
3DR EXPRESS

DCT and DST Based Image Compression for 3D
Reconstruction

Mohammed M. Siddeq . Marcos A. Rodrigues

Received: 19 December 2016 / Revised: 27 January 2017 /Accepted: 31 January 2017 / Published online: 4 February 2017

� 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2017

Abstract This paper introduces a new method for

2D image compression whose quality is demonstrated

through accurate 3D reconstruction using structured

light techniques and 3D reconstruction from multiple

viewpoints. The method is based on two discrete

transforms: (1) A one-dimensional Discrete Cosine

Transform (DCT) is applied to each row of the image.

(2) The output from the previous step is transformed

again by a one-dimensional Discrete Sine Transform

(DST), which is applied to each column of data

generating new sets of high-frequency components

followed by quantization of the higher frequencies.

The output is then divided into two parts where the

low-frequency components are compressed by arith-

metic coding and the high frequency ones by an

efficient minimization encoding algorithm. At decom-

pression stage, a binary search algorithm is used to

recover the original high frequency components. The

technique is demonstrated by compressing 2D images

up to 99% compression ratio. The decompressed

images, which include images with structured light

patterns for 3D reconstruction and from multiple

viewpoints, are of high perceptual quality yielding

accurate 3D reconstruction. Perceptual assessment

and objective quality of compression are compared

with JPEG and JPEG2000 through 2D and 3D RMSE.

Results show that the proposed compression method is

superior to both JPEG and JPEG2000 concerning 3D

reconstruction, and with equivalent perceptual quality

to JPEG2000.

Keywords DCT � DST � High frequency

minimization � Binary search algorithm

1 Introduction

Transform coding is at the heart of the majority 2D

image/video coding systems and standards. Spatial

image data (image samples or motion-compensated

residual samples) are transformed into a different

representation, the transform domain. There are good

reasons for transforming image data in this way.

Spatial image data is inherently ‘difficult’ to com-

press; neighbouring samples are highly correlated and

the energy tends to be evenly distributed across an

image, making it difficult to discard data or reduce the

precision of data without adversely affecting image

quality [1, 2].With a suitable choice of transform, the

data becomes ‘easier’ to compress in the transform

domain. There are several desirable properties of a

transform for compression. It should compact the

energy in the image, i.e., concentrate the energy into a

M. M. Siddeq (&) � M. A. Rodrigues

GMPR-Geometric Modelling and Pattern Recognition

Research Group, Sheffield Hallam University, Sheffield,

UK

e-mail: mamadmmx76@gmail.com

M. A. Rodrigues

e-mail: M.Rodrigues@shu.ac.uk

123

3D Res (2017) 8:5

DOI 10.1007/s13319-017-0116-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-017-0116-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-017-0116-0&domain=pdf

small number of significant values; it should de-

correlate the data so that discarding ‘insignificant’

data—normally high frequency data—has a minimal

effect on image quality; and it should be suitable for

practical implementation in software and hardware

[3, 4].

The two most widely used image compression

transforms are the discrete cosine transform (DCT)

and the discrete wavelet transform (DWT) [3–5]. The

DCT is usually applied to small, regular blocks of

image samples (e.g. 8 9 8 squares) and the DWT is

usually applied to larger image sections or to complete

images. Many alternatives have been proposed, for

example 3D transforms (dealing with spatial and

temporal correlation), variable block size transforms,

fractal transforms, and Gabor analysis. The DCT has

proved particularly useful and it is at the core of most

current generation of image and video coding stan-

dards, including JPEG, H.261, H.263, H.263?,

MPEG-l, MPEG-2 and MPEG-4 [6, 7].

To demonstrate the effectiveness of our approach,

we focus on compressing 2D image data appropriate

for 3D reconstruction. This includes 3D reconstruction

from structured light images, and 3D reconstruction

from multiple viewpoint images. Previously, we have

demonstrated that while geometry and connectivity of

a 3D mesh can be tackled by several techniques such

as high degree polynomial interpolation [8] or partial

differential equations [9, 10], the issue of efficient

compression of 2D images both for 3D reconstruction

and texture mapping has not yet been addressed in a

satisfactory manner. Moreover, in most applications

that share common data, it is necessary to transmit 3D

models over the Internet. For example, to share CAD/

CAM assets, e-commerce applications, update content

for entertainment applications, or to support collabo-

rative design, analysis, display of engineering, med-

ical and scientific datasets. Bandwidth imposes hard

limits on the amount of data transmission and, together

with storage costs calls for more efficient 3D data

compression for exchange over the Internet and other

networked environments. Using structured light tech-

niques for 3D reconstruction, surface patches can be

compressed as a 2D image together with 3D calibra-

tion parameters, transmitted over a network and

remotely reconstructed (geometry, connectivity and

texture map) at the receiving end with the same

resolution as the original data [11, 12].

Related to the techniques proposed in this paper, our

previous work on data compression is summarized as

follows: (1) Focused on compressing structured light

images for 3D reconstruction, Siddeq and Rodrigues

[11] proposed a method in 2014 where a single level

DWT is followed by a DCT on the LL sub-band

yielding the DC component and the AC-matrix. A

second DWT is applied to the DC components whose

second level LL2 sub-band is transformed again by

DCT. A matrix minimization algorithm was applied to

the AC-matrix and other sub-bands. Compression

ratios of up to 98% were achieved. (2) Siddeq and

Rodrigues in same year [13], proposed technique

where a DWT was applied to variant arrangements of

data blocks followed by arithmetic coding. The novel

aspect of that paper is at decompression stage, where a

Parallel Sequential Search Algorithm was proposed

and demonstrated. Compression ratios of up to 98.8%

were achieved. (3) In Siddeq andRodrigues [14] a two-

level DWTwas applied followed by a DCT to generate

a DC-component array and an MA-Matrix (Multi-

Array Matrix). The MA-Matrix was then partitioned

into blocks and a minimization algorithm coded each

block followed by the removal of zero valued coeffi-

cients and arithmetic coding. At decompression stage,

a new algorithm called Fast-Match-Search decom-

pression was used to reconstruct the high-frequency

matrices by computing data probabilities through a

binary search algorithm in association with a look up

table. A comparative analysis of various combinations

of DWT and DCT block sizes was performed, with

compression ratios up to 99.5%.

In this paper, we introduce a new method based

on DCT and DST for compressing 2D images with

structured light patterns for 3D surface reconstruc-

tion (i.e., the 2D images have embedded stripe

patterns, and the detection and processing of such

patterns are used to generate a 3D surface). Addi-

tionally, the method is applied to a series of 2D

images (with no structured light patterns) and used

to convert from multiple 2D images to a 3D surface

[15]. Following the discrete transformations, a high-

frequency minimization method is used to convert

each three adjacent coefficients to a single integer,

reducing the data size to a third of its original size.

The final step is to apply arithmetic coding to the

reduced data. The main steps in the compression

algorithm are depicted in Fig. 1.

5 Page 2 of 19 3D Res (2017) 8:5

123

2 Using One-Dimensional Discrete Cosine

Transform (DCT)

Theone-dimensionalDCT isused to transformeach row

from an image (spatial domain) to obtain transform

image called ‘‘Tdct’’, a shown in the following [3–5]:

Tdct ið Þ ¼
ffiffiffi

2
p

n
CðiÞ

X

n�1

t¼0

IðtÞ cos
ð2t þ 1Þip

2n

� �

ð1Þ

I tð Þ ¼
ffiffiffi

2
p

n

X

n�1

j¼0

CðjÞ TdctðjÞ cos
ð2t þ 1Þjp

2n

� �

ð2Þ

where

C ið Þ ¼ ¼ 2�1=2; if i ¼ 0

¼ 1; if i[0

(

where i = 0, 1, 2, 3, …, n-1 represents images row

size from ‘‘I’’, and the output is a set of DCT

coefficients ‘‘Tdct’’. The first coefficient is called DC

coefficient, and the rest are referred to as the AC

coefficients. Notice that the coefficients are real

numbers, and they are rounded off to integers. The

important feature of the DCT is that it is useful in

image compression [16]. It takes correlated input data

and concentrates its energy in just the first few

transform coefficients. If the input data consists of

correlated quantities, then most of the ‘‘n’’ transform

coefficients produced by the DCT are zeros or small

numbers [17], and only a few are large (normally the

first data). The early coefficients contain the most

important (low-frequency) image information and the

later coefficients contain the less-important (high-

frequency) image information [6, 18]. This feature

allows good compression performance as a proportion

of the less important coefficient scan be discarded

without much degradation of image quality. Figure 2

shows the DCT applied to each row of a small image

size 8 9 8 without using scalar quantization.

3 One Dimensional Discrete Sine Transform

(DST)

Our research has indicated that a one dimensional

DCT works together with a one-dimensional DST

yielding large amounts of high-frequency compo-

nents. These high frequency components are useful to

obtain high compression ratios comparable to the

JPEG technique. In this research, we will apply one

dimensional DST to each column of the transformed

matrix ‘‘Tdct’’ from previous section. The DST

definition is represented as follows [17, 19]:

TdstðkÞ ¼
X

n

i¼1

TdctðiÞ Sin p
k � i
nþ 1

� �

ð3Þ

Fig. 1 The main steps of the proposed compression algorithm

3D Res (2017) 8:5 Page 3 of 19 5

123

K ¼ 1; 2; . . .N

TdctðiÞ ¼
2

N þ 1

X

n

k¼1

TdstðkÞ Sin p
k � i
nþ 1

� �

ð4Þ

Equation (3) is used to transform ‘‘n’’ values of

‘‘Tdct’’ matrix into ‘‘n’’ coefficients. These are the low

and high frequency coefficients containing important

and less important image information. The one-

dimensional DST is applied to each column of

‘‘Tdct’’ to produce a new transformed matrix ‘‘Tdst’’.

The DST is equivalent to the imaginary part of the

Discrete Fourier Transformation (DFT) and the results

of the DST are real numbers [20, 21]. The main

advantage of using the DST for image compression in

this context is that the DST preservers the image

quality encoded by the low frequency components of

‘‘Tdct’’ and increases the number of zeros, which can

be discarded without loss of quality.

After the DST, we apply a quantization of the

high frequency components of the transformed

matrix ‘‘Tdst’’. In this way, the quantization means

losing only insignificant information from the

matrix. Each coefficient in the matrix is divided

by the corresponding number from a ‘‘Quantization

table’’ and the result is rounded off to the nearest

integer. The following equation is proposed as a

quantization table.

Q i; jð Þ ¼ iþ jð Þ � F ð5Þ

where: F[0 and i, j = 1,2,3,…, n 9 m (image

dimensions).

In Eq. (5) ‘‘F’’ is a real number greater than zero.

This value affects image quality as for ‘‘F[1’’ image

quality is decreased. There is no limit for F, however,

from our experiments we suggest F from 0.1 to 10.

Figure 3 shows the DST applied to each column and

quantized by Eq. (5).

In the above example, low and high frequency

components are determined by the user. The low-

frequency ones are not compressed any further, we just

represent them in fewer bytes by arithmetic coding.

Meanwhile, the high-frequency components either

horizontal or vertical are compressed by the High-

Frequency Minimization algorithm described in the

next section.

4 High Frequency Minimization Algorithm

In this section, we describe an algorithm to convert the

high-frequency coefficients (i.e. from previous section

results passed to Minimization algorithm) into a

compressed array called Minimized-Array through a

matrix minimization method involving eliminating

zeros and triplet encoding whose output is then

subjected to arithmetic coding. Normally, the high

frequency components contain large numbers of

zeroes with a few nonzero data. The technique

eliminates zeroes and enhances compression ratio

[11, 13, 14, 16, 18].

The high-frequency minimization algorithm is

applied further reducing the size of high-frequency

sub-matrix by 2/3. This process hinges on defining

three key values and multiplying these by three

adjacent entries in H (the matrix of high frequency

coefficients) which are then summed over producing

single integer values as shown in Fig. 4 [13, 14].

Thus, each set of the three entries from H are

converted into a single value which are then stored into

a new coded array (Minimized-Array). Assuming that

N is the length of H, i ¼ 1; 2; . . .;N � 3, and j is the

Fig. 2 Left Original block of data, right Tdct produced by applying one-dimensional DCT to each row independently

5 Page 4 of 19 3D Res (2017) 8:5

123

index of new coded array, the following transforma-

tions define the high frequency encoding

[11, 13, 14, 18]:

Minimized Arrayj ¼ K1Hi þ K2H iþ1ð Þ þ K3H iþ2ð Þ

ð4Þ

The key values K1; K2; K3 are generated by a key

generator algorithm as in [14, 18] described through

Eqs. 5, 6, 7 and 8 below. Because the keys are data-

dependent of max(H), each matrix will have their

unique set of keys if their max(H) are distinct.

M ¼ 1:5max Hð Þ ð5Þ

K1 ¼ 1 ð6Þ

K2 ¼ K1 þM þ Factor ð7Þ

K3 ¼ Factor �MðK1 þ K2Þ ð8Þ

where Factor� 1 and K1 � 1 are integer values. The

quantity Factor is a scaling factor to enlarge the

degree of separation between the 3 generated keys.

The keys themselves are the weights of each triplet

summation in the minimized-array. The original

values of each triplet can later be recovered by

estimating the H values (See Sect. 5) for that Mini-

mized-Array. Following the models above, the Min-

imized-Array for the example in Fig. 3 can be

illustrated in the following Table 1.

Our compression method creates a new array of

header data H, which is used later by the decompres-

sion algorithm to estimate the original data values.

This information is kept in the header of the

compressed file as a string. Figure 5 below illustrates

the concept through a numerical example.

Per above example in Fig. 3, the Limited-Data can

be estimated from high-frequency sub-matrices

Fig. 3 One-dimensional DST applied to each Column independently of Tdct followed by quantization with F = 2 (See Eq. (5))

Fig. 4 High-Frequency Minimization Algorithm used to compress coefficients (D1, D2…, Dnm) from matrixH (i.e. matrixH scanned

row-by-row for compression)

3D Res (2017) 8:5 Page 5 of 19 5

123

(Horizontal and Vertical). Limited-Data(Verti-

cal) = {-1, 0} and Limited-Data(Horizontal) = {2, 0}.

The encoded triplets in the Minimized-Array may

contain large number of zeros which can be further

encoded through a process proposed by [14]. For

example, assume the following encoded Minimized-

Array = {125, 0, 0, 0, 73, 0, 0, 0, 0, 0,-17}.The zero

array will be {0, 3, 0, 5, 0} where the zeros in red refer

to nonzero data existing at these positions and the

numbers in black refer to the number of zeros between

two consecutive non-zero data. To increase the

compression ratio, the number 5 can be broken up

into 3 and 2 to increase data redundancy. Thus, the

equivalent zero array would be {0, 3, 0, 3, 2, 0} and the

nonzero array would be {125, 73, -17}. According to

this method, theMinimized-Array both Horizontal and

Vertical can be illustrated in Table 2.

The final step of compression is arithmetic coding

which computes the probability of all data and assigns

a range to each data (low and high) to generate streams

of compressed bits [5].The arithmetic coding applied

here takes a stream of data and converts into a single

floating point value. The output is in the range between

zero and one that, when decoded, returns the exact

original stream of data.

5 The Fast-Matching Search Decompression

Algorithm

The decompression algorithm is the inverse of com-

pression. First, decode the Minimized-Array for both

horizontal and vertical components by combining the

zero-array with the non-zero-array. Second, decode

high-frequencies from the Minimized-Array using the

fast matching search (FMS) algorithm [14]. Third,

inverse the DST and DCT to reconstruct the original

2D image. The images are then assessed on their

perceptual quality and on their ability to reconstruct

the 3D structures compared with the original images.

Figure 6 illustrates the decompression method.

The Fast Matching Search Algorithm (FMS) has

been designed to recover the original high frequency

data. The compressed data contains information about

the compression keys (K1, K2 and K3) and Limited-

Data followed by streams of compressed high fre-

quency data. Therefore, the FMS algorithm picks up

each compressed high frequency data and decodes it

using the key values and compares whether the result

is expressed in the Limited-Data. Given 3 possible

Table 1 From the example of Fig. 3: each high-frequency sub-matrix is compressed independently

High-frequency sub-matrix Compressed size Comments

Minimized-array(Vertical) = {-1, 0, 0, 0, … 0} Compressed size 16 48 (original size)/3 = 16 data

Minimized-array(Horizontal) = {2, 0, 0, 0, 0, 0} Compressed size 6 16 (original size)/3 = 5.3 (last zero is alone)

Assume M = 2 (Maximum value in high-frequency sub-matrix: Horizontal), the Keys values will be: K1 = 1, K2 = 5, K3 = 18 for

both high-frequencies components: Horizontal and Vertical

Fig. 5 Limited-Data appearing in H are kept in the header file

for recovery

Table 2 Each Minimized-Array is coded to zero-array and nonzero-array

High-frequency sub-matrix Zero-array Nonzero-array

Minimized-array(Vertical) = {-1,0, 0, 0 … 0} Zero(Vertical) = {0, 5, 5, 5} Nonzero-array(Vertical) = {-1}

Minimized-array(Horizontal) = {2, 0, 0, 0, 0, 0} Zero(Horizontal) = {0, 5} Nonzero-Array(Horizontal) = {2}

The ‘‘0’’ refers to the nonzero data in Nonzero-Arrays

5 Page 6 of 19 3D Res (2017) 8:5

123

values from Limited Data, there is only one possible

correct result for each key combination, so the data is

uniquely decoded. We illustrate the FMS-Algorithm

through the following steps A and B [14]:

(A) Initially, the Limited-Data is copied into three

separated arrays given that we used three keys

for compression. The algorithm picks three

items of data (one from each Limited-Data) and

apply these to Eq. (4) using the three compres-

sion keys. The method resembles an intercon-

nected array D, where each value is combined

with each other value, similar to a network as

shown in Fig. 7a.

Since the three arrays of Limited-Data contain

the same values, that is A1 = B1 = C1,

A2 = B2 = C2 and so on the searching algo-

rithm computes all possible combinations of A

with K1, B with K2 and C with K3 that yield an

intermediate array D. As a means of an example

consider that Limited-Data1 = [A1 A2 A3],

Limited-Data2 = [B1 B2 B3] and Limited-

Data3 = [C1 C2 C3]. Then, according to

Eq. (4) these represent H(L), H(L ? 1) and

H(L ? 2) respectively. The equation is exe-

cuted 27 times (3-3 = 27) testing all possibil-

ities. One of these combinations in array D will

match the value in the compressed data. The

match indicates that the unique combination of

A, B and C are the original data. If we apply this

to our example, Limited-Data(vertical) = {-1,

0} (See Table 1) number of possibilities for

A = [-1, 0], B = [-1, 0] and C = [-1, 0] as

shown in Table 3.

(B) The searching algorithm used in the decom-

pression method is called Binary Search Algo-

rithm. It finds the original data (A, B, C) for any

input from compressed data file ‘‘Minimized-

Array’’. For binary search, the D-Array should

be arranged in ascending order.

The decompression algorithm compares a value

from the Minimized-Array with the middle of

element of the array ‘‘D’’. If the value matches,

then a matching element has been found and its

position is returned (i.e. the relevant A, B and C

are the decompressed data we are after) [22].

Fig. 6 The steps in the decompression algorithm

3D Res (2017) 8:5 Page 7 of 19 5

123

Otherwise, if the search is less than the middle

element of ‘‘D’’, then the algorithm repeats its

action on the sub-array to the left of the middle

element or, if the value is greater, on the sub-

array to the right. There is no probability of

‘‘Not Matched’’, because the FMS-Algorithm

Fig. 7 a, b FMS-Algorithm for reconstructing high frequency

data from Limited-Data. A, B and C are the original data which

are determined by the unique combination of keys. a Estimate

all possible compressed data saved in D-array (i.e. each possible

compressed data connected with their relevant original data).

b Decompression by using Binary Searching algorithm

Table 3 All possible data

computed according to

Eq. (4) to generate the

D-Array (K1 = 1, K2 = 3

and K3 = 4)

Limited-data1 (A) Limited-data2 (B) Limited-data3 (C) D-array

-1 -1 -1 8

-1 -1 0 -4

-1 0 -1 -5

-1 0 0 -1

0 -1 -1 -7

0 -1 0 -3

0 0 -1 -4

0 0 0 0

5 Page 8 of 19 3D Res (2017) 8:5

123

computes all compression data possibilities as

shown in Fig. 7b.

Once the horizontal and vertical high frequency

components are recovered by the FMS-Algorithm,

they are combined to regenerate the 2D matrix (See

Fig. 6). Then each data from the matrix is multiplied

by each data inQ (Eq. 5) followed by the inverse DST

(Eq. 4) applied to each column. Finally, we multiply

each data by F followed by the inverse DCT (Eq. 2)

applied to each row to recover the original 2D image

as shown in Fig. 6. If we compare the results in Fig. 6

with the original 8 9 8 matrix of Fig. 2, we find that

there is not much difference, and these differences do

not affect image quality. For this reason, our technique

is very attractive for image compression.

6 Experimental Results

The experimental results described here were imple-

mented in MATLAB R2013a and Visual C?? 2008

running on an AMD Quad-Core microprocessor. We

describe the results in two parts: first, we apply the

method to general 2D images of different sizes and

assess their perceived visual quality and RMSE.

Additionally, we compare our compression method

with JPEG and JPEG2000 through the visualization of

2D images, 3D surface reconstruction from multiple

views and RMSE error measures.

Second, we apply the compression and decompres-

sion algorithms to 2D images that contain structured

light patterns allowing 3D surface data to be generated

from those patterns. The rationale is that a high-quality

image compression is required otherwise the resulting

3D structure from the decompressed image will

contain apparent dissimilarities when compared to

the 3D structure obtained from the original (uncom-

pressed) data. We report on these differences in 3D

through visualization and standard measures of

RMSE-root mean square error.

6.1 Results for 2D Images

In this Section, we apply the algorithms to generic 2D

images, that is, images that do not contain structured

light patterns as described in the previous section. In

this case, the quality of the compression is performed

by perceptual assessment and by the RMSE measure.

We use images with varying sizes from 2.25 to 9 MB.

Also, we present a comparison with JPEG and

JPEG2000 highlighting the differences in compressed

image sizes and the perceived quality of the

compression.

Figure 8a gives an indication of compression ratios

achieved with our approach while in (b) is shown

details with comparative analysis with JPEG2000 and

JPEG. First, the decoded ‘baby’ image by JPEG2000

contains some blurring at places, while the same

image decoded by our approach and JPEG are of

higher quality. Second, the decoded ‘eyes’ image by

JPEG algorithm had some block artefacts resulting in a

lower quality compression. Also, the same image

decoded by our approach and JPEG2000 at equivalent

compression ratios, has excellent image quality.

Finally, the decoded ‘girl’ image by JPEG2000 is

slightly degraded, while our approach and JPEG show

good image quality.

Additionally, we applied our compression tech-

niques to a series of 2D images and used Autodesk

123DCatch software to generate a 3D model from

multiple images. The objective is to perform a direct

comparison between our approach and both JPEG and

JPEG2000 on the ability to perform 3D reconstruction

from multiple views. Images are uploaded to the

Autodesk server for processing which normally takes a

few minutes. The 123D Catch software uses pho-

togrammetric techniques to measure distances

between objects producing a 3D model (i.e. image

processing is performed by stitching a plain seam with

correct sides together). The application may ask the

user to select common points on the seam that could

not be determined automatically [15, 23]. Compres-

sion sizes and RMSE for all images used are depicted

in Table 4.

Figure 9 shows two series of 2D images for objects

‘‘APPLE’’, and ‘‘FACE’’ (all images are available

from 123D Catch website). We start by compressing

each series of images whose compressed sizes and 2D

RMSE measures are shown in Table 4. A direct

comparison of compression with JPEG and JPEG2000

is presented in Table 5. It is clearly shown that our

approach and JPEG2000 can reach an equivalent

compression ratio, while the JPEG technique does not.

It is important to stress that both our technique and

JPEG depend on DCT. The main difference is that our

approach is based on DCT with DST and the

coefficients are compressed by the frequency

3D Res (2017) 8:5 Page 9 of 19 5

123

minimization algorithm, which renders our technique

far superior to JPEG as shown in the comparative

analysis of Fig. 10.

In our method, DCT with DST are applied on an

image as one block. The used low frequency block size

for colour was 150 9 150, the scalar quantization for

DCT was 1, 5 and 5 for each layer (Y, Cb and Cr)

respectively. Furthermore, the quantization matrix

used after DST performs an aggressive quantization,

this means that approximately 50% of the coefficients

are zeros (i.e. the left bottom of the image matrix

contains lot of zeros after the quantization process—

see Eq. 5).

6.2 Results for Structured Light Images and 3D

Surfaces

3D surface reconstruction was performed with our

own software developed within the GMPR group

[9, 10, 12]. The justification for introducing 3D

Compressed size: 107.7 KB
Original size: 2.25 MB
Compression ratio: 95%

Compressed size: 59.4 KB
Original size: 3 MB

Compression ratio: 98%

Compressed size: 59.9 KB
Original size: 9 MB

Compression ratio: 99%
(a)

Our approach: RMSE=5.95 Our approach: RMSE=4.84 Our approach: RMSE=5.94

JPEG2000: RMSE=2.71
JPEG2000: RMSE=2.83 JPEG2000: RMSE=3.49

JPEG: RMSE=3.2 JPEG: RMSE=6.66
JPEG: RMSE=5.02

(b)

Fig. 8 Compressed images by JPEG and JPEG2000 at equiv-

alent compressed file sizes as with our approach. a Compressed

and decompressed 2D images by our approach. b Details of

compression/decompression by our approach, JPEG2000 and

JPEG respectively

5 Page 10 of 19 3D Res (2017) 8:5

123

reconstruction is that we can make use of a new set of

metrics in terms of error measures and perceived

quality of the 3D visualization to assess the quality of

the compression/decompression algorithms. The

principle of operation of GMPR 3D surface scanning

is to project patterns of light onto the target surface

whose image is recorded by a camera. The shape of the

captured pattern is combined with the spatial

Table 4 Compressed sizes and 2D RMSE measures

Image

name

Number of

images

Original image

size (MB)

Quantization parameters

used in DST

Compressed

image size

(MB)

Average compressed

size of each image

(MB)

Average 2D

RMSE

Y Cb Cr

Baby 1 3 0.5 5 5 0.0594 0.0594 5.95

Eyes 1 9 0.5 5 5 0.0599 0.0599 4.84

Girl 1 2.25 0.5 5 5 0.1077 0.1077 5.94

Apple 48 336 2 5 5 1.94 0.0414 8.33

Face 28 200.7 1 5 5 1.72 0.0629 5.68

Fig. 9 a, b show series of 2D images used to generate 3Dmodels by 123D Catch. a Apple imagesNumber of image 48 images. b Face

images Number of images 28 images

Table 5 Comparison of 3D reconstruction for images compressed to the same size. Note that JPEG failed to reconstruct the 3D

structure as the images were too deteriorated

Multiple 2D images Original size (MB) Compressed size (MB) 2D RMSE

Our approach JPEG2000 JPEG

APPLE 336 1.94 9.5 6.58 Fail

FACE 200.7 1.72 5.1 3.39 Fail

3D Res (2017) 8:5 Page 11 of 19 5

123

relationship between the light source and the camera,

to determine the 3D position of the surface along the

pattern. The main advantages of the method are speed

and accuracy; a surface can be scanned from a single

2D image and processed into 3D surface in a few

milliseconds [24]. The scanner is depicted in Fig. 11.

Figure 12 shows several test images used to

generate 3D surfaces both in grayscale and colour.

The top row shows two grayscale face images, FACE1

and FACE2 with size 1.37 MB and dimensions

1392� 1040 pixels. The bottom row shows colour

images CORNER andMETALwith size 3.75 MB and

dimension 1280� 1024 pixels. We use the RMSE

measure to compute the differences between

decompressed images and original ones. The RMSE

however, cannot give an absolute indication of which

is the ‘best’ reconstructed image or 3D surface, as

errors may be concentrated in a region that may or may

not be relevant to the perception of quality. To get a

better assessment of quality, we analyse 3D surface

images at various compression ratios.

Table 6 shows the compressed size for our

approach using two different values of quantization.

First, the quantization scalar for FACE1 and FACE2 is

1. This means that after DCT each coefficient is

divided by 1, this means rounding off each floating-

point value to integer. Similarly, after DST the

quantization equation is applied with F (Eq. 5).

(a)

(b)

Fig. 10 a, b Successful 3D reconstruction following compres-

sion by our approach. Images were compressed to the same size

by our approach, JPEG and JPEG2000. a 3D model for series of

APPLE images decompressed by our approach (48 images,

average 2D RMSE = 8.33, total compressed size = 1.94 MB).

The compression ratio for the 3Dmesh is 99.4% for connectivity

and vertices. b 3D model for series of FACE images

decompressed by our approach (28 images, average 2D

RMSE = 5.68, total compressed size = 1.72 MB). The com-

pression ratio for the 3D mesh is 99.1% for connectivity and

vertices

5 Page 12 of 19 3D Res (2017) 8:5

123

The colour images are defined by using colour

transformation [5, 25] into YCbCr format. We then

apply the proposed approach to each layer indepen-

dently. For this reason, after DCT the quantization

scalar for colour images is {1, 5, 5} for each layer ofY,

Cb and Cr respectively.

Figure 13 shows the visualization of the decom-

pressed 2D images using different values for quanti-

zation. These decompressed images are converted to

3D surfaces. FACE1 on top of Fig. 13 from left to

right are higher quality surface per 3D RMSE. In fact,

some parts of 3D surface have disappeared at higher

compression ratio. But in FACE2 in themiddle, the 3D

reconstructed image at higher compression ratio is

approximately the same as for low compression ratio.

This means that 3D reconstruction depends on the

structured light’s quality in an image. Figure 13

(bottom) shows zoomed-in regions for the two images,

the structure light patterns are clearly present at 99%

compression ratio.

Fig. 11 a depicts the GMPR scanner together with an image

captured by the camera (b) which is then converted into a 3D

surface and visualized (c). Note that only the portions of the

image that contain patterns (stripes) can be converted into 3D;

other parts of the image are ignored by the 3D reconstruction

algorithms

Fig. 12 Structured light images used to generate 3D surfaces. Top row grayscale images FACE1 and FACE2, and colour images

CORNER and METAL respectively. Images were compressed to the same size by our approach, JPEG and JPEG2000

3D Res (2017) 8:5 Page 13 of 19 5

123

Figure 14 shows 3D reconstructed surfaces for

CORNER and METAL images respectively. On top,

the quality of CORNER 3D surface at 99% compres-

sion ratio. But the 3D surface (top right) has some

artefacts; this type of artefacts not present in the

original and decompressed 2D image at lower com-

pression ratio. Artefacts appear when the structure

light patterns are not clearly defined in the image, or

are degraded after compression and decompression. In

Fig. 14 middle, the decompressed METAL image is

converted to a 3D surface. The reconstructed 3D

surface of middle right is degraded for all cases in

which compression ratios exceed 99%.To analyse 2D

colour image compression, we zoomed-in the decom-

pressed 2D images. It is shown that the structure lights

are clearly visible at higher compression ratios of

99%.

For a comparative analysis, we compressed and

decompressed the 2D images by JPEG2000 and

JPEG, then converted to a 3D surface. Table 7 and

Fig. 15 describe the compressed and decompressed

results respectively for JPEG2000. The comparison

is based on applying the same compression ratios

between JPEG2000 and our approach and show the

visualization for the two methods. While the JPEG

algorithm simply failed to compress the images at

the required ratio. Also, the important point to note

is that JPEG2000 [26] cannot decompress some 2D

images to equivalent quality for 3D reconstruction

or if it does, the 3D surface contains some

degradation. Additionally, Fig. 16 shows the com-

pressed 2D images by JPEG2000 with zoomed in

image details.

7 Conclusions

This paper has presented and demonstrated a new

method for image compression and illustrated the

quality of compression through 2D and 3D recon-

struction, 2D and 3D RMSE. Our compression algo-

rithm is based on DCT applied to each row of an

image, then followed by DST which is applied to each

column of the matrix. After the transformation stage,

the minimization of high frequency algorithm is used

to reduce the number of high-frequency coefficients.

The compression stage is then completed with arith-

metic coding. In the decoding stage, the Fast-Match-

ing-Search algorithm based on binary search is used to

recover the original data. The results show that our

approach introduces better image quality at higher

compression ratios than JPEG and JPEG2000 as it can

more accurately reconstruct 3D surfaces than both

techniques. A slight disadvantage of the proposed

method is that it is more complex than both JPEG2000

and JPEG. This is because our approach uses two types

of transforms, and that neither JPEG nor JPEG2000

rely on a search method.

The most important aspects of the method and their

role in providing high quality image with high

compression ratios are identified as follows:

1. The one-dimensional DCT can be applied to

an image row (i.e. larger block sizes � 8).

Equally, the one-dimensional DST can be

applied to each column of the output from

DCT.

2. The user can ignore the scalar quantization to

remove higher frequency coefficients (i.e.

Table 6 Structured light images compressed by our approach

Image name Original image size (MB) Original image size Compressed size (KB) 2D RMSE 3D RMSE

DCT DST

FACE1 1.37 1 2 18.75 4.82 1.51

1 6 11.7 6.22 1.54

FACE2 1.37 1 2 15.6 1.89 2.25

1 6 7.8 2.56 2.67

CORNER 3.75 {1, 5, 5} {2, 2, 2} 21.2 5.56 1.36

{1, 5, 5} {2, 3, 3} 14.7 7.0 0.5

METAL 3.75 {1, 5, 5} {1, 5, 5} 27.5 5.25 1.87

{1, 5, 5} {2, 5, 5} 12.1 5.62 1.98

5 Page 14 of 19 3D Res (2017) 8:5

123

keeping more coefficients increases image

quality).

3. The two-dimensional quantization (cf. Eq. 5)

provides a more aggressive quantization

removing most of matrix contents as about

50% of the matrix entries are zero. Applying

this over the DST can keep image quality at

higher compression ratios.

FACE1: Compressed size 18.75 Kbytes (texture and shaded) Compressed Size=11.7Kbytes (shaded)

3D reconstructed FACE1 from decompressed image by our approach

FACE2: Compressed size 15.6 Kbytes (texture and shaded) Compressed Size=7.8 Kbytes (shaded)
3D reconstructed FACE2 from decompressed image by our approach

2D decompressed images zoomed-in, to show the details: FACE1 and FACE2 at higher compression ratio

Fig. 13 Top FACE1 shows decompressed 3D surface with

texture and shaded at compressed size 18.7 and 11.7 KB.

Middle: FACE2 shows decompressed 3D surface with texture

and shaded at compressed size 15.6 and 7.8 KB. Bottom details

of 2D images FACE1 and FACE2 respectively at the higher

compression ratio

3D Res (2017) 8:5 Page 15 of 19 5

123

CORNER: Compressed size 21.2 Kbytes (texture and shaded) Compressed Size=14.7 Kbytes (shaded)
3D reconstructed CORNER from decompressed image by our approach

METAL: Compressed size 27.5 Kbytes (texture and shaded) Compressed Size=12.1 Kbytes (shaded)
3D reconstructed METAL from decompressed image by our approach

2D decompressed images zoomed-in, to show the details: CORNER and METAL at higher compression
ratio

Fig. 14 Top shows decompressed 3D surface of CORNERwith

texture and shaded at compressed sizes 21.2 and 14.7 KB.

Middle shows decompressed 3D surface ofMETALwith texture

and shaded at compressed sizes 27.5 and 12.1 KB. Bottom

zoomed-in details for 2D images CORNER and METAL

respectively at higher compression ratio

Table 7 Compression and decompression for 3D reconstruction by JPEG2000 and JPEG at higher compression ratios. All images

were compressed to the same size by the techniques

Image name Compressed size (KB) JPEG2000 JPEG

2D RMSE 3D RMSE 2D RMSE 3D RMSE

FACE1 11.7 6.3 1.8 FAIL FAIL

FACE2 7.8 3.2 2.66 FAIL FAIL

CORNER 14.7 5.7 0.63 FAIL FAIL

METAL 13.4 4.17 FAIL FAIL FAIL

5 Page 16 of 19 3D Res (2017) 8:5

123

4. The final transformed matrix is divided into:

low-frequency sub-matrix, and horizontal and

vertical high-frequency matrices.

5. The minimization of high frequency algorithm

produces a Minimized-Array used to replace

each three values from the high-frequencies

sub-bands by a single integer value. This

process reduces the coefficients by 2/3 leading

to increased compression ratios.

6. Since the Minimized-Array for both vertical

and horizontal high-frequencies contains large

number of zeros, we applied a new method to

eliminate zeros and keep nonzero data. The

process keeps significant information while

reducing data up to 80%.

7. At decompression stage, the Fast-Matching-

Search algorithm is the engine for estimating

the original data from the minimized array and

depends on the organized key values and the

availability of a set of unique data. The

efficient C?? implementation allows this

algorithm to recover the high-frequency matri-

ces very efficiently.

8. The key values and unique data are used for

coding and decoding an image, without this

information images cannot be recovered.

This is an important point as a compressed

image is equivalent to an encrypted image

that can only be reconstructed if the keys are

available. This has applications to secure

transmission and storage of images and

video data.

9. Our proposed image compression algorithm

was tested on true colour and YCbCr layered

images at high compression ratios. Addition-

ally, the approach was tested on images

resulting in better 3D reconstruction than

JPEG2000 and JPEG.

10. The experiments indicate that the technique

can be used for real-time applications such as

Fig. 15 Top 3D reconstructed surface for FACE1 and FACE2 respectively using JPEG2000. Bottom CORNER image successfully 3D

reconstructed, while METAL image failed 3D reconstruction

3D Res (2017) 8:5 Page 17 of 19 5

123

3D data objects and video data streaming over

the Internet.

Future work is focused on efficient implementation

of the decoding steps and their application to video

compression. Research is underway and will be

reported soon.

References

1. Al-Haj, A. (2007). Combined DWT-DCT digital image

watermarking, Science Publications. Journal of Computer

Science, 3(9), 740–746.

2. Christopoulos, C., Askelof, J., & Larsson, M. (2000). Effi-

cient methods for encoding regions of interest in the

upcoming JPEG 2000 still image coding standard. IEEE

Signal Processing Letters, 7(9), 247–249.

3. Martucci, S. A. (1994). Symmetric convolution and the

discrete sine and cosine transforms. IEEE Transactions on

Signal Processing, SP-42(5), 1038–1051.

4. Richardson, I. E. G. (2002). Video codec design. New York:

John Wiley & Sons.

5. Sayood, K. (2000). Introduction to data compression (2nd

ed.). New York, Los Altos: Academic Press, Morgan

Kaufman Publishers.

6. Pennebaker, W. B., & Mitchell, J. L. (1993). JPEG: Still

image data compression standard. New York: Van Nos-

trand Reinhold.

7. Kekre, H. B., Sarode, T., & Natu, P. (2013). Efficient image

compression technique using full column and row trans-

forms on colour image. International Journal of Advances

in Engineering and Technology, 6(1), 88–100.

8. Rodrigues, M., Robinson, A., &Osman, A. (2010). Efficient

3D data compression through parameterization of free-form

surface patches, In Signal Process and Multimedia Appli-

cations (SIGMAP), Proceedings of the 2010 International

Conference on IEEE, (pp. 130–135).

9. Rodrigues, M., Osman, A., & Robinson, A. (2013). Partial

differential equations for 3D data compression and recon-

struction. Journal Advances in Dynamical Systems and

Applications, 12(3), 371–378.

10. Rodrigues, M., Kormann, M., Schuhler, C., & Tomek, P.

(2013b). Robot trajectory planning using OLP and struc-

tured light 3D machine vision. Lecture notes in Computer

Fig. 16 Details of 2D decompressed images by JPEG2000: Top FACE1 on the left is clearly blurred leading to degraded 3D

reconstruction. Bottom METAL image on the right is blurred rendering it unable to reconstruct a 3D surface

5 Page 18 of 19 3D Res (2017) 8:5

123

Science Part II. LCNS, 8034 (8034). (pp. 244–253), Hei-

delberg: Springer.

11. Siddeq, M. M., & Rodrigues, M.A. (2014a). A new 2D

image compression technique for 3D surface reconstruction.

In 18th International Conference on Circuits, Systems,

Communications and Computers, Santorin Island, Greece,

(pp. 379–386).

12. Rodrigues, M., Kormann, M., Schuhler, C., & Tomek, P.

(2013). Structured light techniques for 3D surface recon-

struction in robotic tasks. In J. Kacprzyk (Ed.), Advances in

intelligent systems and computing (pp. 805–814). Springer:

Heidelberg.

13. Siddeq, M. M., & Rodrigues, M. A. (2014). A novel image

compression algorithm for high resolution 3D reconstruc-

tion, 3D research. Berlin: Springer. doi:10.1007/s13319-

014-0007-6.

14. Siddeq, M. M., & Rodrigues, M. (2015). A novel 2D image

compression algorithm based on two levels DWT and DCT

transforms with enhanced minimize-matrix-size algorithm

for high resolution structured light 3D surface reconstruc-

tion. 3D Research, 6(3), 26. doi:10.1007/s13319-015-

0055-6.

15. D Catch. http://www.123dapp.com/howto/catch. Accessed

May 2016.

16. Siddeq M. M., & Al-Khafaji, G. (2013). Applied Minimize-

Matrix-Size Algorithm on the Transformed images by DCT

and DWT used for image Compression. International

Journal of Computer Applications, 70(15).

17. Pelaes, E. G., & Lano, Y. (1998). Image coding using dis-

crete sine transform with axis rotation. IEEE Transactions

on Consumer Electronics, 44(4), 1284–1290.

18. Siddeq, M. M., & Rodrigues, M. (2015a). Applied sequen-

tial-search algorithm for compression-encryption of high-

resolution structured light 3D data. In: K. Blashki, & Y.

Xiao (Eds.), MCCSIS: Multi-conference on computer sci-

ence and information systems 2015. IADIS Press, (pp.

195–202).

19. Discrete Sine Transform. (2016). https://en.wikipedia.org/

wiki/Discrete_sine_transform. Accessed Nov 2016.

20. Dhamija, S., & Jain, P. (2011). Comparative Analysis for

Discrete Sine Transform as a suitable method for noise

estimation. IJCSI International Journal of Computer Sci-

ence Issues, 8(5, 3).

21. Sasikumar, M., & Moni, R. S (2014). Use of Discrete Sine

Transform for a novel image denoising technique. Inter-

national Journal of Image Processing (IJIP), 8(4).

22. Knuth, D. (1997). Sorting and searching: Section 6.2.1:

Searching an ordered table, the art of computer program-

ming 3 (3rd ed.), Vol 1, Fundemental Algorithms.

Publisher: Addison-Wesley. pp. 409–426. ISBN 0-201-

89685-0.

23. Autodesk 123D. https://en.wikipedia.org/wiki/Autodesk_

123D.Accessed May 2016.

24. Rodrigues, M., Kormann, M., Schuhler, C., & Tomek, P.

(2013d). An intelligent real time 3D vision system for

robotic welding tasks. InMechatronics and its applications.

IEEE Xplore, (pp. 1–6).

25. Gonzalez, R. C., & Woods, R. E. (2001). Digital image

processing. Reading: Addison Wesley Publishing

Company.

26. Acharya, T., & Tsai, P. S. (2005). JPEG2000 standard for

image compression: Concepts, algorithms and VLSI archi-

tectures. New York: John Wiley & Sons.

3D Res (2017) 8:5 Page 19 of 19 5

123

http://dx.doi.org/10.1007/s13319-014-0007-6
http://dx.doi.org/10.1007/s13319-014-0007-6
http://dx.doi.org/10.1007/s13319-015-0055-6
http://dx.doi.org/10.1007/s13319-015-0055-6
http://www.123dapp.com/howto/catch
https://en.wikipedia.org/wiki/Discrete_sine_transform
https://en.wikipedia.org/wiki/Discrete_sine_transform
https://en.wikipedia.org/wiki/Autodesk_123D
https://en.wikipedia.org/wiki/Autodesk_123D

	DCT and DST Based Image Compression for 3D Reconstruction
	Abstract
	Introduction
	Using One-Dimensional Discrete Cosine Transform (DCT)
	One Dimensional Discrete Sine Transform (DST)
	High Frequency Minimization Algorithm
	The Fast-Matching Search Decompression Algorithm
	Experimental Results
	Results for 2D Images
	Results for Structured Light Images and 3D Surfaces

	Conclusions
	References

