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Abstract Three-dimensional object modeling and

interactive virtual environment applications require

accurate, but compact object models that ensure real-

time rendering capabilities. In this context, the paper

proposes a 3D modeling framework employing visual

attention characteristics in order to obtain compact

models that are more adapted to human visual capabil-

ities. An enhanced computational visual attention model

with additional saliency channels, such as curvature,

symmetry, contrast and entropy, is initially employed to

detect points of interest over the surface of a 3D object.

The impact of the use of these supplementary channels is

experimentally evaluated. The regions identified as

salient by the visual attention model are preserved in a

selectively-simplified model obtained using an adapted

version of the QSlim algorithm. The resulting model is

characterized by a higher density of points in the salient

regions, therefore ensuring a higher perceived quality,

while at the same time ensuring a less complex andmore

compact representation for the object. The quality of the

resulting models is compared with the performance of

other interest point detectors incorporated in a similar

manner in the simplification algorithm. The proposed

solution results overall in higher quality models, espe-

cially at lower resolutions. As an example of application,

the selectively-densified models are included in a

continuous multiple level of detail (LOD) modeling

framework, inwhich an original neural-network solution

selects the appropriate size and resolution of an object.

Keywords Visual attention � Saliency � 3D
modeling � Interest points �Mesh simplification � Level
of detail

1 Introduction

One of the most common representations of 3D models

nowadays is the polygonal representation. Points in 3D (i.e.

vertices), are connected by line segments to form faces that

together constitute a polygonal mesh. In most of the cases

the faces are triangles, because graphics cards can render

them quickly. However, because the faces are planar, in

order to represent complexobjects, especially objectsmade

out of curved surfaces, an accurate representation requires

the use of a very large number of polygons. On the other

hand, in interactive applications, the user expects to interact

with avirtualworld composedofmanyobjects in real-time.

From here stems the interest into developing means to

simplify object meshes in order to represent them in a

compact manner that allows a real-time interaction, while
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Université du Québec en Outaouais, Gatineau, QC,

Canada

123

3D Res (2016) 7:30

DOI 10.1007/s13319-016-0106-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-016-0106-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-016-0106-7&amp;domain=pdf


still containing enough details and important information

such as not to hinder the visual quality. The degree of

simplification can be controlled by managing the level of

detail (LOD)ofobjects.Themain idea is tograduallyadjust

the complexity of a 3D object model by removing

unimportant details when the object is small or when it is

situated far from the user in the 3D environment. In this

way, the farther the object is situated within a 3D

environment with respect to the user, a less detailed

representation is used to ensure a higher rendering speed.

However, this reductionofqualityof anobjectmesh should

remain invisible to the user. Even at the lowest resolution,

the shape and the most salient details of the object should

still be distinguishable. Luebke et al. [1] classify the LOD

managing methods as discrete, continuous and view-

dependent. Discrete LODmethods use multiples copies of

different resolutionsofanobject,withdetailsuniformlyand

gradually reduced according to the distance to the viewer.

These copies are created offline and one of them is chosen

at run-time according to the distance from the viewer to the

object. Continuous LOD methods use specific data struc-

tures storing a continuous spectrum of details from which

the desired level is extracted at run-time. View-dependent

methods are variations of continuous LOD techniques that

select dynamically the most appropriate level of detail for

the current view of an object. All thesemethods provide in

most of the cases appealing results. However, they

generally performpoorly at very low level of detail because

the object geometry is simplified uniformly, without

considering that some areas or features that characterize

the object and that can be sometimes small with respect to

the object size (e.g. the ears and tail of a cat), could be

perceptually more salient than others. One solution to this

problem is to employ human users to provide inputs on the

desired quality of a model, by selecting areas over the

surface of an object where a local improvement of detail is

desirable [2–5]. Alternatively, quality adjustments can be

made automatically, for example, based on the object’s

surface properties [6].

This paper contributes to the advancement of 3D

modeling techniques by making them more adapted to

human visual system capabilities without requiring the

human input. We aim at building compact selectively-

densified object models, in which the mesh is denser

only in areas considered important by the human visual

attention. This results in a reduction of the number of

faces in the model and hence of the rendering time,

while preserving the perceived quality of the object,

even at low resolution. Classical models of visual

attention employ only a limited set of human visual

system characteristics (i.e. intensity, color and orien-

tation). According to Frintrop et al. [7], considering

more features results in more accurate and biologically

plausible models. The proposed model therefore

incorporates other biologically and psychologically

inspired features, namely curvature, symmetry, con-

trast and entropy. While these characteristics were

already tested separately in various computational

visual attention models in the literature, to our

knowledge no other author used them together and in

the context of interest point detection for 3D object

modeling. In fact, very few researchers have used

inspiration from the biological human visual attention

for the detection of regions of interest in 3D [6, 8]. The

main contributions of this paper can be summarized as

it follows: (1) the adaptation of a visual attentionmodel

for the detection of points of interest over the surface of

3D objects, (2) the incorporation of identified regions

of interest in compact selectively-densified object

models in which the mesh is denser in salient regions,

(3) the inclusion of selectively-densified models in

continuous LOD modeling applications, including a

novel strategy to automatically select the appropriate

mesh size according to the distance with respect to the

user, and (4) an experimental study of the impact on the

quality of models as a result of the incorporation of

several characteristics of the human visual perception.

2 Literature Review

The human visual system performs two stages of visual

processing: a pre-attentive parallel stage during which the

entire visual field is processed at once, and a slow serial

attentive processing stage, where regions of interest are

selected by attention for further analysis. The role of visual

attention is to break down the problem of understanding a

scene into a rapid series of computationally less demand-

ing, localized visual analysis problems [9]. It also decides

the order in which a scene is investigated, or the order of

fixations [9], in which the fovea is positioned on specific

regions of the object, maximizing the focus on identified

regions, making the central areas clearer (i.e. center-

surround mechanism of the human visual receptive field).

Most computational implementations of visual attention

are based on bottom-up features that can capture attention

during free viewing conditions. A measure that has been

shown to be particularly relevant is the local image
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saliency, which corresponds to the degree of conspicuity

between that location and its surroundings. In otherwords,

the responsible feature that guides the deployment of

attention needs to be sufficiently discriminative with

respect to its surroundings. In spite on the fact that opinions

on features that guide human visual attention are still

controversial, Wolfe and Horowitz’s study on the deploy-

ment of attention in visual search tasks [10] led to a

relatively complete description of attributes, including

undoubted (color, motion, orientation and size), probable

(flicker, luminance polarity, offset, stereoscopic depth and

tilt, pictorial depth cues, shape, line termination, closure

and curvature) and possible attributes (lighting direction,

glossiness, aspect ratio).Aside these, psychological studies

showed the influence of other less understoodproperties of

thevisual attention, including the influenceof symmetryof

the object shape on attracting visual attention [11].

Computational models of visual attention have been

shown to significantly improve the speed of scene

understanding [12], by attending only the regions of

interest and distributing the resources where they are

required. It was proven that attention systems are

especially well suited to detect discriminative features

and that the repeatability of salient regions is higher than

the repeatability of non-salient regions provided by

classical feature descriptors such as corners or SIFT

keypoints [13, 14].Only fewauthors use inspiration from

the bottom-up human visual attention for thedetection of

interest points. Lee et al. [6], starting from the observa-

tion that changes in curvature are correlated to regions

that attract visual attention, identify points of interest in

the curvature map, a mapping from each vertex of the

mesh to its mean curvature. In Castellani et al. [8], the

identification of interest points is based on difference-of-

gaussian filtering (i.e. the center-surround mechanism).

The detection of points of interest attracted the

preoccupation of the research community for various

3Dapplications suchasmeshand shape retrieval [15, 16],

matching of objects [8], or mesh simplification guidance

[5, 6]. Song et al. [5] compute mesh saliency using the

geodesic measure to identify the neighborhood of a point

and further incorporate multi-scale information in a

conditional random field framework to impose consis-

tency constraints between neighboring points. Yang et al.

[15] calculate vertex saliency based on the distance of a

vertexwith respect to its neighborhood. The approach for

interest point detection in [16] uses a voxel grid and

capitalizes on the SIFT algorithm.A 3Dversion ofHarris

corner for interest point detection is proposed by Sipiran

andBustos [17].Also exploiting the corner detection idea

is the work of Novatnack and Nishino [18]. In Sun et al.

[19], points of interest are identified as local maxima of

the Heat Kernel Signature computed over a triangular

mesh. Some researchers focused towards the guidance of

mesh simplification process using points of interest. A

survey of polygonal simplification methods is available

for the interested reader in [1, 20].Most of the work from

the literature uses QSlim [21] as the algorithm of choice,

due to its best balance between speed, fidelity and

robustness among similar algorithms [14]. A few

research articles proposed user-guided versions of QSlim

to improve locally thequality of amesh.KhoandGarland

[3] adapt QSlim to preserve features situated in regions

labelled by a user as being important. The authors of [4]

allow the user to improve unsatisfactory regions by first

weighting and then applying local refinements to the

desired region. Song et al. [5], bias the simplification

process by amplifying the saliency values in regions of

interest, while Lee et al. [6] control the order of

simplification contractions of the QSlim algorithm by

weighting stronger important regions in a mesh saliency

map. In the work of Pojar and Schmalstieg [2], the user

controls the simplification of a mesh by painting the

desired regions in a Maya plug-in. Howlett et al. [22]

propose the idea of saliency-guided simplification,where

saliency is captured in formof eyefixations. In the current

work the simplification process is based on visual

attention and biased by constraining the maximum

resolution in the regions considered perceptually salient.

3 Modeling Framework for Perceptually

Improved 3D Object Modeling Based on Visual

Attention

The overall approach for creating perceptually

improved 3D object models in the context of modeling

at multiple LOD using regions of interest derived from

visual attention is illustrated in Fig. 1.

An enhanced computational visual attention model is

applied on images captured frommultiple viewpoints of a

3D object, in order to identify regions that attract the

attention of a human viewer. This process aims at

capturing the discriminant details that characterize the

shape and the identity of the object. Within these regions,

points of interest are identified as centroids, and projected

back in 3D to obtain the points of interest over the entire

surface of the object. Multiple copies of the same points
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identified in different viewpoints are eliminated. Given

the appropriate number of faces for each sample of an

object within a LOD hierarchy, for which a novel neural-

network solution is proposed in this paper, the QSlim

algorithm is adapted to simplify only those faces of the

objects thatdonot containasvertices the identified interest

points and their immediate neighbours. Due to the

computational cost associated to the computation of the

enhanced visual attention model, on which details are

provided in the experimental section of the paper, the

detection of interest points takes place offline, while once

the interest points are identified, the simplified models

with region of interest preservation at various resolutions

are constructed online.

3.1 Enhanced 3D Visual Attention Model

Computational attention models are designed to work on

images. Because the proposed solution is expected to

work in 3D, they are two possible solutions to deal with

this issue: one is to expand the visual attention model to

3D, the other one is to capturemultiple images, IMv, from

different viewpoints of a 3D object in order to ensure a

relatively complete description of the regions of

interest over its whole surface. Because certain

features that characterize the visual attention system

are less understood in 3D, in this paper it was chosen to

follow the second option. In order to capture multiple

images from different viewpoints of an object, a

virtual camera model is employed. As only meshes of

object are available in our dataset, the objects are

rendered with a smooth material of neutral, grey color.

The headlight, a source of light situated in the front of

the object at an infinite distance, is the only light used

in the scene. To avoid that attention is captured mainly

due to the contrast around the contour of the object, a

simple black background is used for testing. Once

these images obtained, an enhanced version of a

classical computational visual attention model that

uses additional features is applied on each collected

Fig. 1 Perceptually-

improved 3D object

modeling framework
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image from the multiple viewpoints to build the

saliency map.

The model of Itti et al. [23], that employs intensity,

colour, andorientation, is used as abasemodel. It usesnine

spatial scales, created from each image using dyadic

Gaussianpyramids.Each feature is calculated as a series of

center-surround operations similar to human visual recep-

tive field. Typical visual neurons are more sensitive in a

small region of the visual space, namely its center, while

stimuli in a broader andweaker region concentric with the

center inhibit neural responses. The center-surround

mechanism is implemented as a difference between fine

and coarse scales, where the center is a pixel at scale

c � f2; 3; 4g and the surround pixel corresponds to a

scale s ¼ cþ d, where d � f3; 4g. Given r, g and b, the
red, blue and green channels of an initial image, IMv,

the intensity map I is obtained as I ¼ ðr þ gþ bÞ=3
and the corresponding conspicuity map is computed as

�CI ¼ �4
c¼2 �cþ4

s¼cþ3 NðIðcÞ�I ðsÞÞ ð1Þ

with � representing an across-scale difference oper-

ation, � across-scale addition, involving a reduction

of scales to 4 and a point by point addition, andNð:Þ is
a normalization operation by ðM � �mÞ2 that promotes

globally the maps with a small number of strong

saliency peaks and inhibits maps with many similar

peaks.M is the global maximum of the map and �m the

average of all local maxima. The information on local

orientation is obtained from I using oriented Gabor

pyramids Oðr; hÞ where r � 0. . .8½ � represents the

scale and h � f0�
; 45

�
; 90

�
; 135

�g, the preferred ori-

entations. The orientation conspicuity map is given by:

�CO ¼
X

h

Nð�4
c¼2 �cþ4

s¼cþ3 N jO c; hð Þ�O s; hð Þjð ÞÞ

ð2Þ

To compute the color conspicuity map, four

broadly tuned color channels are initially created as:

R ¼ r � ðgþ bÞ=2,G ¼ g� ðr þ bÞ=2; B ¼ b� ðr þ
gÞ=2; and Y ¼ ðr þ gÞ=2� jr � gj=2� b and two

maps quantifying the red/green and blue/yellow

opponency are computed as:

RG c; sð Þ ¼ R cð Þ � G cð Þð Þ� G sð Þ � R sð Þð Þj j ð3Þ

BY c; sð Þ ¼ jðB cð Þ � Y cð ÞÞ�ðY sð Þ � B sð ÞÞj ð4Þ

The color conspicuity map is then calculated as:

�CRG ¼ �4
c¼2 �cþ4

s¼cþ3 ½N RG c; sð Þð Þ þ N BY c; sð Þð Þ�
ð5Þ

An additional color feature conspicuity map is

introduced in the model following the Derrington-

Krauskopf-Lennie (DKL) color space [24] that refers to

the color opposition model in the early visual processing

[25]. According to this model, color vision starts by the

extraction of different signals transmitted by cones and is

then processed by three post-receptor mechanisms, one

for luminance and two for red/green and blue/yellow

opponency, denotedRLum, RL�M and RS�Lum. A look-up

table extracted from [26], is used to convert the r, g

and b channels of an image to RLum,RL�M and RS�Lum

components and the conspicuity map becomes:

�CDKL ¼ �4
c¼2 �cþ4

s¼cþ3 ½N RLum c; sð Þð Þ
þ N RL�M c; sð Þð Þ þ N RS�Lum c; sð Þð Þ� ð6Þ

In spite of the fact thatmost of our objects are grey, the

use of color channels improves the precision of the

detectionof regionsof interest, as demonstrated inSect. 4.

3.1.1 Curvature

Wolfe and Horowitz’s study [10] identifies the curva-

ture as a probable attribute that guides the deployment

of visual attention. However, in spite of their visual

importance, small high-curvature details over rela-

tively large and uniform regions will be likely ignored

by most simplification methods, because simplifying

them introduces minimal error [8]. This justifies the

interest into associating more importance to high-

curvature regions in order to improve the detection of

salient regions [6, 27]. To compute the curvature map,

we use inspiration from the approaches in [26, 28, 29].

The result is a 3D curvature model, Mc; similar to a

saliency map, in which lighter areas are characterized

by a higher curvature. To compute the conspicuity

map, the 3D curvature model is projected using the

camera model in 2D for each given point of view v:

The resulting image IMcv is filtered to simulate the

center-surround mechanism, and the curvature con-

spicuity map becomes: �CCurv ¼ N IMcvð Þ: Alterna-

tively, the interest points can be extracted directly

from each view of the curvature model Mc (see

Sect. 3.2) andmerged with the visual attention derived

interest points to enable comparison.
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3.1.2 Symmetry

Research published in the literature also suggests that

symmetry of visual shapes has an impact on visual

attention. Locher and Nodine [11] demonstrated that if

an object exhibits a symmetry of shape, the eye fixations

follow the symmetry axis, therefore sustaining the theory

that symmetry is an attribute guiding visual attention

deployment. Koostra et al. [30] compare the use of

isotropic, radial and color symmetry operators and

merge them in a symmetry saliencymap using multiple-

scale computations. Their work demonstrates that while

there is no significant difference between the results, all

of these operators offer better results (validated by

human eye fixation data) [26] than the model of Itti and

that the radial symmetry operator seems to provide

slightly better performance. This is the reason why we

have chosen to include it in our model. Moreover,

bilateral symmetry ismore readily detectable by humans

than other types of symmetry [31], justifying the interest

of including this type of symmetry in our model as well.

The approach in [32] is adapted to compute 3D bilateral

and radial symmetric points over the surface of anobject.

In order to incorporate the symmetry in the form of a

saliency map, saliency maps Sym are created from

different viewpoints, in which points of interest and

their immediate neighbors are shown in white and the

background in black. Center-surround operations are

applied on the resulting map, and the conspicuity map

of symmetry becomes �CSym ¼ N Symð Þ: Similar to the

curvature model, we also consider separately the

interest points derived from the various types of

symmetry, for comparison purposes.

3.1.3 Contrast and Entropy

When looking at an image, people are attracted to

regions of strong contrast, while weaker contrast regions

tend to be ignored. Zhang et al. [33] use the luminance,

texture and colour contrast as the three components of

their attention model, while in [34] a histogram-based

contrast method is proposed to improve salient region

detection. In this paper, the grayscale contrast map Con

is calculated using the luminance variance in a local

neighbourhood of 80 9 80 pixels [35], and the

contrast conspicuity map is built as: �CCon ¼ N Conð Þ.
Kadir and Brady [36] propose the idea of using

entropy as a measure of local signal complexity or

unpredictability in an image. It is expected that using

entropy in the computation of visual attentionwill yield

better results because small areas that are uniquely

salient because of lighting (e.g. a local light spot) or

color uniqueness are not necessarily salient in general

[37]. In this work, the input image is pre-processedwith

a median filter and then the entropy is encoded as local

entropy value of a 9 9 9 neighbourhood around the

corresponding pixel in the filtered image [38]:

Ent ¼ �
XL�1

i¼0

pðI iÞlog2pðI iÞ ð7Þ

where p I ið Þ is the histogram of the intensity levels in

the region i and L the number of possible intensity

levels (e.g. L = 256 for experimentation). The

entropy conspicuity map is computed as:
�CEnt ¼ N Entð Þ:
The final saliency map is calculated as an average

of independently calculated conspicuity maps:

Savg ¼
X

i

�Ci=jij ð8Þ

where i ¼ I;O;RG;DKL; Sym;Con;Entf g and |.|

denotes the cardinality of the set i. The grayscale

saliency map is then thresholded to retain 30 % of

highest saliency values and therefore to identify the

most interesting regions from the visual attention

perspective.

3.2 Interest Point Identification

Because the identified regions of interest in the saliency

map are too large to constrain all their points in the

simplification, the interest points are identified as the

centroids of each identified region. The resulting 2D

points are computed in each image taken from various

viewpoints of the object in order to obtain a relatively

complete coverage andprojected backonto the 3Dmodel

using the virtual camera model. To achieve this, we have

used four principal points of view (i.e. where the camera

is locatedonpositive zaxis, negative zaxis, positiveyaxis

and negative y axis, respectively, all targeting the origin)

to identify salient points based on the visual attention

model. Only these four viewpoints are used in the current

implementation, because our research revealed that these

viewpoints led to the lowest error rates for the modelling

of objects in our dataset (see details in Sect. 4). The

largest length of the object along the z axis in pixels,
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computed from the image, divided by the real dimension

in world units, results in the number of pixels per world

unit, such that for each point, two elements of the

coordinate can be readily obtained. In order to find the

third coordinate, we have adopted the ray/triangle

intersection model introduced by Moller and Trumbore

[39]. This algorithm is a fast solution to find all inter-

sectionsof the raypassing fromeachpoint inparallelwith

the third axis and thus the closest intersection with the

object surface is considered as the third coordinate of the

visual attention-based salient point. Only these salient

points and their immediate neighbours will be preserved

at full resolution in the simplification process.

3.3 3D Object Simplification and Multiresolution

Modeling

To allow the simplification to only affect faces whose

defining edge points are not among the identified points

of interest or their immediate neighbours, an adaptation

of QSlim algorithm is proposed. The complete descrip-

tion of the algorithm is available in [21]. Starting from a

triangular mesh given by a set of vertices and a set of

faces, the algorithm simplifies it by repeated edge

collapses using an error metric (i.e. the quadric error,

representing the sumof squared distances from the vertex

to the planes of neighbouring triangles). If its value is

large, the corresponding vertex could represent a

distinctive feature or detail on the mesh, and therefore

will be removed later from themesh.Otherwise, itwill be

removed earlier. This metric is used to compute the cost

associated with a contraction as well as the optimal

position for the new unified vertex. All the edges from a

mesh are extracted along with their associated cost and

are stored in anordered list of costs.At each step, the edge

with the least cost is removed from the mesh, its

neighbourhood is updated and the costs of edges

connected to the unified vertex recomputed. Most

solutions in the literature propose means to weigh

stronger the regions of interest [4–6],mainly by adjusting

their cost in order to delay their simplification. In the

current work, the QSlim algorithm is adapted such as the

faces of the mesh that contain points of interest and their

immediate neighbours are eliminated from the list of

faces to be affected by the simplification process [40].

The experiments performed (see Sect. 4) led to the

conclusion that a 3-neighborhood around the points of

interest provides the best simplification results over our

dataset.

As it is difficult for a user to judge the number of

faces required for a certain object at a given distance,

in the current approach a novel solution is proposed

based on neural networks. In particular, a series of

two-layer feed-forward architectures is used, one

network being associated with each version of visual

attention model consisting of various combinations of

feature channels. The role of each is to learn the

number of faces that should be used in a simplified

model based on the object characteristics. The interest

of using neural networks for this purpose stems from

their capability to provide estimates for data that was

not part of the training set, meaning in the current

context that the number of faces can be predicted for

objects whose characteristics are similar, but not

identical to the ones used during training. In the

current implementation, the object characteristics are

based on the tolerated error, the distance with respect

to the user, and the object complexity, the latter

described by initial size of the object mesh and the

identified number of salient points. The justification

for using these characteristics is as follows: in a first

place we want to give the user the choice to control the

desired accuracy of the model; a value of 0.05 is

selected by default if the user doesn’t want to intervene

in the process. The distance with respect to the user

plays an important role in LODmodelling. As stated in

the introduction, the farther the object is situated

within a 3D environment with respect to the user, a

less detailed representation should be used in order to

ensure a higher rendering speed. The object complex-

ity has also an important impact on the quality of

results. A more complex model might require more

faces in order to preserve a good representation of the

object (see details in the experimental section). In

order to take into account all these factors, each

proposed neural network, with an empirically deter-

mined size of 30 neurons in the hidden layer, has 4

inputs, namely the the tolerated error, the distance with

respect to the user, the initial size of the object mesh

and the number of salient points and one output,

namely the number of faces.

Each network (corresponding to a combination of

feature channels) has to be trained to learn the mapping

between the number of faces at output and the input

variables. In order to train the network, it is necessary to

provide values for each input and output variable. The

series of error measures are computed as detailed in

Sect. 3.4 within a certain range of resolutions, namely

3D Res (2016) 7:30 Page 7 of 18 30
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from 1500 to the number of faces in the initial mesh, for

the various combinations of visual attention feature

channels. For each of combination, the size of initial

mesh and the number of interest points are also stored.

The distance values are determined in VRML by

gradually moving the object further from the user and

marking the distance values when important features

seem to disappear. A change in resolution is expected to

occur at thesemilestones. Once all this data is available,

each network is trained using gradient descent back-

propagation with a constant momentum value of 0.95

and an adaptive learning rate. A null sum-squared-error

is targeted over 1000 training epochs. Once the network

trained, it will provide an estimate of the number of

faces for each input variable combination. The final

number of faces is computed as an average over the

results provided by each of the networks in the series.

The simplification algorithm with regions of interest

preservation is applied to constrain the selectively-

densified mesh to the calculated number of faces. If

desired, the algorithm can be included in a continuous

LOD scheme that monitors the distance in the environ-

ment and creates the appropriate model according to it.

The pseudo-algorithm for our approach can be

summarized as it follows:
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3.4 Mesh Quality Evaluation

The quality of the resulting simplified models is

evaluated from quantitative and qualitative points of

view. Metro [41] allows comparing two meshes (e.g.

the original, full-resolution mesh of an object and its

simplified version) based on the computation of a

point-surface distance (i.e. Hausdorff distance) and

returns the maximum and mean distance as well as the

variance (RMS). The lower this error is, the better is

the quality of the simplified object. Since our interest

is into improving the perceptual quality of models,

other three measures of perceptual error are employed.

The first one is based on the structural similarity metric

(SSIM), proposed based on the observation that the

human visual perception is highly adapted to extract

structural information in a scene [42]. In particular, the

inverse of this metric is employed as an error measure,

as a lower similarity between the simplified mesh and

the initial mesh implies a higher error. The second

category of errors are Laplacian pyramid-based image

quality assessment errors [43], two image quality

metrics based on early vision transformations, namely

local luminance subtraction and contrast gain control.

The authors suggest that representing the image in a

nonlinear multi-scale decomposition can result in a

better account of human perceptual quality judge-

ments. The two forms reported are the predicted

distance in Laplacian domain and in normalized

Laplacian domain. Because these errors are meant to

be used on images, in order to apply them, images are

captured over the simplified models of objects from

the same viewpoints from which the visual attention

model is computed and are compared with the images

of the initial, not simplified object from the same

viewpoints. The error measures for each object are

reported as an average over the viewpoints and overall

results are reported as an average over all the objects in

the dataset. A qualitative evaluation of the results is

obtained using Cloud Compare [44] that allows

visualizing in an intuitive, color-coded manner the

regions most affected by error in the simplified object

with respect to its original version.

4 Experimental Results

In order to evaluate the proposed framework, it was

tested on the objects from the benchmark for 3D

interest points [45]. The choice of this dataset is

justified because it contains the interest points

obtained by several detectors from the literature,

therefore allowing for a direct comparison with the

proposed solution. In order to identify the most

promising viewpoints to use and their number, exper-

iments were performed for an increasing number of

viewpoints starting from 4 to 12 [46], each viewpoint

resulting from various rotations along x and z axis

respectively, as illustrated in Fig. 2.

The object is initially situated at the origin of the

system of axis. The Metro error measures, namely the

maximum error, the average error and the variance

(RMS) described in Sect. 3.4 are then computed as an

average over the objects in the dataset, for various

viewpoint combinations. Figure 3a illustrates a few

tested combinations and shows that, in general, the

error increases with the number of viewpoints. This is

justified by the fact that a larger number of viewpoints

leads to an increased number of the interest points.

Due to the fact that our simplification algorithm

preserves the interest points and their neighborhoods,

only a reduced number of faces is left to represent the

rest of the surface of the object, leading to larger

errors. As Fig. 3a shows, the combination of four

viewpoints, denoted Four (1, 2, 11 and 12) in the

figure, leads globally to the smallest error measures

and therefore only these viewpoints were used in this

article.

Fig. 2 Viewpoints for visual attention calculation: (1) initial

pose and rotations of: (2) 90� along z, (3) 180� along z, (4) 270�
along z, (5) 45� around x, (6) 120� around z and of 45� around x,

(7) 240� around z and of 45� around x, (8)--45� around x, (9)

120� around z and of -45� around x, (10) 240� around z and of

-45� around x, (11) 90� around z, and (l2) 180� around x
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Another parameter that has also an influence on the

quality of the simplification is the number of neighbors

to be preserved around an interest point. As in the case

of multiple viewpoints, the Metro error measures tend

to increase with an increase in the size of the

neighborhood n, as illustrated for the n = 1 to n = 4

and for 15,000 faces in Fig. 3b. This number of faces is

chosen because it ensures that for all objects in the

database the shape is preserved for n = 4. Due to the

fact that certain methods return many interest points,

the remaining number of faces when constraining

n = 4 neighbors of each interest point is not sufficient

to preserve the general shape of the object. As already

stated in the case of viewpoints, this occurs because

the interest points and their neighbors constitute a

large part of the total number of points of the object

and therefore leaving too few points to represent the

rest of the surface of the object. As a consequence, for

coarser meshes it is desirable to only affect smaller

neighborhoods (n = 1 or 2), while for higher detailed

meshes larger neighborhoods (n = 3 or 4) can be used.

In experimentation with different meshes made of up

to 35,000 faces, generally a 3-neighborhood gave good

results for meshes larger than 5500 faces, a 2-neigh-

boorhood for meshes between 3500 and 5500 and

1-neighborhood for those below 3500. Because the

objects in the dataset we used for testing have over

5500 faces, we have used a value of n = 3 for the

remainder of tests performed.

A series of tests aimed at studying the impact of

various feature channels over the quality of the

simplified mesh. In terms of color channels, experi-

ments revealed that in spite of the use of a dull grey

material, their use allows to better identify the interest

regions, as shown in Fig. 4.

Another series of experiments dedicated to the

identification of an appropriate background color,

showed that a black background is more appropriate

for the identification of interest points. The average

error over all the objects in the dataset (for 1500 faces

in the simplified model) calculated for a black

background is 0.001, followed by gray (0.002), and

by white (0.006).

To study the influence of the curvature, simplified

models when only the classical visual attention model

is used (e.g. colour, intensity and orientation, denoted

VisAtt), are compared with the case when only the

curvature information is used (Curv), when the

curvature points are added to the visual attention

interest points, and when the curvature is incorporated

into the visual attention map. The results, illustrated in

Fig. 5a for 1500 faces in the simplified model, show

Fig. 3 Error measures illustrating a the influence of viewpoints, and b the influence of neighborhood size, n

Fig. 4 Saliency map and

regions of interest: awithout
and b with the use of color

(RGB and DKL) features
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that the highest errors are associated with the visual

attention with curvature points (VisAttCurvP), while

the classical model is close to the error obtained when

merging the curvature conspicuity map in the saliency

map (VisAttCurv), with the latter obtaining a slightly

better performance according to perceptual errors

(Fig. 7). As expected and confirmed in Fig. 5b and

Fig. 6b, that compare the error measures for 1500

faces (in red) and for 3000 faces (in pink), the errors

decrease with an increased number of faces in the

simplified model. The difference in errors is also more

visible at lower resolutions than at higher resolutions.

Similar results can be noticed for the symmetry in

Figs. 5c, d, 6a, and 7.

Considered separately, the symmetry channels,

whether lateral (SymLat), radial (SymRad) or both

(2Sym) obtain roughly the same errors that are slightly

lower than the classical visual attention model as

highlighted by the perceptual error in Fig. 7. The

model that includes the symmetry conspicuity map

(VisAttSym) obtains a slightly higher perceptual error

than the classical model (but within a 0.1 difference).

Figure 5e, f show the error measures when various

combinations of supplementary features are consid-

ered in the computation of the saliency map. It can be

noticed that the various combinations of features,

except for the case when all channels are considered,

obtain roughly the same error as the classical model

(within a difference of 0.0002), which implies that the

addition of channels brings information that is not

already available in the classical model. However,

when all channels are considered the error is slightly

higher. This is mainly due to the addition of entropy

information (VisAttEnt) and is believed to come from

the fact that the tested objects do not have texture,

while entropy can be indirectly considered a measure

Fig. 5 The influence of visual attention channels and the impact of the number of faces in the simplification on the error measures

when: a, b curvature, c, d symmetry, and e, f various combinations of channels are used
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of texture change. The entropy information is more

relevant for textured objects, as it will be further

demonstrated.

Overall, the model containing curvature, symmetry

and contrast (VisAttCurvSymCon) and the one adding

contrast only (VisAttCon) lead to the best quality. The

proposed solution is also compared, both in its classic

version and with the proposed additional feature

channels, with a series of interest point detectors

proposed in the literature, including mesh saliency

(MS) [6], salient points (SP) [8], 3D-SIFT (3DS) [16],

3D Harris (3DH) [45], scale-dependent corners (SDC)

Fig. 6 Comparison with

other salient point detectors:

a Metro errors, b influence

of number of faces over the

mean Metro error and

c number of interest points
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[18] and Heat Kernel Signature (HKS)[19], embedded

in a similarmanner in the simplification algorithm (Step

2).

Comparing the error measures (computed as aver-

age over all objects) in Fig. 5a–e, it can be noticed that

all proposed solutions based on visual attention lead in

general to a better performance for selectively-densi-

fied simplification, except HKS approach. A certain

correlation exists between the associated number of

points of interest in Fig. 6c and the error measures. A

Fig. 7 Perceptual errors

based on: a similarity (1-

SSIM), b distance in

Laplacian domain, and

c distance in normalized

Laplacian domain
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higher number of interest points seems to be, in

general, associated with larger error measures. This is

due to the fact that our simplification algorithm

preserves the regions around the interest points, and

therefore only a limited number of faces are impacted

by the simplification process. These faces get redis-

tributed to cover the remaining surface of the object,

outside the regions of interest.

However a drastic reduction in the number of

interest points does not necessarily lead to a drastic

decrease in the errors (e.g. for the HKS method or

SymRad). It is interesting to notice that the visual

attention with additional curvature points (VisAtt-

CurvP) obtains smaller errors than the SP method in

spite of an almost equal number of interest points. This

is due to a better distribution of points of interest

ensured by the proposed visual attention approach

illustrated in Fig. 8c versus Fig. 8f. It is also worth

mentioning that beyond being associated with larger

errors, methods that obtain a large number of salient

points, such as SDC or 3DH can lead at low resolution

to distortion after the simplification. A final remark is

related to the fact that more points of interest do not

necessarily lead to better results as illustrated in Fig. 9.

In this figure, the selectively-densified simplifica-

tion results are compared between a method that

obtains many points, e.g. SDC (Fig. 9a), and the

proposed method with curvature, symmetry and

contrast (VisAttCurvSymCon) (Fig. 9b). Too many

points lead to the creation of clusters of dense triangles

on the mesh, as those in Fig. 6a. On the other hand

fewer points of interest, as obtained by HKS (Fig. 6c),

lead to a model closer to uniform simplification, with

less well defined characteristics.

Most of the studies performed in this paper are

performed on a uniform greyscale dataset because no

color information is available for the object meshes in

the benchmark dedicated to interest point detec-

tion [45] that is used for testing. The reason for

choosing this benchmark is that we wanted to be able

to directly compare with similar methods for point of

interest detection. However, the proposed method

works without adjustments, on colored and textured

meshed as well. Figure 10 shows an example of

texture mesh (Fig. 10a) and presents the results

obtained when comparing the error rates without and

with the use of texture for the same object.

As it can be observed in Fig. 10b, c, in general,

there is no significant error difference (max. 0.01)

between the case when the texture is used or not. The

perceptual error (Fig. 10c) is computed in this case as

the normalized mean error based on SSIM and the

distance in the normalized Laplacian domain. Slight

differences are expected and visible in Fig. 10b, c in

the case of the symmetry and the entropy channels. In

case of the symmetry, the texture has an impact on the

computation of this channel (i.e. the current texture is

not symmetrical) and this leads to slightly higher

errors when the symmetry channel is used. In the case

of the entropy, the resulted errors are lower when the

texture is used, showing that the use of this channel is

beneficial for textured objects.

In terms of computation time, the whole procedure,

starting from capturing images to the visualization of

Fig. 8 Comparison of various interest point detectors: a 3DH,

b MS, c SP, d SDC, e 3DS, f VisAttCurvP, g VisAttAll,

h VisAttSymP, i VisAttEnt, j Curv, k VisAttCurv,

l VisAttCurvSym, m VisAttSym, n VisAttCurvSymCon,

oVisAtt, pVisAttCon, q 2Sym, r SymLat, sHKS and t SymRad

30 Page 14 of 18 3D Res (2016) 7:30

123



the simplified mesh, it takes on average 120.4 s per

object or roughly 69.1 s per 10,000 faces. Overall,

about 30 % is dedicated to the capture of snapshots

and 70 % to the identification of interest points. The

simplification takes maximum 0.2 s per object. It is

also important to state that these computations take

place offline. Once the neural network is trained, it

provides estimates of the number of faces in 0.03 s and

the simplification time is maximum 0.2 s, leading to a

maximum of 0.23 s and therefore a real-time perfor-

mance for the generation of meshes at various

resolutions. The experiments are performed using

Matlab code, on an Intel Core i7 2.2 GHz machine

with 8 GB of memory.

As well, tests were performed to illustrate the

degree of compactness that can be achieved by

employing the proposed method for the simplification

of objects with region of interest preservation. These

revealed an average reduction of 91.5 % in the number

of faces from the initial mesh when using 1500 faces in

the simplified model and of roughly 83 % when using

3000 faces. It is worth to mention that some of the

methods returning a large number of points, such as

SDC, cannot be employed with less than 4500 faces

without provoking a distortion in the mesh, and thus

resulting in a maximum reduction of 75 % in the

number of faces.

Finally, in order to show the use of the simplified

models in LOD modeling applications, Fig. 11 shows

an example of different models created automatically

by the proposed method. The last row of the Fig. 7

shows the distribution of errors over the surfaces of the

object, as visualized in Cloud Compare, with smaller

errors in green, medium errors in yellow and large

Fig. 9 Simplification

results when using: a a large
number of interest points

(SDC), b an intermediate

number of interest points

(VisAttCurvSymCon), and

c a small number of interest

points (HKS)

Fig. 10 a Textured object mesh, and error rate comparison when the texture is used or not, b metro mean error and c perceptual error
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errors red, while the regions in blue represent a perfect

match to the initial mesh. The interest points are

shown in red over the mesh. One can notice that even

at the lowest resolution (i.e. 950 faces in this case), the

fine and perceptually important details of the model

(e.g. ears, wings) are preserved.

The tests performed show that overall for the given

dataset, the proposed method using the combination

with curvature, symmetry and contrast (VisAttCurv-

SymCon) offers the best trade-off between errors and

the quality of the final simplification. However it is

important to state, that depending on the nature of the

object to be simplified and its characteristics, the same

results might not necessarily be the same, in the sense

that a certain channel might not have the same

importance as in the case of the dataset used for

testing. In particular, when a textured object is tested,

slight differences are expected in the color (i.e. non-

uniform colored texture), symmetry (i.e. non-symmet-

rical patterns) and entropy channels. Therefore, if a

user desires to apply our framework, it is preferable

that all the combinations of saliency channels are

tested, using ideally the 4 viewpoints identified and a

3-neighborhood around the points of interest to be

preserved from the simplification. Guidelines for the

selection of a different size of neighborhood is

provided in the experimental section. The information

in each saliency channel has to be merged directly in

the visual attention map computation as described in

Sect. 3.1. The tests showed that it is not worth to

consider separately the interest points derived from the

various channels, such as symmetry or curvature, and

this is expected to be consistent regardless the object’s

characteristics. Once the various combinations are

constructed, the user should proceed to the computa-

tion of the error measures for various number of faces

and according to the tolerated error for the envisioned

application, he or she can retain one or several

combinations as possible solutions. In terms of

number of faces, it is suggested to start from roughly

15 % of the number of faces in the initial mesh and

increase gradually to up to roughly half the number of

faces in the initial mesh, according to needs of the user

application. If multiple solutions are retained based on

error, an in-depth visual comparison using a tool such

as Cloud Compare, could allow for the selection of the

best solution. If an integration in LOD modelling

framework is desired, the user can proceed with the

Fig. 11 Object model and color-coded errors at various LOD using visual attention-based interest point identification

(VisAttCurvSymCon method)
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training of the neural network as detailed in Sect. 3.3.

If the best solution is identified, a single neural

network would suffice. If multiple solutions are

retained based on error, the user can proceed with

training of the series of networks. Finally, if the user

desires to intervene himself in the selection of the

distance, he or she can follow the procedure described

for the computation of distance and select himself or

herself the desired number of faces. The selectively-

densified simplification algorithm can then be applied

to obtain the various versions of simplified models.

5 Conclusion

The paper evaluates the impact of interest point

detection based on human visual attention in the

context of 3D object modeling at multiple LOD for

virtual environment applications. The influence of

various features for the proposed enhanced visual

attention computational model is studied experimen-

tally and the superiority in term of quality of the

proposed method is experimentally demonstrated by

comparison with various point detectors from the

literature. This work demonstrates the importance of

considering human visual capabilities in 3D multiple

LOD modeling having as consequence an improved

perception for the users.
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