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Abstract This paper deals with the features of a

novel technique for large Laplacian boundary defor-

mations using estimated rotations. The proposed

method is based on a Multi Library Wavelet Neural

Network structure founded on several mother wavelet

families (MLWNN). The objective is to align features

of mesh and minimize distortion with a fixed feature

that minimizes the sum of the distances between all

corresponding vertices. New mesh deformation

method worked in the domain of Region of Interest

(ROI). Our approach computes deformed ROI,

updates and optimizes it to align features of mesh

based on MLWNN and spherical parameterization

configuration. This structure has the advantage of

constructing the network by several mother wavelets

to solve high dimensions problem using the best

wavelet mother that models the signal better. The

simulation test achieved the robustness and speed

considerations when developing deformation method-

ologies. The Mean-Square Error and the ratio of

deformation are low compared to other works from the

state of the art. Our approach minimizes distortions

with fixed features to have a well reconstructed object.

Keywords Deformations � Spherical
parameterization � Correspondence � Wavelet Neural

Network � 3D high resolution meshes

1 Introduction

The Deformation of geometric meshes plays a central

role in computer graphics, especially in the areas of

computer animation and computer-aided design. Mesh

deformation is an important element in the analysis of

moving bodies and shape optimization. The ability to

automatically update an existing mesh to conform to a

modified geometry is an obligatory capability to

enable the rapid prototyping of several other geomet-

ric designs. Deformation transfer applies the defor-

mation showed by a source triangle mesh onto a

different target triangle mesh and computes the set of

transformations induced by the deformation of the

source mesh, maps the transformations through the

correspondence from the source to the target, and

solves an optimization problem to consistently apply

the transformations to the target shape. In order to re-

use a deformation created for one object to deform

another, the particular parameters that control the

deformation must be adapted to the new object. In

numerous cases, adapting these parameters is just as

time consuming as starting from scratch. Several

successful techniques have been developed in partic-

ular, multi-resolution techniques [14]. Recently intro-

duced differential domain approaches are very
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effective in preserving surface details, which is

important for generating high-quality results. Con-

versely, large deformations such as those found with

characters performing nonrigid and highly exagger-

ated movements remain challenging today, and exist-

ing techniques often produce implausible results with

unnatural volume changes. The deformations are

computed with the help of a minimisation method.

We developed a new mesh deformation method

worked in the domain for Region of Interest (ROI)

based on a Multi library Wavelet Neural Network

(MLWNN) structure founded on several mother

wavelet families to align the features of mesh and to

minimize distortion with a fixed feature that mini-

mizes the sum of the distances between all corre-

sponding vertices. Our approach computes deformed

ROI and updates ROI vertices. We used linear

differential coordinates as means of preserving the

high frequency details of the surface. The differential

coordinates denote the details and are defined by a

linear transformation of the mesh vertices. This

representation leads to a conceptually simple, yet,

powerful method for interactive, feature-preserving

and shape modeling method. Thanks to are local

rotations of the relative coordinates, the orientation of

the details is preserved [17]. In our approach we first

calculated the spherical parameterization of two

meshes in order to have bijective parameterizations

with low area and region distortion. Then, we com-

puted the corresponding feature region sets, and used

Laplacian boundary technique for large deformations

3D meshes based on a MLWNN structure founded on

several mother wavelet families (MLWNN) to opti-

mize and align the features of mesh.

2 Related Work

The deformation process is a generalization of the

concept introduced by expression cloning, which

transfers facial expressions from one face mesh to

another [22]. The first detail-preserving mesh defor-

mation methods were based on multi-resolution tech-

niques [9, 15, 36], to allow for more global and

complex deformation. Many authors proposed to cast

mesh deformation as an energy minimazing problem

[16, 30, 33–35].

Typically, the energy functional used in these

methods have terms to preserve details (often through

Laplacian coordinates), as well as position-constraint

terms to allow direct manipulation. Presenting other

terms in the optimization (volume or skeleton con-

straints) was even advocated in [11], as an expedient

way to design a more complex deformation with ease,

without the traditional shearing artifacts appearing in

large scale deformation. Though these current tech-

niques do not currently scale, the optimizations

involved are frequently nonlinear and require slow-

converging Gauss–Newton iterations [10].

This limitation can be overcome through a coarser

mesh embedding (using, e.g., mean value coordinates

[12]) at the expense of significantly less design

control. Sumner and Der propose an approach to

handle deformation via a mesh-based Inverse Kine-

matics, and to learn the space of natural deformations

from a series of example meshes [6, 31], enhancing the

efficiency of deformation design by restricting the

results to acceptable ones. Shi introduced a fast

Multigrid Algorithm for Mesh Deformation to support

the aforementioned scenario [29], a novel prolonga-

tion and restriction operators used in the multigrid

cycles. Combined with a simple, but effective graph

coarsening strategy, this algorithm can outperform

other multigrid solvers and the factorization stage of

direct solvers in both time and memory costs for large

meshes. Skeleton Subspace Deformation [18], and

several variants have been used in the graphics

industry for quite some time as a natural and efficient

representation for character animation in games and

films.

Mesh deformation is closely related to shape

interpolation and morphing. Morphing can be

extended from surfaces to solids by minimizing

distortions in a local volume [2]. A tetrahedral mesh

must be constructed for the input triangular mesh,

which we avoid by using a simpler volumetric graph.

Sheffer and Kraevoy [28] propose a morphing and

deformation method based on pyramid coordinates

that rely on mesh refinement to establish a mapping

between the models. Reconstruction from pyramid

coordinates to vertex coordinates requires solving a

nonlinear system. Kent et al. [15], propose an algo-

rithm for the morphing of two objects topologically

equivalent to the sphere. The presented mapping is

accomplished by a mere projection to the sphere and

thus is applicable solely to star shaped objects.

Schreiner et al. [12] present a method that directly

creates and optimizes a continuous map between the
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meshes instead of using a simpler intermediate domain

to compose parameterizations.

The free form deformation (FFD) approach was

introduced firstly by Sederberg and Parry [27]. The

user can translate the lattice points and the object is

deformed according to the deformation of the lattice

(Fig. 1).

3 Mesh Deformation

The mathematical formulation of the deformation

process is founded on [26]. Though, extending every-

thing from R to R covers different methods for

solving the minimization problem in question. The

user controls the deformation using a set of N control

points. Let Pi be the original position of the point

handle i (1 � i� N) and qi its deformed position.

Given any point x in space, a function dðx;PiÞ that

measures the distance between x and Pi is defined. The

simple Euclidean distance function can be used

although a better alternative exists for the purpose of

deforming a 3D mesh.

To define the deformation at point x, we solve for

the best rigid or similarity transformation Tx that

minimizes

E ¼
X

i

xiðxÞ TxðpiÞ � qij j2 ð1Þ

where the weights xiðxÞ are of the form

xiðxÞ ¼ dðPi; xÞ�2a ð2Þ

With a, being a fall-off parameter controlling how

strongly the deformation at x is influenced by far away

(as measured by d) point handles. The deformation at x

is simply defined to map x to TxðXÞ.
Note that if x ¼ pi for some i then xiðxÞ ¼ 1,

TxðpiÞ ¼ qi.

The following figure shows an example of defor-

mation of the dragon object.

Surface mesh deformation system resides in:

– A triangulated surface mesh (surface mesh in the

following).

– A set of vertices defining the region to deform

(referred to as the region-of interest and abbrevi-

ated ROI).

– A subset of vertices from the ROI that the user

wants to move (referred to as the control vertices).

– A target position for each control vertex (defining

the deformation constraints).

4 The Laplacian representation

Laplacian techniques [21, 30] cast mesh deformation

as minimizing an energy function which covers

rapports for both detail preservation and position

constraints. The simplest form of differential coordi-

nates is the Laplacian coordinate. The Laplacian

coordinate defines the mesh geometry detail which is

expressed as the difference between a vertex and its

one-ring neighbor vertices. Then, the Laplacian coor-

dinate is encoded in a global coordinate system. It

faces the transformation problem: the Laplacian

coordinates need to be appropriately transformed to

the appropriate orientation of details in the deformed

mesh. Kin-Chung [13], gives dual Laplacian defor-

mation algorithm to run the whole model which can

avoid transformation problem to a certain extent. The

history of Laplacian mesh editing starts with the work

ofMarc Alexa about the use of differential coordinates

for mesh morphing and deformation [1]. The differ-

ential coordinates of a mesh can be interpreted as the

difference of the original mesh and a smoothed version

of this mesh (target mesh).

Generally speaking, deformation is regularly carried

out in some parts of a model, while the other parts (a

majority of the whole model) are unchanged. Taking the

whole model into consideration, the editing operation

may be a complex process, especially for large mesh

models. Therefore, it is essential to develop effective

editing methods for the deformation of ROI. The

Laplacian representation of the mesh is enhanced to be

invariant to locally linearized rigid transformations and

scaling this representation leads to efficient, interactive

and intuitive shape modeling including local control andFig. 1 FFD on the bunny model with a regular lattice [27]
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detail preservation. The differential coordinates repre-

sent the geometric details. They are defined with respect

to a common global coordinate system. Laplacian mesh

editing allows deforming 3D objects, while their surface

details are preserved because they allow the simulation

of realistic deformations. This representation allows a

direct detail-preserving reconstruction of the modified

mesh by solving a linear least squares system. The

differential coordinates are not rotation-invariant, since

they are defined in a global coordinate frame. As we

show below, this can cause distortion of the orientation

of the details on the reconstructed surface. The differ-

ential coordinates of a mesh can be interpreted as the

difference between the original mesh and a smoothed

version of this mesh based on this Laplacian represen-

tation. Our method is based on the Laplacian represen-

tation designed for large rotations. We develop useful

editing operations: interactive free-form deformation in a

ROI based on a MLWNN structure.

5 Mesh Deformation in ROI

The deformation process computes the set of trans-

formations induced by the deformation of the source

mesh, maps the transformations through the corre-

spondence between the source and the target mesh,

and solves an optimization problem to consistently use

for the transformations to the target mesh.

3D objects representations deal with the advantage

of being able to characterize a large variety of complex

geometries. Because of such specificities an initial

stage, which consists of establishing a correspondence

between the source and target meshes, is essential.

Such a correspondence cannot be directly defined,

because of the complexity of the topological and

geometric information involved. The correspondence

is achieved in an indirect manner with the help of

parameterization techniques, which consist of estab-

lishing a bijective mapping between the source mesh

surface and the target meshes. Most 3D surface-based

mesh deformation techniques involve two steps. The

first is to find the mapping from the source to the target

meshes and establish the feature correspondence

between them. The parameterization process requires

that the mapping of the meshes must be bijective, i.e.

generating a one-to-one correspondence between the

source and the parameterized meshes. The second step

is to choose a continuous path for each vertex and

produce a smooth sequence of intermediate geome-

tries by interpolating the corresponding vertices. A

linear procedure is achieved for this interpolation in

most cases. For this reason we used our trust region

spherical parametrization to ensure that we have a

bijective parametrization and a low area and region

distortion [20].

6 Correspondence

The correspondence between the source and the target

triangular mesh describes how the deformation of the

source mesh should be moved to the target. The

correspondence system solves a minimization prob-

lem analogous to the one we use for deformation

process. But the objective function is intended to

deform one mesh into the other, The user controls the

deformation by supplying a set of marker points

specified as pairs of source and target vertex indices.

Fig. 2 Deformations of the dragon model. Left original model.

Center and right dragon mouth deformed in different ways.

Handle curves shown on top [5]

Fig. 3 Editing the Mannequin model with different locality

effects. a and c show the original model with the same handle

vertex (at the tip of the nose) but different regions of interest

(ROI). The dots mark the locations of anchor points that

surround the ROI. b and d show the result of dragging the handle

vertex a long the same distance with the two different radii of

ROI. Since the radius of interest in (c) is larger, the effect of the
editing operation is more global [17]
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6.1 Feature Correspondence

In order to guarantee that the main characteristics of

the object are preserved during the deformation

process, it is necessary to replace the user specified

corresponding feature points so that they share the

same position in the parameter domain. Such a

replacement requires a global deformation of the

whole parametric domain, so that the corresponding

meshes should be smoothly deformed without fold-

overs. The process is referred to as mesh warping. In

order to complete this mission we make use of the

Laplacian coordinate that allows to displace all mesh

vertices based only on the known displacement of

some control points (feature vertices).

The construction of the base domain correspon-

dence map consists of the following steps:

– Globally aligning the source and destination base

domains and projecting the source base domain to

the target base domain.

– Applying an iterative relaxation procedure to

improve the mapping.

– Using the adjustment of the coarse correspondence

to produce the final mapping.

6.2 Features Alignment

For each input mesh, an abstract representation is

produced .The feature points on the spherical map for

each model are grouped and an initial alignment for

them is performed based on MLWNN that minimizes

the sum of the distances between all corresponding

vertices. Then, the feature points and areas are scaled

and relocated to match each other. Finally, all

overlapping generated from this process is eliminated

so that the spherical maps for each mesh remain

bijective with respect to the original input geometries.

The initial feature alignment process reduces the

distances between features without modifying the local

vertex positions on the spherical maps used our

MLWNN. This eliminates most of the positional

differences. As discussed in the previous section, the

constraint matrix is over determined; such a global

rotationwill not accommodate all the relative differences

between corresponding features or align corresponding

feature points without changing the relative locations of

feature points within the same spherical map.

We propose a new mesh editing framework with an

intuitive interface and efficient reconstruction algorithm.

7 Mesh Deformation Based on Multi library

Wavelet Neural Network Architecture

7.1 Classical Wavelet Neural Network

Architecture

Wavelets have proven to be powerful bases for use in

numerical analysis and signal processing. Their power

lies in the fact that they only require a small number of

coefficients to represent general functions and large

data sets accurately.

Wavelets occur in family of functions and each is

defined by dilation ai which controls the scaling

parameter and translation ti this latter controls the

position of a single function named themother wavelet

wðxÞ.

Fig. 4 The correspondence of the vertices of the source mesh

with the places of the surface of the target mesh (green arrows)

and the correspondence of the vertex of the target mesh with the

places on the surface of the source mesh (red arrow). (Colour

figure online) Fig. 5 MWNN architecture
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Mapping functions to a time-frequency phase

space,WNN can reflect the time-frequency properties

of functions. Given an n-element training set, the

overall response of a WNN is shown in the following

equation:

ŷðxÞ ¼
XNp

i¼ 1

xiWi ð3Þ

where Np is the number of wavelet nodes in the hidden

layer and xi is the synaptic weight of WNN. This can

also be considered as the decomposition of a function

in a weighted sum of wavelets, where each weight xj

is proportional to the wavelet coefficient scaled and

shifted by ai and ti. This establishes the idea for

wavelet networks [7, 25].

7.2 Multi Library Wavelet Neural Network

(MLWNN) [3]

A MLWNN can be regarded as a function approxi-

mator which estimates an unknown functional

mapping:

y ¼ f ðxÞ þ � ð4Þ

where f is the regression function and the error term �

is a zero-mean random variable of disturbance.

Constructing a MLWNN involves two stages:

First, we should construct a wavelet library x ¼
x1;x2; . . .;xnf g of discretely dilated and translated

versions of some mother wavelet functions

w1;w2; . . .;wn [23, 24, 4].

Wj ¼
Wj

i : W
j
iðxÞ ¼ aiW

jðaiðx � tiÞÞ
ai ¼ ð

PN
k¼1½W jðaiðxk � tiÞÞ�2Þ1=2

i ¼ 1; . . .; L; and; j ¼ 1; . . .; n

0

@

1

A ð5Þ

where xk is the sampled input and L is the number of

wavelets in each sub library Wj. Then we select the

best M wavelets based on the training data from multi

wavelet library W, in order to build the regression.

ŷðxÞ ¼
X

i2 I

WiW
1
i ðxÞ þ

X

i2 I

WiW
2
i ðxÞ

þ � � � þ
X

i2 I

WiW
n
i ðxÞ

ð6Þ

This network is composed of three layers: a layer with

Ni inputs, a hidden layer with Np wavelets and an

output linear neuron receiving the weighted outputs of

wavelets. Both input and output layers are fully

connected to the hidden layer.

Once the two input models are parameterized in a

common domain to establish a one-to-one correspon-

dence between the models, the main features of the

objects are aligned properly, based onwavelet network

with respect to their corresponding features of interest.

Finally, the deformation sequence is obtained using a

linear interpolation scheme. The objective of the mesh

interpolation step is to determine appropriate trajecto-

ries for each vertex connecting the initial position,

defined on the source surface, to the final position,

defined on the target shape. An interpolation in the

wavelet domain makes it possible to control interpo-

lation starting time and speed at various resolutions.

7.3 Our Proposed Mesh Deformation Based

on Multi Library Wavelet Neural Network

7.3.1 Multi Library Wavelet Neural Network for 3D

Mesh Feature Alignment

In order to define a geometric mesh object, we

concentrate on the use of feature points. We assume

that the shape of the object is defined by the locations

of the predefined feature points on the surface of the

mesh. Further, the deformation of the mesh can be

completely defined by the movements of these

feature points (alternatively referred to as control

points) from their neutral positions either in absolute

or in normalized units. The objective of our

algorithm is to achieve a feature alignment process

that reduces the distances between features without

modifying the local vertex positions on the spherical

maps. If there is k input mesh and each mesh has n

features defined, the transformation can be

expressed as the following optimization problem

(Eq. 7):

min
Pn

j¼1 distfPiðjÞ � P1ðjÞg;
i ¼ 1; 2; 3; . . .; k

distfP
0
iðjÞ � P

0
iðlÞg ¼ distfPiðjÞ � PiðlÞg;

8j; l ¼ 1; 2; 3; . . .; n

0

BBBBBB@

1

CCCCCCA
ð7Þ

where Pi represents the matrix containing coordinates

for all feature points on mesh i and P0
i represents the

coordinates after transformation.
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Pi ¼

xi1 yi1 zi1

xi2 yi2 zi2

xi3 yi3 zi3

: : :

: : :

: : :

xin yin zin

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð8Þ

The general process of our proposed mesh deforma-

tion based on MLWNN architecture is presented in

Fig. 6.

7.3.2 Our 3D Mesh Deformation Techniques

First, the trust region optimized spherical parame-

terizations are computed for both models (this step

can be carried out as preprocessing and the

mapping can be stored along with the mesh

representation). Then, feature regions are detected

on both models using ROI and matched between

the two models. Next, feature point pairs are

extracted and an optimized spherical parameteriza-

tion is computed for the second model with respect

to the feature point pairs. Finally we used a

wavelet network approximation to optimize the

alignment feature of mesh, minimize distortion with

fixed features and to minimize the sum of the

distances between all corresponding vertices. This

method works even better on meshes, since in

meshes vertex adjacency information is provided a

priori.

We can summarize our deformation process by:

Step 1 Two triangular meshes MA and MB. For

each mesh, we calculate the spherical parameteri-

zation and optimize the spherical parameterization

of MA and MB in order to have bijective

parameterizations.

Step 2 For MA and MB we compute the corre-

sponding feature region sets FA and FB.

Step 3 Fix the number of wavelets in the hidden

layer in order to fix the deformation ratio.

Step 4 Repeat steps 5 to 8.

Step 5 Present the block row by row s (t) to the

network.

Step 6 Train the network to achieve optimum

approximation of the original signal s(t)(MA and

MB).

Step 7 Save the network parameters (wi, ti and di).

Step 8 Collect all the parameters in a dynamic

matrix IC.

Step 9 If the stop condition (all the blocks are

presented to the network) is not verified go to step 3.

Step 10 Establish a correspondence of the two nodes

with the highest degree in the two graphs and

perform a 3D alignment of F1 and F2 up to rotation

based on that correspondence; for each feature

region in FB find a feature region in FA using the

similarity measure and match the correspondence

between the source and the target mesh.

Step 11 Object reconstruction from the differential

coordinates based deformation technique used

MLWNN.

Our approach computes deformed ROI, updates and

optimizes ROI vertices to align features of mesh using

MLWNN. Our method is focused on creating the

series of deformation objects using spherical param-

eterization as a common domain of the source and

target objects. This parameterization domain is the

natural domain to use, given that our object is a sphere,

and as such-makes the mapping step easier. We used

an effective spherical mapping algorithm using trust

region optimization scheme minimizing angle and

area distortions which guarantee a bijective spherical

parameterization. Thus, creating a good spherical

geometry image [20]. Then, the corresponding feature

regions are detected on both models using region

growing and the two models are matched. Subse-

quently, feature point pairs are extracted and an

optimized spherical parameterization is computed for

the second model with respect to the common feature

points. We used MLWNN architecture to align

features of mesh and to minimize distortion with a

fixed feature that minimizes the sum of the distancesFig. 6 Overview of the feature-based MLWNN algorithm
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between all corresponding vertices. The interpolation

in the wavelet domain makes it possible to control

interpolation starting time and speed at various

resolutions. Our proposed algorithm is presented in

Fig. 7:

8 Implementation and Results

In our implementation of deformations technique we

used estimated rotations of 3D meshes based on

MLWNN structure founded on several mother wavelet

families. We solved an optimization problem to

consistently apply to transformations to the target

object.

Our trust region spherical parameterization algo-

rithm [20] is integrated as a common domain of the

source and target objects. Our approach reduce the

computation distortion required for the procedure of

the parameterization of the mesh in a sphere, since all

calculations are performed in the space of the sphere to

reduce the distortion angle and region: ratio of

inverted triangle (IT) at mapping each of the triangles.

The idea is to use the trust region method for nonlinear

minimization ratio of ITs when mapping each triangle

of surface during the parameterization of the object on

the sphere to have a good system by minimizing angle

and area distortion. The following figure shows the

original and target objects that we used.

The size of each 3D object is presented in Table 1:

To evaluate the quality of the reconstructed object

we use the Mean-Square Error (MSE). Generally the

performance of mesh deformation is based on the two

following criteria: the deformation rate and the quality

of the reconstructed object. In our approach, the

performance of mesh deformation depends on several

other criteria: the type of wavelets used in the hidden

layer.

MSE ¼ 1

Ni

XNi

k¼1

ðMNðxNK ; yNK ; zNKÞ � MðxK ; yK ; zKÞÞ2

ð9Þ

M is the mesh to be deformed; K is the number of

observations.

8.1 Direct Distances Between all Corresponding

Vertices

The user defines a ROI which contains a handle, a

neighbour and fixed vertices. During one deformation

step, all handle vertices are translated in the same

direction for the same displacement. The fixed vertices

of the original and the target object do not move. In

other words: the handle vertices are translated by the

factor 1 and the fixed vertices by the factor 0. It is clear

that the neighbour vertices will move in the same

direction, but with a smaller magnitude. Each neigh-

bour vertex located between them has to be assigned to

a factor. This factor depends on the distance of the

corresponding vertex to the handle vertices.

The ratio rðx
!Þ is defined as the distance of the

neighbour vertex x
!
to the next handle vertex x

!

h
divided

by the minimal distance of a fixed vertex to a handle

one.

Fig. 7 Deformation techniques based MLWNN

Table 1 The size of each 3D object

3D Object Vertex Face

Horse 8431 16843

Cat 352 671

Bunny 29299 69473

Face 58895 57836
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rðxÞ ¼ jx� xhj
minðjxf � xhjÞ

ð10Þ

For this ratio, it is valid that where N is the set of

neighbour vertices, if the neighbourhood is defined by

a radius around the handle vertices. Using this ratio

directly would lead to a linear behaviour which is not

smooth in an ordinary sense. Thus, the ratio is mapped

to a Gaussian. The searched factorisation function g:

Rþ½0; 1� is defined by the Eq. (11)

gðxÞ ¼ 0:5� expð�ðrðxÞ=0:25ÞÞ ð11Þ

Using the Gaussian (11) as a transition function led to

good results, and therefore, it was used in the

implementation. Thus, the neighbour vertices were

determined by a user controlled frame selection. Some

problems can occur because the ratio can exceed 1.

This problem could be overcome by using the

Gaussian function because it asymptotically

approaches the axis. But this way of interpolating

the vicinity of the handle vertices has its limitations, if

the transformation is more than just a translation. This

induces the implementation of a Laplacian mesh

editing tool based on wavelet network architecture to

minimize the sum of the distances between all

corresponding vertices.

For this reason we fixed the number of wavelets in

the hidden layer in order to fix the deformation ratio.

With Laplacian mesh editing it is possible to deform

3D objects while their surface details are preserved.

We used a Wavelet network approximation to opti-

mize the alignment feature for mesh and minimize the

sum of the distances between all corresponding

vertices. Thus, we minimize distortion with fixed

features.

We can see from Table 2, that we used 15 wavelets

in the hidden layer, which minimized the sum of the

distance of a fixed vertex. Our algorithm achieved a

minimal distance between all corresponding vertices

to have a good object reconstruction.

We set 15 wavelets used in the hidden layer to

construct the WaveNet. This choice of number is

sufficient to have acceptable results. When we

increased the number of wavelet, the search space of

the best wavelet increased, hence the time of calcu-

lation and simulation increased too. If the stop

condition (all the blocks are presented to the network)

is not verified, go to step 3 in our approach and fix a

new number of wavelet in the hidden layer.

We used the minimal distance of fixed vertices to

compute the measured rate deformations:

D ¼ jx� xhj
minðjxf � xhjÞ

� 100% ð12Þ

The frame rates in the table were calculated when the

handles were already selected and the user was

manipulating certain handles. If the user adds new

handles or removes old handles, then we need to re-

compute the inverse for some matrices and the frame

rate will decrease. The Variation of MSE and defor-

mation rate in terms of wavelet library usingMLWNN

architecture are presented in Table 3.

From the results in Table 3 we see that the MSE

depends on the wavelet library and the number of

wavelets in the hidden layer from Table 2. We can see

that the MSE and the ratio of deformation are low.

Table 2 The variation of

distance of fixed vertex
Object Nbre of wavelets in the hidden layer Minimal distance of fixed vertex

Bunny 15 Wavelets 0.52

Horse 15 Wavelets 0.14

Cat 15 Wavelets 0.25

Face 15 Wavelets 0.23

Table 3 The variation of

MSE and deformation rate
Object MSE Our deformation rate Deformation rate in other work

Bunny 0.00013966 52 92 [8]

Horse 0.00032338 14 59.52 [5]

Cat 0.0501812 25 22 [19]

Face 0.0008756 23 42 [32]
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Compared to other works, our approach minimizes the

sum of the distances between all corresponding

vertices, and minimizes distortion with fixed features

to have a good reconstructed object in the deformation

process. This could help users to create more inter-

mediate deformed mesh results with preserved topo-

logical features.

A 3D object deformation based on MLWNN is

presented. This structure has the advantage of con-

structing the network by several mother wavelets and

the advantage to solve the problem of high dimensions

using the best wavelet mother that models the signal

better.

We demonstrate that representing the geometric

information of a triangle mesh in differential form

enables detail-preserving interactive mesh modeling.

The absolute vertex positions are reconstructed

from their relative coordinates by solving a sparse

linear system. Based on the elementary operation of

moving a single vertex, more advanced editing

operations can be easily built. Constraining curves

and handle regions can be done by appropriately

grouping handle vertices, then, establishing the corre-

spondence of the two objects and performing a 3D

alignment of vertex based on that correspondence; for

each feature region in FB find a feature region in FA

using the similarity measure and match the correspon-

dance between the source and target meshes.

Fig. 10 Feature region of object

Fig. 8 Original and target objects

Fig. 9 Comparison results for the deformation of 3D bunny

object

Fig. 11 The spherical parameterization of original and target

object (Horse, Bunny, Cat and Face)
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Fig. 12 The rapports by X, Y and Z of the original object and the deformed object

Table 4 The number of

wavelets used for Horse

deformation

Wavelets name Nbre

lenrecind mexhat 4

lenrecind slog1 5

lenrecind polywog1 2

lb1 1

lb2 2

lb3 1

Table 5 The number of

wavelets used for Cat

deformation

Wavelets name Nbre

lenrecind mexhat 3

lenrecind slog1 2

lenrecind polywog1 5

lb1 1

lb2 0

lb3 4

Table 6 The number of

wavelets used for Face

deformation

Wavelets name Nbre

lenrecind mexhat 2

lenrecind slog1 5

lenrecind polywog1 4

lb1 0

lb2 3

lb3 1

Table 7 The number of

wavelets used for Bunny

deformation

Wavelets name Nbre

lenrecind mexhat 1

lenrecind slog1 4

lenrecind polywog1 3

lb1 2

lb2 3

lb3 2
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In [8] the author uses a skin-detached surface

based on the simplified mesh to align vertex until

reaching the deformed object (figure a). We found

that there are some exceptional cases in which this

method cannot achieve correct deformation. On the

other hand our algorithm used a direct approximation

algorithm in the area of interest. The alignment is

efficient based on wavelet network to minimize the

distortion of the fixed vertex without including a

simplification algorithm (figure b). Therefore, the

execution time in our algorithm is reduced in

comparison with the calculation algorithm in [8]

and [14]. Figure 9 presents a visual comparison for 3d

bunny deformation.

Figure 10 presents an exemple of the feature region

sets F of original objects.

Such a correspondence cannot be directly

defined because of the complexity of the topolog-

ical and geometric information involved. Instead,

the correspondence is achieved in an indirect

manner with the help of parameterization tech-

niques, which consists of establishing a bijective

mapping between the source mesh surface and the

target meshes.

According to the parameterization process, the

mapping of the meshes must be bijective, i.e. gener-

ating a one-to-one correspondence between the source

and the parameterized meshes.

Figure 11 presents an example of 3D objects

parameterization of the sphere using our trust region

spherical parameterization approach [20].

The rapport of the original and deformed objects as

function of the axis x, y and z is seen in the curves in

Fig. 12.

The number of wavelets in the hidden layer used for

such object is presented in Tables 4, 5, 6, and 7.

To evaluate the performance of the wavelet

networks structure, in terms of a 3D deformed object

capacity, we used a wavelet network in which the

library is made up of six mother wavelets (Mexi-

canHat, Slog1, Polywog 1, Beta1, Beta 2 and Beta 3).

To estimates on the basis of the wavelet number in the

hidden layer, we applied this approach using a wavelet

network with 15 wavelets (for example in Table 4 we

have: 4 MexicanHat, 5 Slog1, 2 Polywog1, 1 Beta1, 2

Beta2 and 1 Beta3). The 3D deformed object com-

plexity is directly related to the selected wavelet

number and to the training iteration number to

construct the network.

Fig. 13 Deformation technique based on MLWNN on the

Horse model

Fig. 14 Deformation technique based on MLWNN on the Cat

model

Fig. 15 Deformation technique based on MLWNN on the Face

model

Fig. 16 Deformation technique based on MLWNN on the

Bunny model
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Our deformation technique for such object is shown

in Figs. 13, 14, 15, and 16.

9 Conclusion

Robustness and speed are primary considerations

when developing deformation methods for animat-

able mesh objects. The goal of this paper is to present a

robust and fast geometric mesh deformation algo-

rithm. It deals with the features of a novel technique

for large laplacian boundary deformations using

estimated rotations of 3Dmeshes based on aMLWNN

structure founded on several mother wavelet families

and using spherical parameterization as a common

domain of the source and target objects.

Newmesh deformation methods worked in the dual

domain for ROI. Our approach computes deformed

ROI, updates and optimizes ROI to align features of

mesh using MLWNN. This structure has the advan-

tage of constructing the network by several mother

wavelets and the advantage to solve the problem of

high dimensions using the best wavelet mother that

model the signal better.

3D object are complex, more detailed, and have a

longer format. It is getting increasingly difficult to

efficiently store and transmit these models. The focus

of futur work is to design an efficient and powerful

algorithm for compressing and transmitting deformed

geometric data. we developed a new technique for the

compression of 3D deformed objects by using our

wavelet network to reduce the size and to facilitate the

transmission, storage and manipulation of 3D objects,

while retaining useful information.

References

1. Alexa, Marc. (2003). Differential coordinates for local mesh

morphing and deformation. The Visual Computer, 19(2–3),

105–114.

2. Alexa, M., Cohenor, D., & Levin, D. (2000). As-rigid-as-

possible shape interpolation. In SIGGRAPH 2000 Confer-

ence Proceedings, pp. 157–164.

3. Bellil, W., Othmani, M., & Amar, C. B. (2007). Initializa-

tion by selection for Multi library Wavelet Neural Network

training. In Informatics in Control, Automation and

Robotics ICINCO 07 (pp. 30–37). Anger France: INSTICC

Press. ISBN: 978-972-8865-86-3

4. Bellil, W., Amar, C. B., & Alimi, M. A. (2007). Multi

Library Wavelet Neural Network for lossless image com-

pression. In International REview on COmputers and Soft-

ware, Vol. 2, pp. 520–526. ISSN 1828-6003

5. Blanco, F.R. & Manuel, M. (2008). Instant mesh deforma-

tion. In I3D’08 Proceedings of the Symposium on Interac-

tive 3D Graphics and Games, pp. 71–78.

6. Der, K. G., Sumner, R. W., & Popovic, J. (2006). Inverse

kinematics for reduced deformable models. ACM Trans.

Graph., 25(3), 1174–1179.

7. Foucher, C. & Vaucher, G. (2001). Compression dimages et

rseaux de neurones, revue Valgo n01-02, pp. 17–19,

Ardche.

8. Gao, Y. Hao, A., Zhao, Q., & Dodgson, N. A. (2009). Skin-

detached surface for interactive large mesh editing UCAM-

CL-TR-755 ISSN 1476-2986.

9. Guskov, I., Sweldens, W., & Schroder, P. (1999). Mul-

tiresolution signal processing for meshes.In Proc. SIG-

GRAPH, 99, 325–334.

10. Hernandez, M. (2014). Gauss-Newton inspired precondi-

tioned optimization in large deformation diffeomorphic

metric mapping. Physics in Medicine and Biology, 59(20),

6085.

11. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-

H., et al. (2006). Subspace gradient domain mesh defor-

mation. ACM Trans. Graph., 25(3), 1126–1134.

12. Schreiner, J., Asirvatham, A., Praun, E., &Hoppe, H. (2004)

Inter-surface mapping. ACM Transactions on Graphics, 23,

870–877.

13. Kin-Chung, O., Chiew-Lan, T., Ligang, Liu., & Hongbo, F.

(2006). Dual Laplacain editing for meshes. IEEE Transac-

tions on Visualization and Computer Graphics, 12(3),

386–395.

14. Leif, P. (2000). Kobbelt Thilo Bareuther Hans-Peter Seidel.

Multiresolution Shape Deformations for Meshes with

Dynamic Vertex Connectivity: The Eurographics Associa-

tion and Blackwell Publishers.

15. Kent, J., Carlson, W., & Parent, R. (1992). Shape transfor-

mation for polyhedral objects. ACM SIGGRAPH Computer

Graphics, 26, 47–54.

16. Lipman, Y., Sorkine, O., Levin, D., & Cohen-Or, D. (2005).

Linear rotation-invariant coordinates for meshes. ACM

Transactions on Graphics, 24, 3.

17. Lipman, Y., Sorkine, O., Cohen-Or, D. Levin, D., Rossl, C.,

& Seidel, H. P. (2004). Differential coordinates for inter-

active mesh editing. In SMI 04 P Proceedings of the Shape

Modeling International, pp. 181–190.

18. Magnenat-Thalmann, N., Laperri’Ere, R., & Thalmann, D.

(1988). Jointdependent local deformations for hand ani-

mation and object grasping. In Proceedings on Graphics

interface, 88, 26–33.

19. Masuda, H. & Ogawa, K. (2008). Interactive deformation of

3D mesh models. Computer-Aided Design and Applications

(2008 CAD Solutions, LLC).

20. Naziha, D., Akram, E., Wajdi, B., & Chokri, B. (2015). A

trust region optimization method for fast 3D spherical

configuration in morphing processes. In Advanced Concepts

for Intelligent Vision Systems Conference, ACIVS.

21. Nealen, A., Sorking, O., Alexa, M., & Cohen-Or, D. (2005).

A sketch-based interface for detail-preserving mesh editing.

In Proceedings of ACM SIGGRAPH2005, pp. 1142–1147.

ACM Press.

22. Noh, J. & Neumann, U. (2001). Expression cloning. In

Proceedings of ACM SIGGRAPH 2001, Computer Graphics

Proceedings, Annual Conference Series, pp. 277–288.

3D Res (2016) 7:31 Page 13 of 14 31

123



23. Othmani, M., Bellil, W., Amar, C. B., & Alimi, M. A.

(2012). A novel approach for high dimension 3D object

representation using Multi-Mother Wavelet Network.

International Journal ‘‘Multimedia Tools and Applica-

tions’’, MTAP, 59(1), 7–24

24. Othmani, M. & Amar, C. B. (2010). A high dimension 3D

object representation using Multi-Mother Wavelet Net-

work. In ISIVC2010 IEEE International Symposium on

Image/video Communications over fixed and mobile net-

works, special session ‘‘Advanced approach on 3-D com-

puter vision’’, Rabat Morroco. DOI:10.1109/ISVC.2010.

5656177.

25. Oussar, Y. (1998). Rseaux dondelettes et rseaux de neu-

rones pour la modlisation statique et dynamique de pro-

cessus. Thse de doctorat: Universit Pierre et Marie Curie,

juillet.

26. Schaefer, S., McPhail, T., & Warren, J. (2006). Image

deformation using moving least squares. In SIGGRAPH 06:

ACM SIGGRAPH 2006 Papers (pp. 533–540). New York:

ACM Press.

27. Sederberg , T. W. & Scott, R. P. (1986). Free-form defor-

mation of solid geometric models. In SIGGRAPH 86:

Proceedings of the 13th Annual Conference on Computer

Graphics and Interactive Techniques (pp. 151–160). New

York: ACM Press.

28. Sheffer, A. & Kraevoy, V. (2004). Pyramid coordinates for

morphing and deformation. In 3D Data Processing, Visu-

alization and Transmission, (3DPVT) 2004, pp. 68–75.

29. Shi, L., Yu, Y., Bell, N., & Feng, W.-W. (2006). A fast

multigrid algorithm for mesh deformation. In ACM Trans-

actions on Graphics (Special Issue of SIGGRAPH 2006).

30. Sorking, O., Lipman, Y., Cohen-OR, D., Alexa, M., Rossl,

C., & Seidel, H.-P. (2004). Laplcian surface editing. In

Processings of the Eurographics/ACM SIGGRAPH Sym-

posium on Geometry Processing, Eurographics Association,

ACM Press, pp. 179–188.

31. Sumner, R. W., Zwicker, M., Gotsman, C., & Popovic, J.

(2005). Meshbased inverse kinematics. ACM Trans. Graph.,

24(3), 488–495.

32. Sumner, R. W. & Popovicn, J. (2004). Deformation transfer

for triangle meshes. In ACM Transactions on Graphics

(TOG) Proceedings of ACM SIGGRAPH, pp. 399–405.

33. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., & Shum,

H.-Y. (2004). Mesh editing with poisson-based gradient

field manipulation. ACM Transactions on Graphics (special

issue for SIGGRAPH 2004) 23,(3), 641–648.

34. Zayer, R., Rossl, C., Karni, Z., & Seidel, H.-P. (2005).

Harmonic guidance for surface deformation. Computer

Graphics Forum (Eurographics 2005), 24,(3), 611–621.

35. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B.,

et al. (2005). Large mesh deformation using the volumetric

graph laplacian. ACM Transactions on Graphics, 24, 3.

36. Zorin, D., Schroder, P., & Sweldens, W. (1997). Interactive

mutiresolution mesh editing. In SIGGRAPH 97 Proceed-

ings, pp. 259–268.

31 Page 14 of 14 3D Res (2016) 7:31

123

http://dx.doi.org/10.1109/ISVC.2010.5656177
http://dx.doi.org/10.1109/ISVC.2010.5656177

	3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture
	Abstract
	Introduction
	Related Work
	Mesh Deformation
	The Laplacian representation
	Mesh Deformation in ROI
	Correspondence
	Feature Correspondence
	Features Alignment

	Mesh Deformation Based on Multi library Wavelet Neural Network Architecture
	Classical Wavelet Neural Network Architecture
	Multi Library Wavelet Neural Network (MLWNN) [3]
	Our Proposed Mesh Deformation Based on Multi Library Wavelet Neural Network
	Multi Library Wavelet Neural Network for 3D Mesh Feature Alignment
	Our 3D Mesh Deformation Techniques


	Implementation and Results
	Direct Distances Between all Corresponding Vertices

	Conclusion
	References




