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Abstract This paper presents a hybrid character

control interface that provides the ability to synthesize

in real-time a variety of actions based on the user’s

performance capture. The proposed methodology

enables three different performance interaction mod-

ules: the performance animation control that enables

the direct mapping of the user’s pose to the character,

the motion controller that synthesizes the desired

motion of the character based on an activity recogni-

tion methodology, and the hybrid control that lies

within the performance animation and the motion

controller. With the methodology presented, the user

will have the freedom to interact within the virtual

environment, as well as the ability to manipulate the

character and to synthesize a variety of actions that

cannot be performed directly by him/her, but which

the system synthesizes. Therefore, the user is able to

interact with the virtual environment in a more

sophisticated fashion. This paper presents examples

of different scenarios based on the three different full-

body character control methodologies.

Keywords Character animation � Hybrid controller �
Navigation � Object manipulation � Virtual reality

interaction

1 Introduction

Recently, with the rapid development of low-cost

motion capture systems, such as Microsoft’s Kinect

[1] and Asus Xtion [2], as well as the development of

various games that use these technologies, users can

interact directly with the virtual environment. These

solutions enable more sophisticated interaction with

the virtual environment compared to the basic con-

trollers that videogames use [3]. This is because the

users can use their body poses to interact with the

environment. Therefore, an increment of the user’s

immersion in the environment has been provided with

the means to take part in events that evolve within the

environment.

Conversely, even if the user is able to interact with

various tasks, the basic disadvantage of existing

applications that use motion capture technologies is

that the system can synthesize either predefined

actions or to provide direct manipulation of charac-

ter’s body parts. When using predefined gestures or

body activity, the system recognizes the user’s activity
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and synthesizes the desired motion. The ability to

synthesize only a limited number of motions results in

restrictions to the user’s actual intention. For this

reason it is assumed that an enhancement of the actions

that the user is able to perform can be beneficial. It will

ensure that the user is able to perform and that the

system can synthesize not only the predefined

motions, but also a variety of freeform actions.

Based on these requirements, this paper presents a

character control interface that provides the user with

the ability to directly manipulate the virtual character

or to use their body actions to synthesize the desired

motion sequences. Considering the variety of actions

that can be performed by the user, as well as a variety

of motions that cannot be synthesized directly by the

system, a novel hybrid character control interface is

introduced. This hybrid controller lies within the

activity recognition and the direct manipulation

methodologies. The activity recognition process com-

municates with an animation controller that is respon-

sible for animating the virtual character based on a

number of motion sequences (mostly of them are

related to locomotion). Moreover, the direct manipu-

lation allows the user to manipulate specified body

parts of the virtual character based on the performance

capture process. The hybrid controller allows the user

to perform different actions that are contained in the

database of motions, and to enhance these synthesized

actions by directly manipulating specific body parts of

the user to a virtual character. An example of the

aforementioned control method is the ability of the

system to recognize a walking motion in conjunction

with the user’s ability to wave its hand during the

character’s locomotion (see Fig. 1). We believe that

such a solution could be ideal for virtual reality related

applications that require navigation, interaction and/or

manipulation of objects [59].

To achieve this hybrid controller, it is necessary to

have an efficient methodology that will be able to

determine whether the user intends to perform an

action and whether the user intends to manipulate

specific body parts of the character. In the proposed

methodology, the system satisfies both of these

requirements simultaneously. This is achieved as

follows. Firstly, by analyzing small amounts of motion

capture data based on its motion features, the neces-

sary patterns are defined. Secondly, by using a

searching algorithm, all possible motions-joints com-

binations are found and are stored in a database.

Finally, based on a searching algorithm that is

implemented for the purpose of the proposed method-

ology, the system returns the body parts of the

character that are manipulated by the user and those

that are manipulated by the motion controller.

In addition to the hybrid controller that is presented

in this paper, the user should be able to interact with

tasks, objects and the environment. Hence, in the

proposed methodology, additional parameters that

influence the motion synthesis process are imple-

mented in an action controller that is attached to the

character. These parameters are responsible for keep-

ing information about the task that the character

performs, allowing interactions with the environment

and objects that are located within it. Thus, based on

the aforementioned action controller, different exam-

ples are presented in this paper.

The remainder of the paper is organized in the

following way. In Sect. 2, related work on animation

techniques is presented. In Sect. 3, an overview of the

proposed methodology is presented. The methodology

Fig. 1 The three different character animation controllers by

which the proposed methodology can synthesize: a walking

motion based on the motion controller (left), manipulation of

character’s body based on the direct manipulation controller

(middle), and a walking motion in combination with a hand

wave motion based on the hybrid controller (right)
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that is used to generate the hybrid motion controller is

presented in Sect. 4. Examples of scenarios that are

developed with the proposed methodology are pre-

sented in Sect. 5. The implementation and the results

obtained when evaluating the proposed methodology

are presented in Sect. 6. Finally, in Sect. 7 the

conclusions are drawn and potential future work is

discussed.

2 Related Work

There are various ways to animate a virtual character,

but the three most common are data-driven, kinemat-

ics and physics techniques and there has been exten-

sive research in these areas [4, 5]. Interactive character

control can also be separated according to the input

device that is used for the character animation process

[6]. In general, the character controller can be a

standard input device, such as a keyboard and joystick

such as [7]. Alternatively, it can be more specialized

such as text input [8–10, 60], prosodic features of

speech [11], sketch-based interfaces [12, 13] or the

body) [14–16] or the body part [17] of a user

(performance capture), when its motion is captured

using motion capture technologies. The methodology

presented in this paper lies in the field of data-driven

motion synthesis, on activity recognition and on

performance animation techniques, since the system

permits one to either synthesize the motion of the

character based on an activity recognition methodol-

ogy or to manipulate the character’s body according to

the user’s performance. Therefore, work related to

those techniques is presented in the following

paragraphs.

In data-driven techniques, the existing motion data

that is contained in a database is used to animate the

virtual character. Hence, various methodologies to

interpolate [18, 19], blend [20, 21], splice [22–24],

warp [25], retarget [26], and so on, enable one to

synthesize a wide range of actions that the character

can perform. In the methodology presented, a simple

locomotion controller was built. It is similar to the one

that was developed in [27], which is responsible for

animating the character’s locomotion. However,

instead of using keyboard inputs to manipulate the

character, a methodology is introduced that estimates

the character’s motion by capturing the user’s

performance.

Conversely, performance animation techniques,

which are also known as computer puppetry

[28, 29], manipulate body parts by using kinematics

solutions [16, 30], or recognize the performer’s action

(activity recognition) and display the motion from a

database [16, 31–34], or synthesize a new motion

sequence by using the existing motion data that is

contained in a database (motion reconstruction)

[15, 35–38]. In these three different approaches, the

input signals that are retrieved from a motion capture

devices are used as the main parameters for the motion

synthesis process. Hence, for animating the virtual

character, methodologies that use accelerometers

[31, 35, 39] or optical motion capture devices

[40, 41] provide the desired control parameters for

the system. Among other subjects, the research

community has focused on the ability to synthesize

as naturally as possible motion sequences when using

a reduced number of inputs. Hence, solutions that use

six [42] or even two [42] input parameters are able to

reconstruct the motion of the character in real-time.

These methodologies, which generally are based on a

statistical analysis of existing human motion data

[15, 43], map the reduced input parameters of a

database of postures to find and synthesize those that

are most appropriate.

Less attention has been given to a methodology that

will be able to combine the activity recognition and the

direct manipulation of the character’s body parts by

using input parameters provided by a motion capture

device. Ishigaki et al. [44] and Seol et al. [45] proposed

solutions that are closest to what this paper presents. In

[44] by developing an activity recognition methodol-

ogy, the system is able to recognize and then

synthesize the motion of a character. Additionally,

since the character is able to interact with various tasks

a physics-based controller that uses an inverse pendu-

lum model provides physical valid postures of the

character when its lower body does not make contact

with the ground. In the aforementioned method, the

character is able to perform a motion based either on

the motion controller or on a physics simulation

controller. In [45] an activity recognition methodology

enforces the synthesis of various actions contained in a

database. Moreover, the system is able to blend

different actions, such as enhancing the actual number

of the motions that can be synthesized. In such case,

the synthesized motions are always dependent on the

motion sequences contained in a database. This means
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that a user is limited to performing existing actions or

combinations of actions instead of synthesizing

actions by directly using its body. Hence, the hybrid

way of controlling and synthesizing the motions of a

character, which provides an enhancement of the

actual actions space by combining simultaneously the

activity recognition and the direct manipulation of

user’s body parts to the character, is the main

advantage of the presented method.

3 Overview

The proposed methodology can recognize a variety of

actions and map these actions to the character’s

controller. It offers a technique to recognize the user’s

activity during the performance capture process.

Moreover, the presented system recognizes the user’s

intention to perform hybrid actions. During the

application runtime, the system computes the likeliest

way to control the character. This is based on a

searching algorithm that returns the character control

module. The system returns either a single motion that

animates the character (motion controller), or the

combination of joints that are manipulated by the user

in conjunction with the corresponding motion that the

user mimics (hybrid controller), or the whole number

of joints giving the chance to the user to manipulate

the whole body of the character based on its activity

(direct manipulation controller). The aforementioned

methodology that describes the ways that the user

controls the character appears in Fig. 2.

4 Hybrid Character Controller

In this section, four basic steps were introduced to

achieve the hybrid character controller. Firstly, the

existing motion data that animates the character is

analyzed to provide the necessary patterns, such as

enabling an efficient activity recognition method.

Secondly, the character’s joints are assigned with

semantic labels. Thirdly, all possible combinations of

the joints-motions are pre-computed, according to the

joints’ semantic labels. Finally, by using the proposed

searching methodology, the system estimates the

corresponding controller mechanism that animates

the character.

4.1 Computing Motion Features

To generate an activity recognition methodology, the

motion data that animates the virtual character is

analyzed based on its features. With this analysis

process it is possible to execute the necessary patterns

of human motion. Then, it is possible to develop an

efficient methodology that enables different users to

perform a predefined action and the system to recognize

it without using a time-consuming calibration process.

For each of the motion sequences, as well as for

each of the character’s joints that is related to a specific

action, the position �pi;j and velocity �vi;j features are

computed according to:

�pi;j ¼
1

N

XN

t¼1

kpi;jðtÞk where i¼ 1; . . .;I; j¼ 1; . . .;J

ð1Þ

�vi;j ¼
1

N

XN

t¼1

kvi;jðtÞk where i¼ 1; . . .; I; j¼ 1; . . .;J

ð2Þ

where i and j denote respectively the motion index of

the corresponding joint, and N denotes the number of

frames of each of the motions. I and J denote

repressively the total number of motions and the total

number of joints of a character that were used for the

pre-computation process (see Sect. 4.3). Each of these

features is computed according to the root position,

and velocity. Based on these features, each of the

motion sequences si contained in the database is

represented as �si ¼ fð�pi; vi;nÞ; . . .; ð�pi;n; vi;nÞg where

n denotes the n-th joint of the character.

4.2 Joint Characterization

In the second step, the joints of the character that are

used for the activity recognition process are assigned

with semantic labels. Two different types of labels are

defined. They are the active and the inactive, and the

constrained and the unconstrained joints. An active

joint denotes a joint that is used for the pre-compu-

tation process (see Sect. 4.3) as well as being used

during the activity recognition process. A typical

example is the joints of the character’s wrists. An

inactive joint is not used for the pre-computation

process, although, depending on the second

18 Page 4 of 15 3D Res (2017) 8:18

123



characterization (constrained or unconstrained), it

may be used for the activity recognition process.

Hence, typical examples are the joints in the feet,

which even if they are assigned as inactive are used for

the activity recognition process since they are con-

strained joints. A constrained joint denotes a joint that

should stay static (i.e., that is in contact with the floor).

Unconstrained joints are those that are permitted to

move during the activity recognition process.

A simple example illustrates how each of those two

different types of joint is used for the activity

recognition process. Consider a walking motion where

the performer uses his upper-body for the activity

recognition process. In this case, the user’s upper-body

joints, those retrieved from the motion capture device,

are designated as active, whereas the user’s lower

body joints are designated as inactive. Moreover, the

user’s feet joints (end-effectors) are designated as

constrained, whereas the remainders are designated as

unconstrained. Based on this representation the system

can recognize a walking motion if, and only if, the

user’s feet are in contact with the ground. The user

could perform a walking motion by using the upper-

body, and also edit the motion during the runtime i.e.,

to stoop using their legs during the walking motion to

avoid ceiling constraints (see Fig. 4). Finally, it should

be mentioned that, like the walking motion, different

joints of each of the actions that the character can

perform are designated as active/inactive and con-

strained/unconstrained (see Sect. 6.1).

Fig. 2 The pre-processing

and the runtime stages of the

presented methodology.

During the runtime, the

system computes the

controller mechanism that

best matches to the user’s

activity
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4.3 Pre-computing Possible Intentions

Because the user must be able to manipulate either the

character’s entire body or specific body parts of it, in

the presented methodology it is necessary to perform a

pre-computation step for each possible combination

between the different motions and the active joints of

the character. This pre-computation allows the direct

estimation of the user’s possible intention to interact

with the character. Moreover, this allows the proposed

methodology to estimate directly the motion that the

user mimics and the body part that the user’s body

should manipulate.

By having a number of joints designated as active,

all possible combinations of joints that can be used for

the activity recognition process must first be com-

puted. Thus, having a set of joints k designated as

active, by using the powerset algorithm [46, 47] every

possible combination P(k) of those joints is found,

including an empty set and k, which is the whole set,

itself. Generally, the powerset algorithm provides the

ability to automatically compute all possible combi-

nations among a number of components. The benefit

of such pre-computation is quite important in the

presented methodology since it is possible to compute

automatically all possible combinations when differ-

ent number of motions and joints are used.

To illustrate the way that the system computes all

the possible combinations between the motion data

and the active joints of the character a simple

explanation follows. Firstly, a number of motion

sequences mi are considered, where i ¼ f1; . . .;Kg
and K is the total number of motions. Then, a number

of active joints is considered, ji;n, where n ¼
f1; . . .;Ng and N denotes the total number of active

joints that belongs to the i-th motion sequence. Based

on this representation the system computes all possible

combinations between each motion mi and each joints

ji;n by assigning this process to the powerset algorithm.

It should be mentioned that, for a number of joints l
and a number of motion sequences v, the number of

combinations that the system generates are computed

according to v� 2l � ðv� 1Þ. The ðv� 1Þ part

removes the repeated empty set, which needs to be

computed only once, since the empty set is the same

for all possible motions v taking part in the pre-

computation process. All of those possible combina-

tions are stored in a lookup table and the system is able

to search for the most probable combination, as

presented in the following subsection (Sect. 4.4).

4.4 Intention Recognition

The final step of the motion controller is to return the

most probable character control module. This recog-

nition process is presented in the remainder of this

subsection.

At each time instance, during the application

runtime, the motion capture device captures the user’s

motion. Similarly, for the motion data contained in the

database, the motion features of the input motion are

computed according to Eqs. 1 and 2. Therefore, the

input motion segment is represented as

�s ¼ fð�p1; �v1Þ; . . .; ð�pn; �vnÞg, where n denotes the joint

of the performer as retrieved from the motion capture

device. Thus, for each of the combinations of joints

P(k), resulting from the powerset algorithm, the

system computes the position and velocity distance

functions of the existing pre-computed combination of

the character �si contained in the database and the input

motion segment �s as:

dp ¼
1

M

XM

m¼1

k�pm � �pi;mk
2 ð3Þ

dv ¼
1

M

XM

m¼1

k�vm � �vi;mk2 ð4Þ

where m denotes the number of joints that belong to

the closest combination of joints that is computed by

the powerset algorithm.

Having computed dp and dv it is now possible to

estimate the most probable intention of the user. This

can be achieved by using a nearest neighbor search

[48]. A drawback of using the nearest neighbor search

process, is its inability to compute the empty set (the

way in which the character’s body is directly manip-

ulated by the user) since the 1/M part of Eqs. 3 and 4

does not provide a result when M ¼ 0. For that reason,

threshold values are established for each feature, (pthres
for the joints position, and vthres for the joints velocity),

that are equal to the maximum differences computed

by the exiting motion data. This maximum difference

is computed by maxðpk;i � pk;jÞ and maxðvk;i � vk;jÞ
for the position and velocity feature respectively,

where i and j denote the frames in the motion
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sequences and k the character’s corresponding joint. It

should be noted that different threshold values are

established for each different active joint as well as for

each different motion that animates the character.

During the runtime of the presented methodology,

the searching for finding the most valid action of a

character is achieved by iterating through all possible

combinations contained in our dataset. According to

Eqs. 3 and 4 the position and velocity distances

between the input motion and every possible combi-

nation are computed as distanceð�p; piÞ and

distanceð�v; viÞ. The resulted distances are stored in

the corresponding arrays (P for the position and V for

the velocity). Having computed the aforementioned

distances, the proposed algorithm (see Algorithm 1)

evaluates each component that belongs to and in order

to find the combination that provides the minimum

position and velocity distance simultaneously. Finally,

since the input motion of a user should be within the

threshold values, the following condition is estab-

lished (see Eq. 5) to determine whether the user

intends to directly manipulate (DM) the character or to

animate the character by either using the hybrid (HC)

or the motion controller (MC):

C ¼ HC or MC if ðdp � pthres && dv � vthresÞ
DM otherwise

�

ð5Þ

The direct manipulation controller, denoted by the

empty set, is selected when all of the active joints are

out of their thresholds. The motion controller is

generated when the active joints are within their

threshold. The hybrid controller is generated when a

partial number of active joints outside their thresholds.

As can be seen, both the hybrid and the motion

controller are estimated similarly. The distinction

between these two controllers is based on the result

that is provided by the proposed algorithmic imple-

mentation of the searching process as presented in

Algorithm 1. Given a index 2 ½0; combinations:sizeðÞ�,
where combinations.size() is the total number of

combinations as pre-computed according to the

powerset algorithm, when the index�
combinations:sizeðÞ, a hybrid or a motion controller

is returned. This depends on the index search in the

lookup table (combinations) to find the resultant joint.

An index is a value of the table that stores all possible

combinations. In the lookup table that implemented

each index row of the combinations is represented as a

group of joints that are animated by the motion

controller, gMC, and a group of joints that are animated

by the user, gU , such as combinations½index� ¼
fgMC; gUg. For different index, which means for

different columns of the lookup table, different gMC

and gU are used for animating the character. When the

gU is empty, the system animates the character based

only on the motion controller, since all the character’s

joints are animated by the existing motion data.

Similarly, the hybrid controller is generated when both

the gMC and gU are not empty of joints. Conversely,

when the index ¼ 0, direct manipulation of the

character’s joints provides the best match of the input

motion, since the powerset algorithm returns the

empty set as the first possible combination during the

pre-computation process. Therefore, the character is

animated solely by the user. Hence, with the method-

ology presented, the system simultaneously recog-

nizes the action that animates the character based on

the existing motion data and the user’s intention to

perform a hybrid action by searching directly in a

lookup table to find the combination that is assigned to

the index number.

Input: The motion features of the user’s posture (p̌,
v̌), the example motion features (pi, vi) in
accordance with the associated threshold
values (pThresi, vThresi) as computed for
each motion contained into the database.

Output: The index that represents the character
manipulation module.

for (i=0 to C.size()) do
P ← distance(p̌, pi);
V ← distance(v̌, vi);
if (i>1) then

for (j=0 to P.size()) do
if (Pj < P0 && Vj < V0) then

P0 ← Pj ;
V0 ← Vj ;
if (P0 ≤ pThresj && V0 ≤ vThresj)
then

index = j;
else

index = 0;
end

end
end

end
end
return index;
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An alternative to the aforementioned methodology

is based upon the ability to select body parts that have

differences between input and pre-recorded larger

than the thresholds. In this case, such a methodology

even if it is able to provide a solution, may result in a

synthesized motion that is not the desired one. This is

because the system is unable to recognize only a single

action at each time step. More specifically, consider-

ing a user that performs with their right hand a walking

motion and with their left hand a running motion, the

system is unable to estimate which is the best match

that animates the character. With the presented pre-

computation process, as well as with the proposed

algorithmic searching process the system is able to

estimate only a single motion at every iteration of the

system.

5 Controller Interaction Paradigms

To demonstrate the efficiency of the proposed

methodology, different interaction paradigms were

implemented. Each of the paradigms that are pre-

sented in the following subsections was developed on

the basis of the different actions that the system can

synthesize due to the character controller’s three

different modules. Moreover, an action controller was

developed in order to enhance the actual actions that

the user is able to perform through the character.

Specifically, the action controller has the following

parameters:

– The character controller C is based on the activity

recognition process, which estimates the motion of

the character as presented in Sect. 4, enabling all

possible controller states.

– The environment constraints E that characterize

the environment and prevent the system from

synthesizing incorrect motion (e.g., a collision with

objects and walls, falling down to the ground, etc.).

– The behavior B of the objects located in the three-

dimensional environment that allows the user to

interact with them. B receives values B 2
ftrue or falseg indicating whether the object

should follow the character’s hand. Moreover, a

threshold value is inserted between the character’s

hands and the object to enable/disable the

interaction.

Thus, based on the aforementioned states, the action

controller takes the following form:

A ¼ fC;E;Bg ð6Þ

Any state that does not participate in the examined

scenario, are filled as ‘‘empty’’. Based on this repre-

sentation of the action controller that is attached to the

virtual character, the following subsection presents

different examples. Finally, it should be noted that the

examples presented below also appear in the accom-

panying video.

5.1 Locomotion Synthesis

By using their body, the user is able to manipulate the

character (see Fig. 3). Moreover, additional environ-

mental constraints are placed on the environment. The

user avoids ceiling constraints (Fig. 4) that are located

in the three-dimensional environment, by deforming

the displayed motion. This deformation is achieved by

using the inverse kinematics solver proposed by

Kalmann [51], constraining the feet end-effector to

remain on its position when the character’s hips move

down. There are also data-driven motion deformation

techniques such as [53] that can be used in the

proposed methodology, though a simple kinematics

deformation was considered in the current implemen-

tation. In these examples the user drives the character

by using two control parameters the C and E.

5.2 Objects Manipulation and Interaction

In this case two different scenarios were implemented

that illustrate the flexibility of the system in estimating

a motion sequence when using different active joints.

In the first scenario (see Fig. 5) the user manipulates

the character by using its upper body. In the second

scenario (see Fig. 6) the user can manipulate the

character by using either its upper or lower body. In

this approach, when the user is required to animate the

character based on its lower body, only one foot must

be constrained at a time. This is achieved by assigning,

to the character controller state, C, an indicator to tell

which foot (left or right) is constrained, such as

F 2 fR or Lg. Finally, in those scenarios, the user can

interact with objects that are located in the environ-

ment. Hence, the action controller takes C, E and B as

parameters.
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6 Implementation and Evaluation

This section presents the process of implementing and

evaluating the presented methodology and the results

obtained.

6.1 Implementation

To implement the proposed methodology, Microsoft’s

Kinect [1] motion capture device and its associated

SDK that builds upon Shotton et al. [49] were used to

capture the user. The motion features of the performer

that are used for the activity recognition process are

computed based on the skeletal information provided

by the Microsoft’s Kinect SDK. The presented

methodology was implemented on an Intel i7 with

8 GB of memory. For the activity recognition process

windows of different sized were tested during our

development process varying from 16 to 512 ms. We

found that a window with size 256 ms is able to

respond fast as well as to provide high recognition

rate. The human skeletal data that was used to animate

the character were downloaded from the CMU motion

capture library [50] and are represented in a acclaim

skeleton file (ASF) format. The human skeleton model

contains 24 joints. The use of all of these joints for the

motion estimation process results in a high number of

computations for the system (see Sect. 6.2.1). Thus,

the basic controller that implemented a limited number

of joints designated as active for each of the different

motions is presented in Fig. 7. Moreover, during the

application’s runtime, especially when the system

recognizes the hybrid controller, the analytical inverse

kinematics solver proposed by Kalmann [51] was used

to handle the character’s joints. Finally, the input

skeletal dimension, as captured by Microsoft’s Kinect,

is mapped to the character’s skeletal dimension by

using the methodology proposed in [43]. This method-

ology provides the ability for users with anthropom-

etry differences (i.e., when users are either adults or

children) to control the character without the need of

processing the generated patterns that are used for the

activity recognition process.

For the motion controller that animates the

character, a small number of motions were used.

They are: idle, walking (forward, right and left),

running (forward, right and left), and jumping (low

and high) motions. This small number of motions is

sufficient since they are the basic movements of the

character that need to be manipulated within a virtual

environment. The remaining actions that a user may

request can be synthesized by him/her by using the

direct manipulation or the hybrid controller. The

number of different motions and the number of

frames for each motion that were used for animating

the character as well as for the activity recognition

Fig. 3 The user drives the character within a virtual environment by using the motion controller or the hybrid controller. Walking when

waving the hand (left), running when turning right (middle), and jumping (right)

Fig. 4 The character avoids ceiling constraints when stooping

with its legs

3D Res (2017) 8:18 Page 9 of 15 18

123



process are represented in Table 1. Moreover, based

on the powerset algorithm in the presented imple-

mentation for the motion estimation process by using

a number of active joints and a number of motions ,

the system computes a maximum of 472 possible

combinations (the repeated empty sets are removed).

This maximum number of possible combinations

results from the number of active joints that are used

for each of the actions that are presented in Table 1.

In cases where recognition of a greater number of

motion sequences and a greater number of joints for

the activity recognition process may be required,

respectively the number of possible combinations

will be greater.

Fig. 5 By means of the character, the user can manipulate objects that are located in a three-dimensional environment. In these

examples, the character is animated by the motion, the hybrid and the direct manipulation controllers

Fig. 6 By extending the controller, the user is able to manipulate the character by using its lower body to complete the task

Fig. 7 The active (red color) and constrained (blue color)

skeletal joints that were used for the motion recognition process

for a idle, walking, and running, and b jumping. The rest of the

character’s joints (white) are classified as inactive and uncon-

strained. (Color figure online)
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6.2 Evaluations

This section presents the results obtained when

evaluating the proposed methodology. Specifically,

three different evaluation processes were conducted.

Firstly, the frame rate of the methodology was

evaluated when a greater number of joints were used

for the activity recognition process. Secondly, the

accuracy of the system in estimating the desired action

was evaluated. Finally, the presented methodology

was evaluated by real users, indicating the efficiency

and simplicity of the presented character control

interface.

6.2.1 Performance Evaluation

Different numbers of joints were used for the character

controller recognition process in the first evaluation

process. For each different number of joints, all

possible combinations of motions-joints were pre-

computed, as were those resulting from the power-

set algorithm. Then, for each of the combinations, the

methodology’s frame rate was computed. The results

obtained from this evaluation process are summarized

in Fig. 8. The proposed methodology works for

interactive frame rates (22 fps) even if 8192 (213)

combinations are computed. However, as the number

of possible combinations increases, the methodol-

ogy’s frame rate decreases. It was found that, when

16384 (214) possible combinations are used, the

system’s frame rate reaches 9 frames per second with

latency equaling to 0.615 s. We believe that making

the application work in real-time at such a low frame

rate may negatively affect the users. As a result, in the

current implementation, the 472 possible

combinations provide quite a high frame rate of

approximately 104 frames per second with a latency

equaling to 0.025 s.

6.2.2 Evaluating Activity Recognition

In the second evaluation, the estimation rate of

correctly recognizing each of the actions that the

character is able to perform was computed. This

evaluation was conducted by using the leave-one-out

cross validation method. The existing motion data was

split into small segments. Then the motion features

and the corresponding threshold values that charac-

terize the remaining motion sequences for each of the

actions were computed again. Thus, by using the small

motion segment as reference input motions, the

motion features that characterize the segment were

computed and designated as input parameters for the

proposed searching process described in Algorithm 1.

This procedure was repeated for each motion

sequence. Thus, a class confusion matrix that illus-

trates the allocation of the estimation rate, when using

the active joints that were used in the presented

methodology, is presented in Fig. 9. As can be seen,

the proposed methodology seeks to estimate a higher

rate of each of the actions contained in the database,

leading to estimates that are 95.5% correct. It should

be noted that the presented results obtained by using a

256 ms window. Comparing with different window

sizes (13, 32, 64, 128, 256, and 512 ms,) the 256 ms

window provides the optimal results.

Even if the cross validation showed that such a

methodology is able to estimate quite efficiently each

action, there are issues related to the motion capture

system that were used. Specifically, in cases that any

Table 1 The number of all different motions that belong to a specific action and the number of frames for each of the motions that

animates the character, such as those used in the presented methodology

Motion subject Number of motions Number of frames Active joints Possible combinations

Idle 1 45 5 32

Walking 3 81 5 96

Running 3 66 5 96

Jumping 2 52 7 256

Total 9 244 19 472 (480)

Also, the number of active joints that are used separately for each motion in the activity recognition process and the complete number

of joint-motion combinations in the current implementation
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body part of the user is hidden by another body part,

the system may estimate a wrong action. Hence, it is

assumed that a better motion capture device may be

able to eliminate the wrong estimations. Moreover,

considering that the activity recognition process works

with a limited number of analyzed data, the results

provided by the presented methodology are quite

reasonable. In cases when a better estimation rate is

required, either a personalization process, or an

analysis of a larger amount of motion data may be

quite beneficial. However, the last suggestion may

negatively affect the estimation process, since inter-

sections between different actions may appear. In this

event, even if the examined motion features show that

they are able to provide the desirable results, in cases

that more actions are required to be recognized by the

system, the use of either additional or different

features, such as the joint angle orientation, acceler-

ation and so on, may also be quite beneficial. Finally,

in cases that a different method for the activity

recognition is required, methodologies such as the

direct feature mapping [45], support vector machine

[52], and many more can be included in the initial

implementation of the presented methodology.

6.2.3 User-Centric Evaluation

To demonstrate the efficiency of such a character

controller, the presented methodology was evaluated

by real users. In the evaluation that was conducted,

nine postgraduate students (thirteen males and six

females, of ages 24–27) were asked to animate the

character and to perform the object manipulation task

that appears in Fig. 5. The users took part in the

presented evaluation stand in 4 m away of a projection

screen. Before starting the evaluation process each

user was instructed on the tasks that he/she should

accomplish. Upon receipt of the instructions 5 min

were given to each user to become familiar with the

character controller by simply allowing him/her to

animate the character in an environment that was free

of objects and obstacles. For the user-centric evalua-

tion, the time (in s) that each user took to achieve the

given goal, when interacting with the tasks for the first

time, was determined. To understand the efficiency of

such a character controller, the time for a user to

achieve the given goal (i.e., to manipulate the objects

to the goal position), was measured. This procedure

was repeated a total of six times at 10-min intervals.

The obtained results illustrate how the users learn to

interact with such a controller as time passes. The

results are illustrated in Fig. 10.

The aforementioned results indicate the following.

The users required on average 152 s for their first try.

This time declined dramatically to an average of 89 s

after the first 10 min. Moreover, as can be seen, the

time that the users took to complete the task after

20 min was 82 s. The results for the remaining

attempts were very similar. By computing the range

between the best and the worst try for the participants

the following results obtained. When the users inter-

acted with the given task at a first try the range was

approximated at 32 s. After the fourth try the range

decreased by about half reaching a value of 18 s.

Fig. 8 The results obtained when evaluating the methodology’s

frame rate

Fig. 9 The class confusion matrix illustrates the allocation of

the motion estimation rate for each of the motion sequences that

were used

18 Page 12 of 15 3D Res (2017) 8:18

123



Again, the results for the remaining attempts were

very similar. Hence, it can be stated that the proposed

methodology is quite easily learned by the users since

they are able to finish the procedure in the optimal time

after less than 20 min and to achieve quite close results

after only 10 min. Moreover, we see that in time the

users are able to learn the controller mechanism and

decrease the range between the minimum and the

maximum time. Based on the aforementioned results

we assume that such a methodology can be beneficial

in applications that require a hybrid way to animate a

virtual character for enabling complex interactions in

virtual environments.

7 Conclusions and Future Work

This paper has presented a full-body character control

interface. The proposed methodology enables three

different user-character interaction modules: the

motion controller, direct manipulation of character’s

body, and a hybrid controller that lies between the

aforementioned two controllers. Based on those three

character controller mechanisms, as well as by devel-

oping a simple action controller that keeps information

on the tasks that the character is able to perform,

different examples were developed and presented.

The evaluation of the presented methodology has

shown that both the frame rate and activity recognition

process work quite well. However, when the number

of possible combinations increases, the methodol-

ogy’s frame rate decreases. Therefore, depending on

the number of possible combinations, it may not be

possible to work at interactive frame rates. Addition-

ally, even if the nine different motions are recognized

satisfactorily in the proposed methodology, assuming

a variety of motions that the character should be able

to perform, it may be necessary to have a better

solution to estimate both the motion and user’s

intention to perform a hybrid action. Moreover, during

the hybrid character control module the synthesized

motion may not look natural as there is no prior motion

to ensure the naturalness of the synthesized motion.

Hence, by developing either a kinematic prior or

physical motion model, the system may be able to

ensure the naturalness of the synthesized motion.

These are the main challenges that we plan to solve in

our future work in order to improve the presented

methodology. Conversely, when evaluating the pre-

sented methodology by real users, we found that such a

character controller mechanism can be learned quite

easily. Thus, these results enforce the potential usage

of such methodology in embodied interactive virtual

worlds.

By developing different examples of scenarios,

we have shown the possible use of such a character

controller. It is assumed that there are other

applications that may benefit from such a controller.

Thus, in our future plans, we would first like to

integrate the presented character control interface

with solutions, such as ADAPT [54] and SmartBody

[55] frameworks or other similar behavioral author-

ing frameworks, such as [56]. Hence, it will be

possible for the user to take part in various events,

thereby generating embodied intelligent interactions

with the environments, as well as with virtual actors.

Moreover, it may be interesting to implement

additional character controller modules, such as a

physical model related to [44, 57], making the

proposed methodology quite powerful, since it will

provide the user with additional choices for inter-

action. Finally, additional extensions that may

improve the naturalness of the synthesized motion

can also be implemented. Hence, solutions such as

the importance-based inverse kinematics [28] or the

relationship description [58] can provide improve-

ments, especially in the presented scenario that is

related to the object manipulation tasks.
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