 145 183 15 193 244 180 203 75 59 7 128 91 205 93

167 71 130 29 207 5 32 47 247 100 253 92 235 48 159 17

151 115 148 124 132 116 89 111 85 219 238 241 174 127 149 248

200 123 66 19 190 166 155 22 52 154 11 27 215 196 134 161

68 76 118 21 26 211 80 70 65 177 107 78 169 109 73 234

24 208 10 181 231 3 8 113 37 36 18 95 126 242 45 217

131 58 187 240 87 255 54 138 233 12 239 147 62 56 202 157

88 143 201 246 50 158 176 141 110 146 31 175 254 184 30 0
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a

b

� �

¼
# #

# s

� �
x

y

� �

ðmodMÞ; ð2Þ

where (x, y) and ða; bÞ are associated pixel co-

ordinates of the input image and encrypted data, such

that ð#; sÞ ¼ ð1; 2Þ, as shown in Fig. 6.

The Arnold transform encryption is worked on

periodic boundary treatment. The n number of itera-

tions for encrypting the image may be written as:

Iða; bÞk ¼ Kðx; yÞk�1ðmodMÞ;

where K is the Arnold transform matrix given in

(2) and I is an M �M encrypted image data for k

number of iterations: k ¼ 1; 2; . . .; n, such that

Table 3 The inverse S-box 255 0 1 213 2 149 11 139 214 27 210 186 233 122 73 132

3 159 218 179 121 195 183 54 208 119 196 187 50 147 254 250

150 59 128 26 217 216 96 109 35 14 66 107 125 222 93 151

157 24 244 88 184 67 230 38 237 112 225 138 72 49 236 61

12 200 178 95 192 68 199 145 97 206 116 137 193 89 203 25

198 36 77 33 22 168 7 228 240 166 5 141 155 143 60 219

91 42 101 102 153 39 17 18 55 78 108 202 123 205 248 167

62 215 115 161 165 98 194 65 21 82 58 177 163 81 220 173

140 46 146 224 164 9 190 87 16 43 231 40 37 247 84 241

110 130 249 235 162 174 45 160 69 31 185 182 124 239 245 158

127 191 15 41 29 117 181 144 83 204 63 79 52 86 172 251

246 201 99 105 135 211 47 131 253 71 20 226 129 32 180 48

57 133 30 94 189 80 103 8 176 242 238 136 44 142 19 148

209 120 34 197 126 23 100 188 74 223 64 169 85 106 6 51

13 76 28 111 114 113 70 212 10 232 207 156 90 56 170 234

227 171 221 4 134 118 243 152 175 75 104 53 92 154 252 229

Table 4 Performance

Indices for S-box
Analysis Max. Min. Average Square deviation DP LP

Nonlinearity 106 99 103.5

SAC 0.609375 0.421875 0.506592 0.0222178

LP 162 0.132813

DP 0.046875

BIC 99 103.357 2.14643

AES APA Gray Skipj. Xyi Res.
Prime

New
95

100

105

110

115
112 112 112

105.7
105

99.5

103.5

N
on

lin
ea

ri
ty

V
al
ue

s

Fig. 1 Nonlinearity comparison

Table 5 Nonlinearity comparison with chaotic models

Nonlinearity

S-box Max. Min. Avg.

Proposed 106 99 103.5

Chaotic [14] 106 98 103

Chaotic [15] 104 100 103.3

Chaotic [16] 108 98 103
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Iða; bÞ0 ¼ Iðx; yÞ. Periodicity of encryption is depen-

dent on the size of a given image. The encrypted image

data can be reversed on application of the inverse

Arnold transform to the I with same iterations k as

follows:

Iðx; yÞk ¼ IK�1ða; bÞk�1ðmodMÞ:

5 Image Encryption Scheme

Now we present the scheme used for the image

encryption. It comprises of the following two steps.

– Use substitution box to partially encrypt the plain

image.

– Apply 10 iterations of the Arnold transform on this

partially encrypted image to obtain the fully

encrypted image.

Table 6 Performance

comparison of different

S-boxes

S-box Nonlinearity SAC BIC DP LP

New 103.5 0.506592 103.357 0.046875 0.132813

AES 112 0.5058 112.0 0.0156 0.062

APA 112 0.4987 112.0 0.0156 0.062

Gray 112 0.5058 112.0 0.0156 0.062

Skipjack 105.7 0.4980 104.1 0.0468 0.109

Xyi 105 0.5048 103.7 0.0468 0.156

Residue prime 99.5 0.5012 101.7 0.2810 0.132

AES APA Gray Skipj. Xyi Res.
Prime

New

0.46

0.48

0.5

0.52
0.5058

0.4987

0.5058

0.498

0.5048
0.5012

0.5066

SA
C

V
al
ue

s

Fig. 2 SAC comparison

AES APA Gray Skipj. Xyi Res.
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New

0.1

0.2

0.3

0.062 0.062 0.062

0.109

0.156
0.132 0.1328

L
P
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Fig. 3 LP comparison

AES APA Gray Skipj. Xyi Res.
Prime

New

0.1

0.2

0.3

0.4

0.0156 0.0156 0.0156

0.0468 0.0468

0.281

0.0469
D
P

V
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ue

s

Fig. 4 DP comparison

AES APA Gray Skipj. Xyi Res.
Prime

New
100

105

110

115
112 112 112

104.1 103.7

101.7

103.36B
IC

V
al
ue

s

Fig. 5 BIC comparison
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Algorithm 1 A novel image encryption
Input: Plain image I(x, y)
1: Initialize φ(x0) = 1.
2: for all i = 0, 1, 2, ..., 255 do
3: φ(xi) = gφ(xi−1) using Eq.(1)
4: for each pixel k = 1 : 10 obtained from φ do
5: I(α, β)k = Λφ(x, y)k−1(modM) using Eq.(2)
6: end for
7: end for
Output: Encrypted image I(α, β) is obtained.

5.1 Encryption Algorithm

We selected three 512� 512 benchmark images of

hill, peppers and Barbara respectively. By following

the above stated scheme the images are encrypted. We

obtain the decrypted images by applying the inverse

Arnold transform and inverse S-box respectively.

Figures 7, 8, 9 and 10 show the plain images, the

S-box-only encrypted images, the fully encrypted

images and the decrypted images respectively. One

can observe that the visual results of S-box-only

encryption are not completely unintelligible however

the combined effect of the S-box and Arnold transform

is much better. We further examine the proposed

encryption strategy through some statistical analysis.

6 Statistical Analysis of the Proposed Method

The statistical analysis of the proposed method

includes the most significant measures such as

entropy, contrast, correlation, homogeneity, number

of pixels change rate and unified average change

intensity. We discuss these security parameters one by

one and present the numerical results also.

6.1 Histogram Analysis

Histogram is a graphical representation of image-

pixels distribution at each intensity level. A good

encryption technique requires significant difference in

the histogram of the plain and encrypted image so that

the original content could not be extracted. Figures 11,

12, 13 show the respective histograms of plain,

encrypted and the decrypted images. The histograms

of the encrypted images, though not very uniformly

distributed, but are evidently better than those,

obtained by applying the encryption schemes pro-

posed in [21, 22] and are pretty alike to [8]. The visual

results obtained for histograms prove that the proposed

method is stable against the histogram based attacks.

(a) (b)

Fig. 6 Effect of 10

iterations of Arnold

transform. (a) ( Plain image

(Hill). (b) Arnold encryption
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Fig. 7 Plain Images: (a) Hill, (b) Peppers and (c) Barbara

Fig. 8 S-box encryption: (a) Hill, (b) Peppers and (c) Barbara

Fig. 9 Full encryption: (a) Hill, (b) Peppers and (c) Barbara
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6.2 Deviation from Uniform Histogram

An ideal encryption algorithm produces uniform

histogram distribution. In order to determine the

encryption quality of the proposed scheme we exam-

ine the deviation from the uniform histogram. The

smaller the deviation, the better is encryption algo-

rithm. The mathematical expression for the ideally

uniform histogram is given by:

HðCiÞ :
M � N

256
: 0�Ci � 255

0 : elsewhere

8
<

:
ð3Þ

The deviation from the ideality can be expressed as:

D ¼
P255

Ci¼0 jHCi
� HCj

M � N
;

where HC represents the histogram of the encrypted

image, HCi
is the uniform histogram and M � N

represents the image size. We calculate the deviation

values for 512� 512 images of hill, peppers and

Barbara and the results are shown below in Table 7. It

is quite clear that our scheme is in a good comparison

with the scheme of [8], however, it is much better than

[21].

6.3 Information Entropy

Entropy analysis measures the randomness of system.

The information entropy is given by,

HðMÞ ¼
X

PðmiÞlog2
1

PðmiÞ
;

where M ¼ mi represents the values of discrete

random variable and PðmiÞ is the probability at mi.

For an image with 256 gray levels, the ideal value of

entropy measure is 8 and a strong cryptosystem attains

entropy close to the ideal value in order to resist the

entropy attacks. It has been established that the true

randomness could be captured by using local entropy

[23, 24]. In this regard, we select some randomly

chosen, non-overlapping blocks of the encrypted

images, calculate the average of the entropy measures

of these blocks. For the proposed method, the numer-

ical results for both the local and global entropy of

images of hill, peppers and Barbara are shown in

Table 8.

6.4 Contrast

Contrast is a measure used to identify objects in an

image. A strong encryption technique produces high

level of contrast. Table 9 shows that our encryption

scheme fulfills this criterion and the results obtained

by the combined effect of S-box and Arnold transform

are comparatively better than the individual effect of

the S-box or the Arnold transform only. One can see

that the proposed scheme offers a high level of contrast

when compared with [25].

6.5 Correlation

In order to examine the encryption effect of the

proposed method we perform correlation analysis on

both the plain and the encrypted images. It is quite

clear that for an efficient encryption, the correlation

Fig. 10 Full decryption: (a) Hill, (b) Peppers and (c) Barbara
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between the adjacent pixels of the encrypted image

should be reduced as compared to the plain image. The

coefficient is given by,

rxy ¼
Eððx� lxÞðy� lyÞÞ

ffiffiffiffiffiffiffiffiffi
dxdy

p ;

where l and d represent the expected value and

variance. The value of correlation coefficient close to

zero guarantees better encryption quality. The analysis

is performed on three images, hill, peppers and

Barbara. The results arranged in Table 10 witness
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)
P
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im
ag
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(b
)
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(c
)
D
ec
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im

ag
e

Table 7 Deviation from uniform histogram

Deviation from uniform histogram

Images Proposed Ref.[8] Ref.[21]

Hill 0.9147 0.2179 27

Peppers 0.9961 0.1998 34

Barbara 0.8954 0.1718 23

Table 8 Entropy analysis

Entropy

Images Local Global Ref.[25]

Hill 7.4651 7.4802 7.6528

Peppers 7.5728 7.5714 7.7317

Barbara 7.6105 7.6321 7.7539

Table 9 Contrast analysis

Contrast

Images S-box Arnold Comb. Ref. [25]

Hill 10.0101 5.7534 10.3795 8.7905

Peppers 9.7141 6.3182 10.2218 8.5381

Barbara 9.5166 5.7368 9.9306 8.1451

Table 10 Correlation analysis

Correlation

Images S-box Arnold Comb. Ref.[25]

Hill 0.0360 -0.1305 0.0002 0.0105

Peppers 0.0498 0.0183 0.0003 0.0114

Barbara 0.0403 0.0378 -0.0013 0.0101
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the effectiveness of the proposed method in compar-

ison with [25].

6.6 Homogeneity

Gray level co-occurrence matrix (GLCM) depicts the

ability of combinations of pixel brightness results in

tabular form. The closeness of the distribution in the

(GLCM) to its diagonal is measured through the

homogeneity analysis. The smaller is the homogeneity

measure, the better is encryption. The numerical

results shown in Table 11 go in favor of the proposed

strategy.

6.7 Differential Analysis

A desirable feature of a cryptosystem is to show high

sensitivity to single-bit change in the plain image. For

this purpose two measures, NPCR and UACI, are

commonly used. NPCR stands for the number of

pixels change rate of encrypted image as a result of

one pixel change in the plain image. NPCR can be

defined as the variance rate of pixels in the encrypted

image that occurs through the change of a single pixel

in original image. However UACI means unified

average intensity of differences between the plain and

encrypted images. The percentage values for both

these measures are given by the following formulae.

NPCR ¼
P

i;j Dij

W � H
� 100; ð4Þ

UACI ¼ 1

W � H

P
i;j Cij � �Cij

255

" #

� 100: ð5Þ

In above C and �C represent the encrypted images

obtained as a result of single bit change in the original

image. In Eqs. (4) and (5), W and H represent the

width and the height of the images C and �C.
An efficient encryption scheme is one that produces

higher values of both NPCR and UACI. The results

obtained in our case are shown in Tables 12 and 13

respectively which prove that our technique is quite

efficient as compared to some recent methods.

6.8 Time Analysis

The time complexity of the proposed algorithm

depends linearly on the size of the input image. The

action per pixel is proportional to N2 �M2 þ Sb þ IA,

where N and M are length and width of the given

image, Sb represent the size o S-box, and IA shows the

iteration number of the Arnold transform,

respectively.

The major focus of the proposed framework is the

complexity of an encryption process. The computa-

tional speed of the proposedmethod is also reasonable.

Although our scheme takes more time than [12] and

[8] but offers increased security. The results presented

in Table 14 show that the proposed algorithm is much

faster than some recently presented chaos-based

encryption techniques [21, 26], (see Table 2 of [8]).

The computational cost results are obtained on three

Table 11 Homogeneity analysis

Homogeneity

Images S-box Arnold Comb. Ref. [25]

Hill 0.4233 0.4599 0.3915 0.4217

Peppers 0.4329 0.4317 0.3918 0.4365

Barbara 0.4285 0.4465 0.3944 0.4209

Table 12 NPCR comparison

NPCR

Images S-box Arnold Comb. Ref.[12] Ref.[8]

Hill 1 0.9936 0.9960 0.9959 0.9899

Peppers 1 0.9943 0.9959 0.9960 0.9918

Barbara 1 0.9946 0.9959 0.9957 0.9941

Table 13 UACI comparison

UACI

Images S-box Arnold Comb. Ref.[12] Ref.[8]

Hill 0.2990 0.2629 0.3313 0.3352 0.3311

Peppers 0.3120 0.2884 0.3384 0.3356 0.3326

Barbara 0.3072 0.2858 0.3320 0.3351 0.3297

Table 14 Computational cost comparison (in seconds)

Test images Proposed Ref.[21] Ref.[26]

Hill 10.56 11.42 34.62

Peppers 10.81 12.13 35.11

Barbara 10.47 11.45 34.81
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different gray test images of size 512� 512. The listed

methods implementation are performed on processor:

Intel(R) Core(TM) i5-2520M CPU @ 2.5, RAM: 8.00

GB; the run times of each method are obtained using

Matlab 2015a.

7 Conclusion

In this work we propose an image encryption

scheme that is extremely simple and highly effective.

It has been established in some recent research work

that the S-box-only encryption techniques are not

secured enough for confidential communications

therefore we introduce the combination of the S-box

with certain number of iterations of the Arnold

transform. The strength of the proposed method is

then analyzed through several metric measurements.

Moreover, the proposed method test evaluation for

confusion creating capability is self-evident in terms

of visual randomness and better values as compared to

some recently presented algorithms.
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