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Abstract In this paper, a novel algorithm of image

encryption based on quantum chaotic is proposed. The

keystreams are generated by the two-dimensional

logistic map as initial conditions and parameters. And

then general Arnold scrambling algorithm with keys is

exploited to permute the pixels of color components. In

diffusion process, a novel encryption algorithm, folding

algorithm, is proposed to modify the value of diffused

pixels. In order to get the high randomness and

complexity, the two-dimensional logistic map and

quantum chaotic map are coupled with nearest-neigh-

boring coupled-map lattices. Theoretical analyses and

computer simulations confirm that the proposed algo-

rithm has high level of security.

Keywords Image encryption � Arnold scrambling �
Folding algorithm � Quantum chaotic map � Two-
dimensional logistic map

1 Introduction

1.1 Background

Currently, the image encryption technology is a hot

area and a challenging task. There are lots of image

information received by illegal users, which brings

many negative impacts on personal privacy. In order

to protect personal information, various image encryp-

tion algorithms are designed and proposed such as

one-time keys [1], bit-level permutation [2, 3], com-

pression techniques [4], DNA computing [5–7],

Arnold transform [8–13] and so on. Chaotic systems

have many good characteristics such as sensitivity to

initial parameters, mixing property, high efficiency

and ergodicity. In general, a chaotic system has a high

speed with low cost, which is better than many

conditional ciphers for multimedia data encryption

[14]. Inspired by the subtle similarity between chaotic

systems and cryptosystem, various encryption algo-

rithms based on chaotic map [15, 16] are proposed in

the literature. Herein, quantum chaotic system is

applied to generate pseudo-random sequence to

encrypt color images in the proposed cryptosystem.

An international standard of encryption algorithm

is not only suitable for a partial compression algorithm

but also permutation and diffusion properties. The

diffusion–permutation-based algorithm should have a

large key space and the long periodicity of permuta-

tion to increase the security. For this purpose, many

researchers turn to find some improved chaos-based

algorithms with large key spaces and good permuta-

tion and diffusion techniques. Ping [1] proposed a

novel CA-based multiple image encryption by using a

kind of two-dimensional reversible CA, and by using a

circular chaining mode of operation. The proposed

method allows images to be processed in a 2-D way
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and makes the statistical information of each plain

image in the group hidden in all cipher images.

In order to disturb the high correlation among

pixels, the Arnold cat map [8–13] is a good scrambling

tool which has been used widely in various crypto-

graphic and steganographic applications. Guo et al. [9]

proposed a novel color image encryption method

using discrete fractional random transform (DFRNT)

and Arnold transform (AT) in the intensity–hue–

saturation (IHS) color space. Chen et al. [12] reported

a new image encryption algorithm based on singular

value decomposition and Arnold transform. However,

in all of these algorithms have a weaknesses [17]: the

iteration times are very limited. Here we propose

perfect methods to solve these problems.

Chaos-based cryptographic scheme has many bril-

liant advantages different from other algorithms such

as sensitivity to initial conditions and parameters,

mixing property, high efficiency non-periodicity and

control parameters [18, 19]. In recent years various

encryption algorithms based on chaotic map are

proposed [20–22]. Wang and Guo [20] utilized a

logistic map for generating a matrix to diffuse the left

block of the plain image and then the diffused image

was used as the right block of the cipher image. In [23]

quantum chaos theory becomes a tool that can be used

to improve the quality of pseudo-random number

generators. The randomness and non-periodicity of

quantum chaotic map are successfully verified by

statistical complexity and the normalized Shannon

entropy. In order to obtain high diffusivity, folding

algorithm is proposed to modify the value of permuted

pixels with quantum chaos sequence from eight

directions.

1.2 Contribution and Organization

Due to the color image that is composed of three color

components, we convert three components into three

matrices, namely R, G, B. General Arnold transform

with keys means that parameters of the matrix A is a

set of secret values. We add the matrix (ku, kv)T as

secret values during the process that Arnold transform

is iterated n times. The experiment proves that the

chaos character is better when n = 6. So we get three

different matrices (kui, kvi)
T (i = 1, 2, 3) as keys to

improve the high randomness and enlarge the key

space. And then quantum chaotic map [24–26] is

applied to generate three matrices X, Y, Z of size

N 9 N to encrypt three matrices R, G and B. In this

process, the initial condition of quantum chaotic map

is a pseudo-random number, which is altered with the

time of iteration. For the high complexity and the high

randomness, in this paper chaotic maps are coupled

with nearest-neighboring coupled-map (NCML),

which extremely increases the security and sensitivity

of the proposed algorithm.

The major contributions of the proposed algorithm

are as follows:

(1) Addmatrices (kui, kvi)
T (i = 1, 2, 3) as keys into

general Arnold transform to enlarge the key

space and improve the randomness.

(2) Key generator is an address mapping table,

which is generated by two-dimensional logistic

map. According to session keys we obtain initial

conditions and parameters so that improve the

sensitivity of the key generator.

(3) Putting forward a new algorithm, the folding

algorithm, to encrypt the image from eight

directions and attaining remarkable results.

The rest of this paper is organized in the following

manners: Sect. 2 introduce the basic theory of the

proposed cryptosystem. Section 3 the proposed cryp-

tosystem is explained. Simulation results and security

analysis are proposed in Sect. 4. Finally the conclu-

sions are drawn in Sect. 5.

2 Basic Theory of the Cryptosystem

2.1 Two-Dimensional Logistic Map

As a classical algorithm logistic has a perfect chaotic

property. The 2D coupled logistic map reported in [27]

has three quadratic coupling terms to strengthen its

complexity. In order to enlarge key space and obtain

the high complexity, in this paper two-dimensional

logistic map is chosen to be a key generator. The two-

dimensional logistic map is described as [27, 28]:

u1ðxnÞ ¼ l1xnð1� xnÞ þ c1y
2
n

u1 ðynÞ ¼ l2ynð1� ynÞ þ c2ðx2n þ xnynÞ;
ð1Þ

when 2.75\ l1 B 3.4, 2.75\ l2 B 3.45, 0.15\ c1
B 0.21 and 0.13\ c2 B 0.15, the system can generate

pseudo-numbers in the region (0,1]. All parameters are

generated by key generator.
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2.2 General Arnold Transform with Keys

In order to disturb the high correlation among pixels,

the Arnold cat map [8] is image pixel scrambling tool

which has been used in many literatures. The defini-

tion of general Arnold transform is given in [29]:

x0

y0

� �
¼ A

x

y

� �
ðmod NÞ; A ¼ 1 a

b abþ 1

� �
; ð2Þ

where the location of the plain-image pixel is (x, y), the

location of the cipher-image pixel is (x0, y0). We set

N = 256. When a = b = 1, Eq. (2) is a classical two-

dimensional Arnold map. In order to improve security

of the cryptosystem, the control parameters a and b are

generated by the key generator. Because Arnold

transform is a bijection transform, the result of iterating

Eq. (2) k times still is a bijection transform. In other

words, after the process of iteration for k times, point

(x0, y0) is new position of coordinate (x, y). Due to the

fact that result of orthogonal transformation is a limited

discrete set, we can add a matrix (ku, kv)T as a set of

secret keys to reduce the correlation among pixels. So

we get general Arnold transform with keys as follows:

x0

y0

� �
¼ An x

y

� �
þ ku

kv

� �
ðmod NÞ;

A ¼ 1 a

b abþ 1

� �
;

ð3Þ

where n is iteration times of the matrix A. According

to the inverse transformation of Eq. (3), the corre-

sponding decryption algorithm is shown as follows:

x

y

� �
¼ A�n

x0 � ku

y0 � kv

� �
ðmod NÞ;

A�1 ¼
abþ 1 �a

�b 1

� �
:

ð4Þ

2.3 Quantum Chaotic Map

Dissipative quantum systems are often described in

where the system is coupled to a path of harmonic

oscillators to construct a quantum logistic map

[24–26] with quantum corrections. In [24], authors

analyze the effects of quantum corrections and state

a = hai ? da, where da shows a quantum fluctuation

about hai. Furthermore, they prove that the very

lowest-order quantum corrections can yield the

chaotic map as follows:

u2ðx0nÞ ¼ r ðx0n � jx0nj
2Þ � r y0n

u2ðy0nÞ ¼ �y0ne
�2b þ e�br ½ð2� x0n � x0�n Þy0n � x0nz

0�
n � x0�n z

0
n�

u2ðz0nÞ ¼ �z0ne
�2b þ e�br ½2ð1� x0�n Þ z0n � 2x0ny

0
n � x0n�

ð5Þ

where x́ = hai, ý = hda� dai, ź = hda dai and b is

dissipation parameter. Generally, x0n, y
0
n and z0n are

complex numbers with x0�n being the complex conju-

gate of x0n and similarly for z0n. However, if we set the

initial value to be real number, then all successive

value will also be real. According to [23], the range of

the parameters as follows: 0 B x0n B 1, 0 B y0n B 0.1,

0 B z0n B 0.2, x0�n = x0n, z0�n = z0n, b 2 ½6;þ1� and

r 2 ½0; 4�. They conclude that the best value of the

control parameter r and dissipation parameter b are

r = 3.99 and b C 6. So we set r = 3.99, b = 6. Iterate

Eq. (5) with real initial parameters x00, y
0
0, z

0
0, x

0�
0 and

z0�0 , all the successive values x
0
n, y

0
n and z0n will be real.

2.4 Nearest-Neighboring Coupled-Map Lattices

In order to achieve the high complexity and the high

randomness among these generated keystreams, the

two-dimensional logistic map and the quantum

chaotic map proposed in Sects. 2.1 and 2.3 are

independently coupled with NCML [30, 31] as

follows:

znþ1ðjÞ ¼ ð1� eÞuðznðjÞÞ þ euðznðjþ 1ÞÞ; ð6Þ

where n = 0, 1,…, L - 1 is the time index; j = 1,

2,…, T is the lattice state index; function u represents

a chaotic map such as u1, u2; e 2 ð0; 1Þ is a coupling
constant; L is the length of the plain-text; and T is

maximum value of lattice state index. Here, T is

chosen as 2 and 3 for the two-dimensional logistic map

and the quantum chaotic map, while the other

parameter is selected as e = 0.001 to have good

chaotic properties [30, 31]. Moreover, the periodic

boundary condition, i.e., zn(j ? T) = zn(j) is imposed

into this system.

Applying Eqs. (1) to (6), the coupling of two-

dimensional logistic map is defined as follows:

xnþ1 ¼ ð1� eÞuðxnÞ þ euðynÞ
ynþ1 ¼ ð1� eÞuðynÞ þ euðxnÞ

ð7Þ

and by applying Eqs. (5) to (6), the coupling of

quantum chaotic map is defined as follows:
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x0nþ1 ¼ ð1� eÞuðx0nÞ þ uðy0nÞ
y0nþ1 ¼ ð1� eÞuðy0nÞ þ uðz0nÞ
z0nþ1 ¼ ð1� eÞuðz0nÞ þ uðx0nÞ

ð8Þ

Iterating Eqs. (7) and (8), the required keystreams

for the proposed cryptosystem are produced.

3 Cryptosystem

In what follows, we combine the generation process

with the image processing, the permutation process

and the diffusion process.

3.1 Generation of the Initial Conditions

and Parameters

Proposed cryptosystem utilizes a 128-bit external

secret key, K, which is divided into 8-bit blocks, ki,

referred to as session keys. The 128-bit external secret

key is given by:

K ¼ k1; k2; . . .; k16 ð9Þ

In order to increase the security of the proposed

algorithm, we apply the two-dimensional logistic map

Eq. (1) and nearest-neighboring coupled-map lattices

Eq. (6) so that the initial conditions and parameters of

the system are extremely sensitive to the changes in

even a single bit in the 128-bit secret key. The detailed

process of key generator is described as follows:

Step 1 Apply k1, k2, k3, k4 to generate l1, l2, c1, c2
respectively. We have known that when

2.75\l1 B 3.4, 2.75\ l2 B 3.45, 0.15\ c1
B 0.21 and 0.13\ c2 B 0.15 the two-dimensional

logistic map generates chaos. We set a\ ti B b, the

initial conditions and parameters of system are derived

as follows:

ti¼
ki

256
� 100

� �
mod ðb� aÞ � 100½ �

� �
=100þ a;

ð10Þ

where we set l1 = t1, l2 = t2, c1 = t3, c2 = t4. So for

the different ki we can get different ti and make sure

that l1, l2, c1, c2 are in the region that the system

generate chaos.

Step 2 Apply k5, k6,…, k16 as initial condition to

generate other key values. tmax = max([k5, k6,…,

k16]). tmin = min([k5, k6,…, k16]). tssv = min([k5,

k6,…, k16] - tmin). We set x0 = tmin/256, y0 = tssv/

256 and iterate Eq. (7) for ceil (tmax/2) times with l1,
l2, c1, c2, x0, y0 and then save their output in a new

vector E whose size is 2 9 ceil (tmax/2). Apply the

following Eq. (11):

ti¼Eki ð11Þ

where i = 5, 6,…, 16 and ti are in the region (0, 1].

Step 3 In order to improve randomness and

complexity of the encryption algorithm and broaden

the key space, According to Eq. (4) three sets of secret

keys, ai, bi and (kui, kvi)
T, are required to encrypt three

component of the color image R, G, B respectively.

Without loss of generality, we assume that the size of

the color plain-image P is W 9 H. Apply the trans-

formation as following equations to t5, t6, t7:

ai�4 ¼ ½floorðti �W � HÞmod 256�=16
bi�4 ¼ ½floorðti �W � HÞmod 256�mod 16

ð12Þ

where ai, bi (i = 1, 2, 3) are the first four digits and the

last four digits of eight-digit binary number

respectively.

Apply the transformation as following equations to

t8, t9, t10:

kui�7 ¼ floorðti �W � HÞmod 256: ð13Þ

Apply the transformation as following equations to t11,

t12, t13:

kvi�10 ¼ floorðti �W � HÞmod 256: ð14Þ

Step 4 Recalling as mention in Sects. 2.3, y0n e [0,

0.1], z0n e [0, 0.2]. Applying Eq. (10) analogously

initial parameters x00, y
0
0, z

0
0 are derived as follows:

x00 ¼ t14

y00 ¼ ½ðt15 � 10Þmod 1�=10
z00 ¼ ½ðt16 � 10Þmod 2�=10

ð15Þ

To this end, all initial conditions and parameters are

generated. The above key generator shows that we can

not find different keys which make the same effect on

initial parameters. And the proposed chaotic algorithm

is greatly sensitive to secret key so that even a change

in the secret key causes completely different results; as

a result, the proposed algorithm with total complexity

of 2128 can resist against any key sensitivity attack and

any bruteforce attack.
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3.2 Encryption Algorithm

In this process we convert the matrix P with red, green

and blue components into three matrices R, G and B.

Taking an example of the matrix R, the detailed

encryption algorithm is described as follows:

3.2.1 Permutation Process

The process applies pseudo-random keystreams gen-

erated by Eqs. (12), (13) and (14) according to

Sect. 3.1 to permute pixels of the color image.

Substituting a1, b1 and (ku1, kv1)
T into Eq. (3) and

iterate it for n times. According to the experiment we

find that when n = 6 the proposed cryptosystem

performs better. Apply the same permutation process

into G and B respectively, the plain-image becomes a

cipher-image after n times iteration, namely, Matrices

R, G and B all becomes R’, G’ and B’.

3.2.2 Diffusion Process

Step 1 Set L = N 9 N and generate the initial

condition (x00, y
0
0, z

0
0) according to Sect. 3.1 and iterate

Eq. (8) m ? L times and discard the former m values

to avoid harmful effects. Where m also can be as a

secret key, we set m = 13 for convenience. Discard-

ing the first m result and Sorting these L values as

|X[= {xm?1, xm?2,…, xm?L}, |Y[= {ym?1,

ym?2,…, ym?L} and |Z[= {zm?1, zm?2,…, zm?L}.

Step 2Transforming three vectors |X[, |Y[and |Z[
into matrices X, Y and Z respectively, whose size are

N 9 N.

Step 3 In order to describe the problem clearly, Red

channel is used to be an example to explain ‘‘the

process of folding the picture’’. We fold the matrix R

(Fig. 2a) from eight directions to encrypt it. Eight

directions include eight rounds encryption ways.

Round 1 (Fig. 1):

Th0ði; jÞ ¼ Thði; jÞ � Xthði; jÞ
Bh0ðN � iþ 1; jÞ ¼ BhðN � iþ 1; jÞ � Th0ði; jÞ

ð16Þ

where i = 1, 2,…, N/2 and j = 1, 2,…, N. The matrix

R’ is divided into two equal horizontal parts: Th and Bh.

Round 2 (Fig. 2):

Tr0ði; jÞ ¼ Trði; jÞ � Xtrði; jÞ
Bl0ðj; iÞ ¼ Blðj; iÞ � Tr0ði; jÞ

ð17Þ

where i = 1, 2,…, N and j = i, i ? 1,…, N. The

matrix R1 is divided into two equal horizontal parts: Tr

and Bl.

Round 3 (Fig. 3):

Rh0ði; jÞ ¼ Rhði; jÞ � Xrhði; jÞ
Lh0ði;N � jþ 1Þ ¼ Lhði; jÞ � Rh0ði;N � jþ 1Þ

ð18Þ

where i = 1, 2,…, N and j = N/2 ? 1, N/2 ? 2,…,

N. The matrix R2 is divided into two equal horizontal

parts: Lh and Rh.

Round 4 (Fig. 4):

Rb0ði; jÞ ¼ Rbði; jÞ � Xrbði; jÞ
Lt0ði; jÞ ¼ Rb0ði; jÞ � Ltði; jÞ

ð19Þ

where i = 1, 2,…, N and j = N - i ? 1,

N - i ? 2,…, N. The matrix R3 is divided into two

equal horizontal parts: Lt and Rb.

Round 5 (Fig. 5):

Bh0ði; jÞ ¼ Bhði; jÞ � Xbhði; jÞ
Th0ðN � iþ 1; jÞ ¼ ThðN � iþ 1; jÞ � Bh0ði; jÞ

ð20Þ

where i = N/2 ? 1, N/2 ? 2,…, N and j = 1, 2,…,

N. The matrix R4 is divided into two equal horizontal

parts: Th and Bh.

Round 6 (Fig. 6):

Bl0ði; jÞ ¼ Blði; jÞ � Xblði; jÞ
Tr0ðj; iÞ ¼ Trðj; iÞ � Bl0ði; jÞ

ð21Þ

where i = 1, 2,…, N and j = 1, 2,…, i–1. The matrix

R5 is divided into two equal horizontal parts: Tr and Bl.

Round 7 (Fig. 7):

Lh0ði; jÞ ¼ Lhði; jÞ � Xlhði; jÞ
Rh0ði;N � jþ 1Þ ¼ Rhði; jÞ � Lh0ði;N � jþ 1Þ

ð22Þ

where i = 1, 2,…, N and j = 1, 2,…, N/2. The matrix

R6 is divided into two equal horizontal parts: Lh and Rh.

(a) The matrix R’ (b)The matrix X

Th 

Bh 

Xth 

Fig. 1 Fold from top to bottom. a The matrix R’. b The matrix X
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Round 8 (Fig. 8):

Lt0ði; jÞ ¼ Ltði; jÞ � Xltði; jÞ
Rb0ði; jÞ ¼ Rbði; jÞ � Lt0ði; jÞ

ð23Þ

where i = 1, 2,…, N and j = 1, 2,…, N–i. The matrix

R7 is divided into two equal horizontal parts: Lt and Rb.

Step 4After Step 3 thematrix R0 becomes amatrix R8.

At last R8 XOR X and we get the encrypted matrix Cr.

After four steps, the matrix R0 becomes an

encrypted matrix Cr. The process of R component

encryption is finished. In a similar way, we replace the

matrix X with Y or Z and replace the matrix R0 with G0

or B0 respectively. After four steps the matrices G0 and
B0 encrypted matrices Cg and Cb.

It is noted that Mmod N involves modulo operation

giving an integer result between 0 and N. Function ceil

(a) returns the smallest integer value that is bigger than

or equal to the value of a. Function max (k1, k2,…, kn)

returns the biggest value among all of them. And

function min (k1, k2,…, kn) returns the smallest value

among all of them.

Obviously the generation of the keystream depends

on the 128-bit external secret key, K, and the size N of

plain-image. The generation of initial conditions and

parameters are derived by the two-dimensional logistic

map and the nearest-neighboring coupled-map lattices.

And the keystream is chosen from an array of chaotic

sequence, which makes sure that cryptosystem has a

high complexity, sensitivity and randomness. In the

encryption process, the Arnold transform with keys is

applied to permute the pixels of color components.And

the quantum chaotic map is exploited to generate the

keystreams to modify the value of diffused pixels by

‘‘the process of folding the picture’’.

3.3 Decryption Algorithm

The decryption process is similar to the encryption

one, achieved in the reverse order. In decryption

process opening folded matrices Cr, Cg and Cb is the

first steps. Second by applying the Eq. (4) we can

accomplish encryption of Arnold transform. The detail

decryption algorithm is described as follows:

(a)The matrix R1 after round 1 (b)The matrix X 

     Tr 

 Bl 

    Xtr 

Fig. 2 Fold from top right to bottom left. a The matrix R1 after

round 1. b The matrix X

(a) The matrix R2 after round 2 (b) The matrix X

Lh   Rh     Xrh 

Fig. 3 Fold from right to left. a The matrix R2 after round 2. b

The matrix X

(a) The matrix R3 X 

 Lt 

    Rb     Xrb 

after round 3 (b) The matrix

Fig. 4 Fold from bottom right to top left. a The matrix R3 after

round 3. b The matrix X

(a)The matrix R4 after round 4 (b)The matrix X

Th 

Bh Xbh 

Fig. 5 Fold from bottom to top. a The matrix R4 after round 4.

b The matrix X

(a) The matrix R5 after round 5 (b) The matrix X 

     Tr 

 Bl  Xbl 

Fig. 6 Fold from bottom left to top right. a The matrix R5 after

round 5. b The matrix X

(a) The matrix R6 after round 6 (b)The matrix X 

Lh   Rh Xlh 

Fig. 7 Fold from left to right. a The matrix R6 after round 6. b

The matrix X
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Step 1 According to Sect. 3.1 applying the same

external 128-bit secret key to generate the initial

conditions and parameters.

Step2Substituting the initial condition (x00, y
0
0, z

0
0) and

iterating Eq. (8) m ? L times, discarding the former

m values to avoid harmful effects, where m = 13.

Step 3 Sorting these values {xm?1, xm?2,…, xm?L},

{ym?1, ym?2,…, ym?L} and {zm?1, zm?2,…, zm?L}

and transforming them to three matrices X, Y and Z.

Step 4 Executing these operations of Cr XOR X, Cg

XOR Y and Cb XOR Z.

Step 5 In order to describe the process of decryption

clearly, Round 1 is taken an example to explain the

process of ‘‘opening folded matrices’’.

DhðN � iþ 1; jÞ ¼ Dh0ðN � iþ 1; jÞ � Uh0ði; jÞ
Uhði; jÞ ¼ Uh0ði; jÞ � Xuhði; jÞ

ð24Þ

where i = 1, 2,…, N/2 and j = 1, 2,…, N. Uh0, Dh0

and Xuh are all known quantity. As the same way,

after eight rounds the process of ‘‘opening folded

matrices’’ finished and we get three matrices Rr, Gg

and Bb whose size are all N 9 N.

Step 6 Substituting the initial condition (kui, kvi)
T

and parameters ai, bi (i = 1, 2, 3), and then using the

encryption algorithm Eq. (4) we get R, G and B. In this

way the encryption process finished.

4 Performance and security analysis

A good encryption algorithm should resist all kinds of

known attacks, such as exhaustive attack, statistical

attack and chosen-plaintext/ciphertext attack [32]. We

have done many measures to check the security and

performance of the proposed cryptosystem. These

measures consist of statistical analysis, key sensitivity

analysis, key space analysis, speed performance. Each

of these measures is shown in detail in the following

subsections.

4.1 Statistical Analysis

4.1.1 Histogram of Encrypted Image

An ideal cipher-image should have a uniform fre-

quency distribution. From Figs. 9, 10, 11 and 12, it is

obvious that the histogram of cipher-image are inde-

pendent of the type of plain-image such as binary, gray

level and are nearly uniform and significantly different

from the histogram of the original images. Hence it

dose not provide any useful statistic data in the cipher-

image to trigger any statistical attacks to the algorithm.

For quantity analysis for each keys, variances of

histograms is employed to evaluate the uniformity of

distributions of pixels. The lower value of variances

indicate the higher uniformity of cipher-image. The

variances of histograms is presented as follows [33]:

varðZÞ ¼ 1

2562

X256
i¼1

X256
j¼1

1

2
ðzi � zjÞ2; ð25Þ

where Z is the vector of the histogram values and

Z = {z1, z2,…, z256}. zi and zj are the numbers of pixels

which values are equal to i and j respectively.According

to [31] the variance value is 625571.4908 for histogram

of the plain-image Lena. And in the paper the variance

value is 5258.7134 for histogram of the cipher-image

Lena. Therefore, the proposed algorithm is efficient.

4.1.2 Correlation of Two Adjacent Pixels

In order to get the correlation of two adjacent pixels

we have selected 3000 pairs of two adjacent pixels

from plain-image and cipher-image randomly for the

experiment and have calculated the correlation coef-

ficients as follows:

E ¼ 1

N

XN
i¼1

xi

DðxÞ ¼ 1

N

XN
i¼1

ðxi � EðxÞÞ2

Covðx; yÞ ¼ 1

N

XN
i¼1

ðxi � EðxÞÞðyi � EðyÞÞ

rxy ¼
Covðx; yÞffiffiffiffiffiffiffiffiffiffi
DðxÞ

p ffiffiffiffiffiffiffiffiffiffi
DðyÞ

p

ð26Þ

The x, y represents gray-level values of two adjacent

pixels. The distribution of two horizontally adjacent

(a) The matrix R7 after round 7 (b) The matrix X 

 Lt 

    Rb 

 Xlt      

Fig. 8 Fold from top left to bottom right. a The matrix R7 after

round 7. b The matrix X
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pixels of R, G and B components of plain-image and

cipher-image ‘‘Lena’’ is shown in Figs. 6 and 13.

Table 1 shows that the correlation between adja-

cent pixels of the cipher-image is much smaller than

that of plain-image, so we claim that the adjacent

pixels of the plain-image are uncorrelated by the

proposed cryptosystem effectively from different

directions.

In color images, there are the high correlations

between adjacent pixels of R, G and B components.

The proposed cryptosystem encrypt pixels of color

components so that make them affect one another.

Tables 2 and 3 show the results of the same position

correlations and related adjacent position correlations

between R, G and B components of plain-image and

cipher-image.

(a) (b) (c)

Fig. 9 a The original white image. b The original monolithic gray-level image. c The original black image

Fig. 10 a Cipher of white image. b The cipher of monolithic gray-level image. c The cipher of the black image. d The histogram of the

encrypted white image. e The histogram of the encrypted monolithic gray-level image. f The histogram of the encrypted black image
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Fig. 11 a Plain-image Lena-R. b The plain-image Lena-G. c The plain-image Lena-B. d The histogram of the plain-image Lena-R. e

The histogram of the plain-image Lena-G. f The histogram of the plain-image Lena-B

Fig. 12 a The encrypted image Lena-R. b The encrypted image Lena-G. c The encrypted image Lena-B. d The histogram of the

encrypted image Lena-R. e The histogram of the encrypted image Lena-G. f The histogram of the encrypted image Lena-B
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4.2 Key Sensitivity Analysis

When one bit of the security key is altered, there are

obviously differences between two cipher-images.

The number of pixels change rate (NPCR) and the

unified average changing intensity (UACI) for the two

encrypted images are applied to measure the number

of pixels change rate.

NPCR =

P
i;jDði; jÞ
W � H

� 100%;

UACI =
1

N � N

X
i;j

jCði; jÞ � Cði; jÞ0j
255

" #
� 100%;

ð27Þ

where N is the height (width) of the encrypted image.

We apply two encrypted images C and C0, whose
corresponding original images are different in only

one pixel. We also define a two-dimensional array D,

which has the same size as C and C0. If C(i, j) = C0(i,
j), then D(i, j) = 0, otherwise D(i, j) = 1. To resist

against security key attack, NPCR and UACI values

should be large enough for an ideal cipher system.

When the secret key is altered from ‘‘207 21 42 61 122

203 97 76 101 5 7 241 139 28 98 17’’ to ‘‘208 21 42 61

122 203 97 76 101 5 7 241 139 28 98 17’’ the

differences is made greatly. Table 4 shows the average

NPCRR, G, B and UACIR, G, B values and compares this

proposed algorithm with other schemes in terms of the

key sensitivity. The proposed algorithm is sensitive

dependent on initial conditions and parameters and is

effective to resist differential attack.

4.3 Key Space Analysis

An ideal encryption scheme should have an enough

large key space to defend brute-force attack. The size

of the key space should be bigger than 2100 to provide a

high level of security from the crytography of view

[38, 39]. Due to the secret key is 128-bit long, the key

space is 2128. We can conclude that the proposed

algorithm is large enough to resist all kinds of brute-

force attacks.

4.4 Speed Performance

Apart from the security considerations, some other

aspects on image cryptosystem algorithm are also

Fig. 13 Distribution of two horizontally adjacent pixels in the

plain-image of Lena, (a) in the red. (b) in the green. (c) in the

blue components. The distribution of two horizontally adjacent

pixels in the cipher-image of Lena, (d) in the red, (e) in the

green, (f) in the blue components. (Color figure online)
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important, particularly the running speed for real time

Internet multimedia applications. In fact the actual

execution time of a cryptosystem depends on many

factors, such as CPU structure, OS, memory size,

programming skill and so on. We have analyzed the

speed of the proposed image encryption technique on

an Intel Core I3 CPU 2.3 GHz and 3.99 GB of RAM

running on Windows XP and MATLAB 7.1 program-

ming. For accuracy each set of the timing tests was

executed several times for considerable number of

images and then the average obtained was reported. In

Table 5, we can see the comparison results for the

proposed scheme and other schemes. Table 5 shows

that the proposed algorithm is fast compared to the

other schemes.

4.5 Information Entropy

As one of the most important features, the information

entropy is often used to measure the randomness of the

cipher-image. The entropy H(s) of a message source is

given by:

HðsÞ ¼ �
X2n�1

i¼0

pðsiÞ log2 pðsiÞ; ð28Þ

where p(si) represents the probability of the symbol s.

The entropy should ideally be H(s) = 8 for a cipher-

image with 28–1 gray levels, which shows that the

information is random. In the paper the information

entropy of the cipher-image is 7.9973, close to the

ideal value 8. Hence, we conclude that the proposed

algorithm has high randomness.

5 Conclusions

This paper has realized the quantum image encryption

and decryption. Image information is ciphered by the

proposed encryption algorithm based on general

Table 1 The related

correlation coefficient

between plain-image and

cipher-image

Scan direction Lena

Plain-image Cipher-image

R G B R G B

Horizontal 0.972978 0.954127 0.938846 0.000215 0.000101 0.000147

Vertical 0.981110 0.951084 0.934597 0.000239 0.000563 0.000086

Diagonal 0.958757 0.934720 0.915541 0.000540 0.000632 0.001526

Table 2 Similar position correlations between R, G and B

components

Scan direction R–G R–B G–B

Plain-image 0.929848 0.797885 0.949200

Cipher-image 0.000235 0.001223 0.003218

Table 3 Adjacent position correlation between R, G and B

components

Scan direction R–G R–B G–B

Plain-image 0.896510 0.756614 0.891265

Cipher-image 0.002648 0.004300 0.001657

Table 4 Comparison of the average NPCRR, G, B and

UACIR, G, B values

Algorithm Average (NPCRR, G, B) Average (UACIR, G, B)

Proposed 0.996831 0.334412

[34] 0.996168 0.334659

[35] 0.989182 0.327865

[26] 0.996355 0.334188

[36] 0.9965 0.3348

[37] 0.9982 0.3346

Table 5 Comparison of encryption speeds for the proposed

scheme and different schemes

Algorithm Speed (M bit/s)

Proposed 9.16

[26] 8.11

[40] 8.16

[41] 9.41

[42] 5.15
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Arnold transform with keys and quantum chaotic map.

By improving the Arnold transform algorithm, we not

only enlarge the key space to resist against any key

sensitivity and any brute-force attack, but also raise

the running speed of the process of the encryption. The

experiment shows that only one time general Arnold

transform with keys has a good result. In order to

enhance the sensitivity of the cryptosystem, the key

generator apply the addressing map to get initial

conditions and parameters. Quantum chaotic sequence

possesses perfect chaotic character, which is used to

change the pixel values of the plain-image by ‘‘folding

the picture’’. The experimental results demonstrate

that the folding algorithm can achieve sensitivity to

initial values, robustness, resistance against common

attacks, large key space and possesses the high

encryption speed (speed[ 9.16 M bit/s). Accord-

ingly the proposed algorithm is suitable to practical

uses to protect the digital image information over the

Internet.

Acknowledgements This work was financially supported by

self-determined research funds of CCNU from the colleges’

basic research and operation of MOE (Grant No.

CCNU15GF007).

References

1. Liu, H., & Wang, X. (2010). Color image encryption based

on one-time keys and robust chaotic maps. Computers &

Mathematics with Applications, 59(10), 3320–3327.

2. Diaconu, A. V., Ionescu, V., & Iana, G. (2016). A new bit-

level permutation image encryption algorithm. In Interna-

tional Conference on Communications (pp. 411–416).

3. Liu, H., & Wang, X. (2011). Color image encryption using

spatial bit-level permutation and high-dimension chaotic

system. Optics Communications, 284(16–17), 3895–3903.

4. Kumar, M., & Vaish, A. (2016). An efficient encryption-

then-compression technique for encrypted images using

SVD. Digital Signal Processing, 60, 81–89.

5. Zhang, Y. (2014). Cryptanalysis of an image encryption

algorithm based on chaotic modulation of Arnold dual

scrambling and DNA computing. Advanced Science Focus,

2(1), 67–82.

6. Wan, R., Mo, H., & Yu, S. (2014). Document and image

encryption based on OTP optimized by hyper-chaos map-

ping DNA computing. Computer Measurement & Control,

22(10), 3278–3281.

7. Zhou, S., Wang, B., Zheng, X., & Zhou, C. (2016). An

image encryption scheme based on DNA computing and

cellular automata. Discrete Dynamics in Nature and Soci-

ety, 2016(2), 1–9.

8. Abbas, A. M. (2015). Image encryption based on indepen-

dent component analysis and Arnold’s cat map. Egyptian

Informatics Journal, 17(1), 139–146.

9. Guo, Q., Liu, Z., & Liu, S. (2010). Color image encryption

by using Arnold and discrete fractional random transforms

in IHS space. Optics and Lasers in Engineering, 48(12),

1174–1181.

10. Zhou, N. R., Hua, T. X., Gong, L. H., Pei, D. J., & Liao, Q.

H. (2015). Quantum image encryption based on generalized

Arnold transform and double random-phase encoding.

Quantum Information Processing, 14(4), 1193–1213.

11. Sui, L., & Gao, B. (2013). Color image encryption based on

gyrator transform and Arnold transform. Optics & Laser

Technology, 48(6), 530–538.

12. Chen, L., Zhao, D., & Ge, F. (2013). Image encryption based

on singular value decomposition and Arnold transform in

fractional domain.Optics Communications, 291(291), 98–103.

13. Das, P., Kushwaha, S. C., & Chakraborty, M. (2015).

Multiple embedding secret key image steganography using

LSB substitution and Arnold transform. In International

Conference on Electronics and Communication Systems

(pp. 845–849).

14. Jin, C., & Tu, Z. W. (2016). A novel color image encryption

algorithm using chaotic map and improved RC4. Advances

in Intelligent Systems and Computing, 466, 3–14.

15. Wang, X. Y., & Wang, M.-J. (2010). Projective synchro-

nization of nonlinear-coupled spatiotemporal chaotic sys-

tems. Nonlinear Dynamics, 62(3), 567–571.

16. Wang, X.-Y., Yang, L., & Liu, R. (2010). A chaotic image

encryption algorithm based on perceptron model. Nonlinear

Dynamics, 62(3), 615–621.

17. Liu, H., Wang, X., & Kadir, A. (2012). Image encryption

using DNA complementary rule and chaotic maps. Applied

Soft Computing, 12(5), 1457–1466.

18. Baptista, M.-S. (1998). Cryptography with chaos. Physics

Letters A, 240(1–2), 50–54.

19. Fridrich, J. (2011). Symmetric ciphers based on two-di-

mensional chaotic maps. International Journal of Bifurca-

tion & Chaos, 8(6), 1259–1284.

20. Wang, X., & Guo, K. (2014). A new image alternate

encryption algorithm based on chaotic map. Nonlinear

Dynamics, 76(4), 1943–1950.

21. Tang, Z., Zhang, X., & Lan, W. (2015). Efficient image

encryption with block shuffling and chaotic map. Multi-

media Tools and Applications, 74(15), 5429–5448.

22. Jawad, L. M., & Sulong, G. (2015). Chaotic map-embedded

blowfish algorithm for security enhancement of colour

image encryption. Nonlinear Dynamics, 81(4), 2079–2093.

23. Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S. C., &

Hassan, Z. (2014). Pseudo random number generator based

on quantum chaotic map. Communications in Nonlinear

Science and Numerical Simulation, 19(1), 101–111.

24. Akhshani, A., Akhavan, A., Lim, S. C., &Hassan, Z. (2012).

An image encryption scheme based on quantum logistic

map. Communications in Nonlinear Science and Numerical

Simulation, 17(12), 4653–4661.

25. Seyedzadeh, S. M., Norouzi, B., Mosavi, M. R., & Mirza-

kuchaki, S. (2015). A novel color image encryption algo-

rithm based on spatial permutation and quantum chaotic

map. Nonlinear Dynamics, 81(1–2), 1–19.

26. Abd El-Latif, A. A., Li, L., Wang, N., Han, Q., & Niu, X.

(2013). A new approach to chaotic image encryption based

on quantum chaotic system, exploiting color spaces. Signal

Processing, 93(11), 2986–3000.

4 Page 12 of 13 3D Res (2017) 8:4

123



27. Wang, X., & Shi, Q. J. (2005). New type crisis, hysteresis

and fractal in coupled logistic map. Chinese Journal of

Applied Mechanics, 4, 501–506.

28. Wang, X. Y., Zhang, Y. Q., & Zhao, Y. Y. (2015). A novel

image encryption scheme based on 2-d logistic map and

DNA sequence operations. Nonlinear Dynamics, 82(3),

1269–1280.

29. Sun, X. H. (2013). Image encryption algorithms and prac-

tices with implementations in C#. Beijing: Science Press.

30. Khan, M., Shah, T., & Batool, S. I. (2014). Texture analysis

of chaotic coupled map lattices based image encryption

algorithm. 3D Research, 5(3), 1–5.

31. Zhang, Y. Q., & Wang, X. Y. (2014). Spatiotemporal chaos

in mixed linear-nonlinear coupled logistic map lattice.

Physica A, 402(10), 104–118.

32. Wang, X., Teng, L., & Qin, X. (2012). A novel colour image

encryption algorithm based on chaos. Signal Processing,

92(4), 1101–1108.

33. Zhang, Y. Q., & Wang, X. Y. (2014). A symmetric image

encryption algorithm based on mixed linear-nonlinear

coupled map lattice. Information Sciences, 273(8),

329–351.

34. Hanchinamani, G., & Kulkarni, L. (2015). An efficient

image encryption scheme based on a peter De Jong chaotic

map and aRC4 stream cipher. 3D Research, 6(3), 1–15.

35. Rehman, A. U., Khan, J. S., Ahmad, J., & Hwang, S. O.

(2016). A new image encryption scheme based on dynamic

s-boxes and chaotic maps. 3D Research, 7(1), 1–8.

36. Wang, X. Y., Zhang, Y. Q., & Bao, X. M. (2015). A novel

chaotic image encryption scheme using DNA sequence

operations.Optics and Lasers in Engineering, 73(3), 53–61.

37. Wang, X. Y., Gu, S. X., & Zhang, Y. Q. (2015). Novel

image encryption algorithm based on cycle shift and chaotic

system. Optics and Lasers in Engineering, 68, 126–134.

38. Jorgensen, P. (2015). Applied cryptography: Protocols,

algorithm, and source code in c. Government Information

Quarterly, 13(3), 336.

39. Norouzi, B., Seyedzadeh, S. M., Mirzakuchaki, S., &

Mosavi, M. R. (2015). A novel image encryption based on

row-column, masking and main diffusion processes with

hyper chaos. Multimedia Tools and Applications, 74(3),

781–811.

40. Patidar, V., Pareek, N. K., Purohit, G., & Sud, K. K. (2010).

Modified substitution-diffusion image cipher using chaotic

standard and logistic maps. Communications in Nonlinear

Science and Numerical Simulation, 15(15), 2755–2765.

41. Hua, Z., Zhou, Y., Pun, C. M., & Chen, C. L. P. (2015). 2D

sine logistic modulation map for image encryption. Infor-

mation Sciences, 297(11), 80–94.

42. Mazloom, S., & Eftekhari-Moghadam, A. M. (2009). Color

image encryption based on coupled nonlinear chaotic map.

Chaos, Solitons & Fractals, 42(3), 1745–1754.

3D Res (2017) 8:4 Page 13 of 13 4

123


	A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence
	Abstract
	Introduction
	Background
	Contribution and Organization

	Basic Theory of the Cryptosystem
	Two-Dimensional Logistic Map
	General Arnold Transform with Keys
	Quantum Chaotic Map
	Nearest-Neighboring Coupled-Map Lattices

	Cryptosystem
	Generation of the Initial Conditions and Parameters
	Encryption Algorithm
	Permutation Process
	Diffusion Process

	Decryption Algorithm

	Performance and security analysis
	Statistical Analysis
	Histogram of Encrypted Image
	Correlation of Two Adjacent Pixels

	Key Sensitivity Analysis
	Key Space Analysis
	Speed Performance
	Information Entropy

	Conclusions
	Acknowledgements
	References




