
3DR EXPRESS

Novel 3D Compression Methods for Geometry, Connectivity
and Texture

M. M. Siddeq . M. A. Rodrigues

Received: 1 March 2016 / Revised: 31 March 2016 / Accepted: 3 April 2016 / Published online: 9 April 2016

� 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg 2016

Abstract A large number of applications in medical

visualization, games, engineering design, entertain-

ment, heritage, e-commerce and so on require the

transmission of 3D models over the Internet or over

local networks. 3D data compression is an important

requirement for fast data storage, access and trans-

mission within bandwidth limitations. The Wavefront

OBJ (object) file format is commonly used to share

models due to its clear simple design. Normally each

OBJ file contains a large amount of data (e.g. vertices

and triangulated faces, normals, texture coordinates

and other parameters) describing the mesh surface. In

this paper we introduce a new method to compress

geometry, connectivity and texture coordinates by a

novel Geometry Minimization Algorithm (GM-Algo-

rithm) in connection with arithmetic coding. First,

each vertex (x, y, z) coordinates are encoded to a single

value by the GM-Algorithm. Second, triangle faces

are encoded by computing the differences between

two adjacent vertex locations, which are compressed

by arithmetic coding together with texture coordi-

nates. We demonstrate the method on large data sets

achieving compression ratios between 87 and 99 %

without reduction in the number of reconstructed

vertices and triangle faces. The decompression step is

based on a Parallel Fast Matching Search Algorithm

(Parallel-FMS) to recover the structure of the 3D

mesh. A comparative analysis of compression ratios is

provided with a number of commonly used 3D file

formats such as VRML, OpenCTM and STL high-

lighting the performance and effectiveness of the

proposed method.

M. M. Siddeq (&) � M. A. Rodrigues

GMPR-Geometric Modelling and Pattern Recognition

Research Group, Sheffield Hallam University, Sheffield,

UK

e-mail: mamadmmx76@yahoo.com

M. A. Rodrigues

e-mail: M.Rodrigues@shu.ac.uk

123

3D Res (2016) 7:13

DOI 10.1007/s13319-016-0091-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-016-0091-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13319-016-0091-x&domain=pdf

Graphical Abstract

Keywords 3D object compression and

decompression � GM-algorithm � Parallel-FMS-

algorithm

1 Introduction

Algorithms for 3D data compression and reconstruc-

tion are enabling technologies where cheap storage

and data transmission over the network are required.

Examples of applications can be found in security,

engineering, CAD/CAM collaborative design, medi-

cal visualisation, entertainment, e-commerce and

geographical information systems among others

[16]. Concerning geometry and connectivity compres-

sion, Rodrigues and Robinson [17] used PDE-Partial

Differential Equations to lossycompression and recon-

struction of mesh surfaces with no loss of accuracy in

the context of 3D face recognition. They proposed that

surface patches can be compressed as a 2D image

together with 3D calibration parameters, transmitted

over a network and remotely reconstructed (geometry,

connectivity and texture map) at the receiving end

with the equivalent resolution as the original data.

Extending that research, Siddeq and Rodrigues [21]

proposeda 2D image compression method based on

DWT and DCT which has been demonstrated in the

context of structured light 3D reconstruction. The

method produces anested series of high-frequency

matrices which are coded by a Minimize-Matrix-Size

Algorithm (MMS). At decompression stage, a Lim-

ited-Sequential Search Algorithm (LSS) is used tore-

cover the original 2D image which is then used for 3D

reconstruction of the original mesh. The advantage-

softhe method arethe recovery of high resolution

imageswith compression ratios up to 98 %. Although

superior to the PDE compression for the same

application, the method proved very complex resulting

in execution time of the order of minutes for a high

resolution image.

Themethods proposed in this paper are more general

than the compression of structured light images for 3D

reconstruction, as they are applicable directly to 3D

data geometry and connectivity and include texture

mapping. Peng et al. [11] reviewed technologies for 3D

data compression with particular focus on triangular

meshes. In an earlier survey of 3D compression

methods Alliez and Gotsman [18] focus on compres-

sion techniques for single-rate and progressive mesh

coding based on geometry and connectivity. Compres-

sion methods are thus, focused on representing the

geometry and connectivity of the vertices in the

triangulated mesh. Geometrical methods aim to reduce

the size of the mesh by simplifying its geometry and

approaches include geometry coding [1], Generalized

Triangle Mesh [3], triangulated model techniques, and

quantization techniques [11, 23] where rates of over

3D object file
Ver�ces

Block(1)

Block(2)

Block(p)

Encoded Data - Block(1)
Encoded Data - Block(2)

Encoded Data - Block(p)

DS.Block(1)
DS.Block(2)

DS.Block(p)

…

…

GM-Algorithm
Convert each [X Y Z] to

single integer data

X1 Y1 Z1

X2 Y2 Z2

…
XkYkZk

Xk+1Yk+1 Zk+1

Xk+2 Yk+2 Zk+2

…
Xk+kYk+kZk+k

X2k+1 Y2k+1 Z2k+1

X2k+2 Y2k+2 Z2k+2

…
XnYn Zn

3D object data

V X1 Y1 Z1
V X2 Y2 Z2
V X3 Y3 Z3

V X4 Y4 Z4
…

V XnYn Zn

Divide list of ver�ces to
small block size: kvt U1 V1

vt U2 V2

vt U3 V3

...
vt UnVn

Weight [W1, W2, W3]

Each column (U and V) compressed by
Arithme�c Coding individually

Ver�ces texture matrix f V1V2V3

f V4V5V6

f V7V8V9

...
f Vn-1Vn-1vn

Triangle faces Matrix

faces: converted to one-dimensional
array, then Arithme�c Coding applied

Compressed
data

Each Domain Search (DS) generated for
each Encoded Data stream

13 Page 2 of 18 3D Res (2016) 7:13

123

3D object file
Ver�ces

Block(1)

Block(2)

Block(p)

Encoded Data - Block(1)
Encoded Data - Block(2)

Encoded Data - Block(p)

DS.Block(1)
DS.Block(2)

DS.Block(p)

…

…

GM-Algorithm
Convert each [X Y Z] to

single integer data

X1 Y1 Z1

X2 Y2 Z2

…
XkYkZk

Xk+1Yk+1 Zk+1

Xk+2 Yk+2 Zk+2

…
Xk+kYk+kZk+k

X2k+1 Y2k+1 Z2k+1

X2k+2 Y2k+2 Z2k+2

…
XnYn Zn

3D object data

V X1 Y1 Z1

V X2 Y2 Z2
V X3 Y3 Z3

V X4 Y4 Z4
…

V XnYn Zn

Divide list of ver�ces to
small block size: kvt U1 V1

vt U2 V2

vt U3 V3

...
vt UnVn

Weight [W1, W2, W3]

Each column (U and V) compressed by
Arithme�c Coding individually

Ver�ces texture matrix f V1V2V3

f V4V5V6

f V7V8V9

...
f Vn-1Vn-1vn

Triangle faces Matrix

faces: converted to one-dimensional
array, then Arithme�c Coding applied

Compressed
data

Each Domain Search (DS) generated for
each Encoded Data stream

Fig. 1 The proposed 3D data compression method

Sample of vertices (before coding)
-101.284 48.426 45.478
-100.916 48.399 45.468
-100.636 48.414 45.426
-100.396 48.449 45.341
-100.150 48.480 45.215
-99.900 48.510 45.053
-99.6262 48.529 44.863
-99.355 48.548 44.653

Quantized vertices
-1013 484 455
-1009 484 455
-1006 484 454
-1004 484 453
-1002 485 452
-999 485 451
-996 485 449
-994 485 447

Differential Eq. applied GM-Algorithm applied
-4 0 0 -0.4
-3 0 1 42.9
-2 0 1 43
-2 -1 1 35.9
-3 0 1 42.9
-3 0 2 86.1
-2 0 2 86.2

-994 485 447 -994 485 447

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value
M=|4|, F=1:- Key1=0.1, Key2=7.1, Key3=43.2

Fig. 2 Sample of vertices compressed by GM-Algorithm

Ver�ces: a�er differen�al process
X Y Z
-4 0 0
-3 0 1
-2 0 1

. . .
-2 0 2

GM-Algorithm
With Key2

-4, 0, -3, 1, -2, …, 2

Encoded Data

Generate Domain
Search (DS)

Fig. 3 Domain Search

(DS) generatedfrom a block

of vertices

3D Res (2016) 7:13 Page 3 of 18 13

123

80:1 have been achieved. Examples of coding connec-

tivity include the topological surgery algorithm [8], and

the Edgebreaker algorithm [20, 25]. Products also exist

in the market that claim a 95 % lossless file reduction

[22] for regular geometric shapes. 3D data compression

related researchconcentrate either on fast rendering or

on maximum compression and therefore the following

discussion is focused on these topics.

1.1 Compression for Fast Rendering

In this section we discuss representations of triangle

meshes that are used for transmission to graphics

hardware. 3D-hardware support is primarily based on

the rendering of triangles, specified by its three

vertices, where each vertex contains three coordinates,

possibly the surface normal, material attributes and/or

(a) (b) Differen�al Process Eq(2)
applied on each U and V

Each of U and V
Shift to integer

U V

Arithme�c CodingVer�ces texture consist
of; U and V axes

Vt 0.23 0.23
Vt 0.34 0.45
Vt 0.91 0.47

…
Vt 0.76 0.76

Fig. 4 a Texture in UV space related to 3D object, b UV texture mapping compression

(a)

(b)

Arithme�c Coding

Triangle faces in 3D
object file

Scan all ver�ces loca�ons to
convert matrix to 1D-array

f 1 2 3
f 4 5 6
f 7 8 9
f 7 9 6
f 7 6 4
f 10 5 11
f 10 2 5
f 1 2 10
f 10 5 11
… etc

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc]

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc].

Face divided into sub-arrays for coding

1 2 3
4 5 6
7 8 9

10 5 11
… etc

Fig. 5 a 3D mesh

represented as vertex indices

in a 3D OBJ file; b In our

method, differential vertex

indices are lossless

compressed by arithmetic

coding

13 Page 4 of 18 3D Res (2016) 7:13

123

texture coordinates. The coordinates and normals are

specified with floating point values, such that a vertex

may contain data of up to 36 bytes. Thus the

transmission of a vertex is expensive and the simple

approach of specifying each triangle by the data of its

three vertices is wasteful as for an average triangle

mesh each vertex must be transmitted six times [7].

The introduction of triangle strips helped to save

unnecessary transmission of vertices. Two successive

triangles in a triangle strip are joined at an edge.

Therefore, from the second triangle on, two vertices of

the previous triangle can be combined with only one

new vertex to form the next triangle. As with each

triangle at least one vertex is transmitted and as an

average triangle mesh has twice as many triangles as

vertices, the maximal gain is that each vertex has to be

transmitted only about twice. Two kinds of triangle

strips are commonly used—the sequential and the

generalized triangle strips. In generalized triangle

strips an additional bit is sent with each vertex to

specify to which of the free edges of the previous

triangle the new vertex is attached. Sequential strips

even drop this bit and impose that the triangles are

attached alternating. OpenGL [6] evolved from the

commonly used standard for graphics libraries allow-

ing generalized triangle strips in earlier versions, but

the current version is restricted to sequential strips.

1.2 Maximum Mesh Compression

The strategy for fast rendering described above can

also be used for the compression of triangle mesh

connectivity. Instead of retransmitting a vertex, a

reference is inserted into a compressed representation.

If a vertex from the buffer is referenced its index

within the buffer enters the compressed representa-

tion. In the triangle strips of Evans et al. [2] each

vertex appears about 2.5 times. The vertices can be

X Y Z

Block of vertex

Sort R-Array ascending order
X X X X X X … XDS

(a)

(b)

R-Array

Binary Search Algorithm Func�on 3

Compressed
data in file

(Encoded Data)
Binary Search Algorithm Func�on 2

Binary Search Algorithm Func�on1

Binary Search Algorithm Func�on k

R1 R2 R3 R4 … Rk

X1 Y2 Z5

Xn Y1 Zn

X2 Y2 Z2

3 5 1

Each Binary Search find Loca�on of the "R-Array" corresponding to the compressed
data, output is relevant [X,Y,Z], which represents a vertex in a block

… … …

Apply Eq.(3) on all possibili�es (X,Y and Z) to
generate R-Array linked with the relevant

R-Array

1 2 3 4 5 6 k

Y1 Y2 Y3 Y4 Y5 Y6 … Yk

Z1 Z2 Z3 Z4 Z5 Z6 … Zk

1

DS2

DS3

R1 R2 R3 R4 … Rk

X1 Y2 Z5

Xn Y1 Zn

X2 Y2 Z2

X3 Y5 Z1

Fig. 6 Parallel-FMS algorithm to reconstruct the reduced

array. a Compute all the probabilities for all possible k-Encoded

Data (R-Array) by using Weight combinations with DS. b All

Binary Search Algorithms run in Parallel to recover the

decompressed vertices data approximately at same time

3D Res (2016) 7:13 Page 5 of 18 13

123

rearranged into the order they appear the first time and

only the indices of 1:5n vertices need to be inserted in

the compressed representation. One additional bit per

triangle is needed to specify whether the next vertex is

used the first time or the index of an already used

vertex follows. This sums up to about 1 ? 0.75 (log2

n) bits per triangle. The disadvantage of this approach

is that the storage needs to grow with the size of the

triangulated mesh. The measurements of Deering in

[10] show that the generalized mesh approach theo-

retically consumes between eight and eleven bits per

triangle if an optimal stripper is available.

Taubin et al. [4] propose a very advanced global

compression technique for the connectivity of triangle

meshes. The method is based on a similar optimization

problem as for sequential triangle strips and the

authors suggest that it is NP-complete. Their approx-

imation allows compression to only two bits per

triangle and there exist triangle meshes which con-

sume only one bit per triangle. The decompression

splits into several processing steps over the complete

mesh, which makes the approach unsuitable to speed

up hardware driven rendering.

Our compression technique introduces a new idea

for geometry compression by geometry minimization

algorithm and the triangle faces (connectivity)

encoded by computing the differences between two

adjacent vertices and then encoding each group of

connectivity by arithmetic coding. This approach

compares favourably with a number of 3D data file

formats techniques focusing on compression ratio as it

is demonstrated in the experimental section of this

paper. This paper is organized as follows. Section 2

introduces the Geometry Minimization algorithm

(GM-algorithm) applied to vertices. Section 3

describes the texture compression by using soft-

quantization with arithmetic coding, also in this

section the connectivity (triangle faces) are com-

pressed by computing the differences between two

adjacent faces. Section 4 describes the Parallel Fast

Matching Search Algorithm (Parallel-FMS) used to

reconstruct the vertex data. Section 5 describes

-4 0 -3 1 -2 -1 2

-4 0 -3 1 -2 -1 2

DS

-4 -4 -4 -4 -4 -4 -4 -4 -4 -4.....-4 -4 2

R-Array generated

-0.4
42.9
43
35.9
42.9
86.1
86.2… …

Block of vertex

-4 0 -3 1 -2 -1 2 -4 0 -3..... 2 -4 2
-4 0 -3 1 -2 -1 2

1

DS2

DS3

 -201.6 -173.2 -158.4 -130 -115.2 ... -0.4 ... 100.8

Apply Eq.(3) on all possibili�es (X,Y and Z) to
generate R-Array linked with the relevant

-4 -4 -4 -4 -4 -4 -4 0 0 0..... 0 -3..... 2

-201.6 -28.8 -158.4 14.4 -115.2 -72 57.6 -173.2 -0.4 -130

Sort R-Array ascending order

Binary Search Algorithm Func�on 3

Binary Search Algorithm Func�on 2

Binary Search Algorithm Func�on1

Binary Search Algorithm Func�on 7

-4 0 0

-3 0 1

-2 0 1

-2 0 2

…

Compressed data

Fig. 7 All Binary Search Algorithm run in Parallel to recover the decompressed vertices data approximately at same time

13 Page 6 of 18 3D Res (2016) 7:13

123

experimental results for 3D data compressionand the

results are compared with other 3D file formats.

Finally, Sect. 6 provides a summary and a conclusion.

2 Vertex Compression

A 3D object is a mesh of polygons whose union

defines a surface bounding a solid object. A 3D OBJ

file considered here consists of a list of vertices

(geometry), a list of texture and a list of triangle faces

(connectivity—each represented by 3 or 4 vertex

indices). Each vertex consists of X, Y and Z coordi-

nates (the size for each vertex no less than 96-bit

floating point value). In the method proposed here,

the (X, Y, Z) floating point is shifted to an integer value

to reduce the number of bits (i.e. this process

meanslossyvertex data). The shift S can be any

integer value but for efficiency reasons we define

1\S� 9000. The new vertex V is defined as:

Fig. 8 3D objects tested by our compression and decompression algorithm. a 3D objects created by 3D scanner and 3D software

developed by GMPR, b 3D objects created by other scanning methods and 3D model building software

3D Res (2016) 7:13 Page 7 of 18 13

123

VXYZ ¼ round½VXYZ � S� ð1Þ

by above Eq. (1) yielding a newset of quantized

vertices VXYZ ¼ X; Y ; Z½ �where each vertex size is less
than 32-bit (i.e. 32-bit minimum size to represent (X,

Y, Z) while in previous work each axes need at least

16-bit [18], [7]). Additionally, we reduced the number

of bits for each vertex to less than 16-bit by calculating

the differences between two adjacent coordinates as

follows:

Di ¼ Di � D iþ1ð Þ ð2Þ

where i = 1, 2, 3… m - 1 and m is the size of the list

of vertices. The differential process defined in Eq. (2)

increases data redundancy and it is applied to each axis

independently [21]. Thus, these two steps reduce the

storage cost of geometry and ensure a sufficient

geometric accuracy for most applications.

Figure 1 illustrates the main steps in the proposed

method. After the differential process is applied to the

vertices, the resulting list is divided into k number of

non-overlapping blocks such that each block can be

worked independently and in parallel by the GM-

Algorithm. This significantly speeds up compression

and decompression. The GM-Algorithm is based on

defining three weight values (W1, W2 and W3) which

are multiplied by the three vertex coordinates (X, Y, Z)

in turn and then summed to a single integer value.

Equation (3) defines theEncoded Data by the GM-

Algorithm [21] for each triplet of vertex values:

Table 1 Compression and decompression results by the proposed method

3D image

Name

Original file

size (MB)

Shift

value

Compressed

file size

No. of vertices

(compressed size)

No. of triangle faces

(compressed size)

3D RMSE (X,

Y and Z)

2D RMSE

(Texture UV)

Corner 2.91 1 19.1 KB 24,168

(11 KB)

46,878

(4 KB)

1.034 5.77 9 10-4

10 32.5 KB 24,168

(24 KB)

46,878

(4 KB)

1.035 5.77 9 10-4

Metal 5.34 10 36.7 KB 43,932

(23 KB)

86,330

(6 KB)

1.0618 5.78 9 10-4

50 53.2 KB 43,932

(39 KB)

86,330

(6 KB)

1.061 5.78 9 10-4

Face1 4.7 10 36.1 KB 38,831

(20 KB)

76,098

(9 KB)

1.360 5.78 9 10-4

20 40.2 KB 38,831

(23.7 KB)

76,098

(9 KB)

1.362 5.78 9 10-4

Angel 23 10 2.67 MB 307,144

(905 KB)

614,287

(1.79 MB)

2.022 NON

50 3.09 MB 307,144

(1.29 KB)

614,287

(1.79 MB)

2.023 NON

Car 14.1 1 917 KB 234,435

(314 KB)

304,197

(603 KB)

0.726 NON

10 1.34 MB 234,435

(772 KB)

304,197

(603 KB)

0.733 NON

Face2 13.3 2 290 KB 105,819

(99.4 KB)

206,376

(174 KB)

1.283 5.77 9 10-4

10 378 KB 105,819

(186 KB)

206,376

(174 KB)

1.285 5.77 9 10-4

Face3 55 1000 6.21 MB 323,496

(833 KB)

163,678

(5.18 MB)

0.993 4.715 9 10-4

5000 6.42 MB 323,496

(1.02 MB)

163,678

(5.18 MB)

0. 995 4.715 9 10-4

13 Page 8 of 18 3D Res (2016) 7:13

123

Encoded Data ið Þ ¼W1VX ið ÞþW2VY ið ÞþW3VZ ið Þ: ð3Þ

where VX, VY, VZ represent the list of vertices (X, Y, Z)

within a block of size k. The weight values (W1, W2

and W3) are generated by the following algorithm

described in pseudo code from the maximum value in

the list of vertices:

Fig. 9 Decompressed 3D Corner image at compression size:

32.5 and 19.1 KB a (left) 3D Corner object with texture, (right)

3D mesh Corner shows the details of the object, at compresses

size: 32.5 KB, b (left) 3D Corner’s vertices organized as

structure lines at compression size: 32.5 KB, (right) shows

vertices for 3D corner at compression size:19.1 KB, the

verticesmoved slightly from their original position, c 3D mesh

corner shows the details of the object, at compresses size:

19.1 KB, the image shows the trianglesslightly more degraded

than in previous result

3D Res (2016) 7:13 Page 9 of 18 13

123

Fig. 10 Decompressed 3D Metal image at compression size:

53.2 and 36.7 KB. a (left) 3D Metal object with texture, (right)

3D mesh details at compresses size: 53.2 KB, b (left) 3D

Metal’s vertices organized as structure lines at compression

size: 53.2 KB, (right) shows vertices for 3D corner at

compression size: 36.7 KB, some vertices moved to up and

down from their original position, c 3D mesh details of the

object, at compresses size: 36.7 KB, the image shows similar

high quality 3D mesh surface as in previous result

13 Page 10 of 18 3D Res (2016) 7:13

123

M ¼ max VX;VY ;VZð Þ þmax VX;VY;VZð Þ
2

%Define M as a function of maximum

W1 ¼ random 0;1ð Þ
%First weight�1defined by random between0and 1

W2 ¼ W1þ Mð Þ þ F

%F is an integer factor F ¼ 1; 2; 3; . . .

W3 ¼ M � W1 þ M � W2ð Þ � F

The following Fig. 2 illustratesthe GM-Algorithm

applied to a sample of vertices. After applying the

GM-Algorithm, the likelihood for each block of

vertices is selected from which a Domain Search

(DS) is generated to be used in the decompression

stage as illustrated in Fig. 3 with a numerical example.

3 Texture Mapping Encoding (UV) and Mesh

Connectivity Encoding

In order to allow polygons in a 3D structure to be

painted from a 2D image a mapping is required. This

map is defined by the normalized horizontal and

vertical components (u, v) of an image corresponding

to each polygon in 3D. A 3D object in model space [9]

and corresponding (u, v) mapping is shown in Fig. 4a.

In our proposed compression algorithm, the (u,

v) texture coordinates are compressed as lossy data

in two steps. First, the (u, v) map is quantized by

Fig. 11 Decompressed 3D Face1 image at compression size:

40.2 and 36.1 KB a (left) 3D Face1 object with texture, (right)

3D mesh Face1 details at compresses size: 40.2 KB, b (left) 3D

Face1 vertices organized as structure lines at compression size:

40.2 KB, (middle) shows vertices for 3D Face1 at compression

size: 36.1 KB, the vertices in both 3D images approximately at

same original positions. (right) 3Dmesh Face1 shows the details

of the object, at compresses size: 36.1 KB, the image shows

same high quality as 3D mesh in previous result

3D Res (2016) 7:13 Page 11 of 18 13

123

shifting the floating point to integer, i.e. Eq. (1). We

adopted a shift value of 1000, meaning that each value

(u, v) is in the range {8-bit and 16-bit}. Second, the

differences between two adjacent data are computed

by Eq. (2) applied to each axis independently as

shown in Fig. 4b. Finally, arithmetic coding is applied

to each (u, v) independently to produce a stream of

bits.

Triangle faces represent geometric connectivity. In

a 3D OBJ file, each face contains the vertex indices in

the order they appear in the file, normally arranged in

ascending order. Triangular faces and vertex indices

are illustrated in Fig. 5a. The advantage of this

representation is that each triangle can be compressed

in just a few bits. In our proposed method, triangle

faces are compressed by applying the differential

process defined in Eq. (2). The faces are scanned row-

by-row and representedas a one-dimensional array,

and the final encoded array is compressed by arith-

metic coding. The texture of each triangular face is

represented by their (u, v) map which maps a pixel

value in the image to a vertex in the 3D structure. Each

value in the (u, v) map is normalised and shifted to

integer. Texture values are separated from vertex

indices (triangle face), they are both compressed in

same way as illustrated in Fig. 5b.

Fig. 12 Decompressed 3D Angel image at compression size:

3.09 and 2.67 MB a (left) 3D Angel object, (right) 3D mesh

Angel shows the details of the object, at compresses size:

3.09 MB, b (left) 3D Angel object, (right) 3D mesh Angel

shows the details of the object, at compresses size: 2.67 MB,

similar from the 3D mesh in previous result

13 Page 12 of 18 3D Res (2016) 7:13

123

4 Decompression Algorithm by Parallel Threads

on Blocks of Data

The GM-Algorithm described in Sect. 2 compresses

each vertex data (X, Y, Z) to a single integer value by

three different weights (W1, W2, W3). Here we

described how to recover the original data. To this

purpose we designed a parallel algorithm named

Parallel Fast-Matching-Search Algorithm (Parallel-

FMS). The header of the compressed file contains

information about the compressed data pertaining the

weights and DS (the Domain Searchfor each block of

vertex as in Fig. 2) followed by streams of compressed

encoded data (Encoded Data). The Parallel-FMS

algorithm picks up in turn each k-encoded data to

reconstruct k blocks of vertices (X, Y, Z). The Parallel-

FMS is based on a binary search algorithm illustrated

through the following steps (A) and (B):

A. Initially, the Domain Sarch (DS) is copied to three

separate arrays to estimate X, Y and Z respec-

tively. The searching algorithm computes all

possible combinations of X with W1, Y with

W2and Z with W3 that yield a result R-Array. As a

means of an example consider that DS(1) = [X1

X2 X3], DS(2) = [Y1 Y2 Y3] and DS(3) = [Z1 Z2

Z3]. Then, according to Eq. (1) these represent

VX, VY and VZ respectively. The equation is

executed 27 times to build the R-Array, as

described in Fig. 6a. The match indicates that

the unique combination of X, Y and Z represents

the orginal vertex block.

B. Abinary search algorithm [5] is used to recover an

item in the array. Here we designed a parallel

binary search algorithm consisting of k-binary

search algorithms working in parallel to recon-

struct kblock of vertices in the list of vertices, as

Fig. 13 Decompressed 3D Car image at compression size:

1.34 MB and 917 KB a (left) 3D mesh Car object, (right) 3D

mesh Inside the Car, shows the details of the object, at

compresses size: 1.34 MB, b 3D mesh Car shows the details of

the object, at compresses size: 917 KB, the image shows the

vertices for some objects move slightly away from their original

positions

3D Res (2016) 7:13 Page 13 of 18 13

123

shown in Fig. 6b. In each step in the k-binary

search algorithm compares k-encoded data (i.e.

each binary search algorithm takes a single

compressed data item) with the middle of the

element of the R-Array. If the values match, then a

matching element has been found and its R-Ar-

ray’s relevant (X, Y, Z) returned. Otherwise, if the

search is less than the middle element of the

R-Array, then the algorithms repeats its action on

the sub-array to the left of the middle element or,

if the value is greater, on the sub-array to the right.

All k-binary search algorithms are synchronised

such that the correct vertices values are returned.

To illustrate our decompression algorithm, the

compressed samples in Fig. 2 (by our GM-Algo-

rithm) can be used by our decompression algo-

rithm to reconstruct X, Y and Z values as shown in

Fig. 7.

Once vertices are recovered, we turn our attention

to decoding triangle faces and vertex texture coor-

dinates. The differential process of Eq. (2) is

reversed by addition such that the encoded values

in each triangle face and texture coordinates return to

their original values. This process takes the last value

at position m, and adds it to the previous value, and

then the total adds to the next previous value and so

on. The following equation defines the addition

decoder [21].

A i�1ð Þ ¼ A i�1ð Þ þ A ið Þ ð4Þ

where i = m, (m - 1), (m - 2), (m - 3),…, 2.

5 Experimental Results

The experimental results described here were imple-

mented in MATLAB R2013a and Visual C?? 2008

running on an AMD Quad-Core microprocessor. We

describe the results in two parts: first, we apply the

compression and decompression algorithms to 3D data

object generated by the GMPR 3D surface scanner

[13, 17, 24]. The principle of operation of GMPR 3D

Fig. 14 Decompressed 3D Face2 image at compression size:

378 and 290 KB a (left) 3D texture Face2 object, (right) 3D

mesh Face2, shows the details of the object, at compressed size:

378 KB, b 3D texture Face2 with 3D mesh shows the details of

the 3D Face2, at compressed size: 290 KB, the image shows the

vertices slightly move away from their original positions

13 Page 14 of 18 3D Res (2016) 7:13

123

Fig. 15 Decompressed 3D Face3 image at compression size:

6.42 and 6.21 MB a Full 3D texture Face3 object, shows the

details of the object, at compresses size: 6.42 MB, b (left) 3D

mesh shows the details of the 3D Face3, at compresses size:

6.42 MB, (right) 3D mesh at compressed size 6.21 MB, the

vertices slightly move away from their original positions

Table 2 Compression and Decompression execution time by the proposed method

3D image

Name

Original file

size (MB)

Shift

value

Estimated compression

Time (s)

Estimated decompression

Time (s)

Vertices (X,

Y, Z)

Triangle faces

and texture

Vertices (X,

Y, Z)

Triangle faces

and texture

Corner 2.91 1 1.5 34.8 2.25 40.2

10 1.9 34.4 2.35 39.1

Metal 5.34 10 2.8 63.5 5.1 70

50 3 64.48 5.4 70

Face1 4.7 10 2.2 54.1 4.42 65

20 2.2 56.2 4.39 66

Angel 23 10 210.4 370.8 316.8 400

50 420.4 355.98 828.89 409

Car 14.1 1 40 176.6 71.48 210

10 180.2 169.9 338.2 200

Face2 13.3 2 25.5 160.4 47.89 200

10 10 162.46 18.5 200

Face3 55 1000 1.554e?03 1.4239e?03 2.954e?03 1.622e?03

5000 1.4412e?03 1.3905e?03 2.8824e?03 1.572e?03

3D Res (2016) 7:13 Page 15 of 18 13

123

T
a
b
le

3
O
u
r
ap
p
ro
ac
h
co
m
p
ar
ed

w
it
h
o
th
er

en
co
d
in
g
3
D

d
at
a
fo
rm

at

M
et
h
o
d

3
D

O
b
je
ct

fi
le

C
o
rn
er

(O
ri
g
in
al

fi
le

si
ze

2
.9
1
M
B
)

M
et
al

(O
ri
g
in
al

fi
le

si
ze

5
.3
4
M
B
)

F
ac
e1

(O
ri
g
in
al

fi
le

si
ze

4
.7

M
B
)

A
n
g
el

(O
ri
g
in
al

fi
le

si
ze

2
3
.5

M
B
)

C
ar

(O
ri
g
in
al

fi
le

si
ze

1
4
.1

M
B
)

F
ac
e2

(O
ri
g
in
al

fi
le

si
ze

1
3
.3

M
B
)

F
ac
e3

(O
ri
g
in
al

fi
le

si
ze

5
5
M
B
)

P
ro
p
o
se
d
m
et
h
o
d

C
o
m
p
re
ss
ed

fi
le

si
ze

3
2
.5

K
B

5
3
.2

K
B

4
0
.2

K
B

2
.0
2
M
B

1
.3
4
M
B

3
7
8
K
B

6
.4
2
M
B

C
o
m
p
re
ss
io
n
ra
ti
o
(%

)
9
8
.9

9
9

9
9
.1

9
1

9
0
.4

9
7
.2

8
8
.3

M
A
T
A
L
B

fo
rm

at

C
o
m
p
re
ss
ed

fi
le

si
ze

8
5
0
K
B

1
.5
3
M
B

1
.3
2
M
B

5
.3
1
M
B

4
.4

M
B

4
.0
4
M
B

1
1
.9

M
B

C
o
m
p
re
ss
io
n
ra
ti
o
(%

)
7
1
.4

7
1
.3

7
1
.9

7
7
.4

6
8
.7

6
9
.6

7
8
.3

V
R
M
L
fo
rm

at

C
o
m
p
re
ss
ed

fi
le

si
ze

2
.3
9
M
B

4
.4
3
M
B

3
.9

M
B

2
3
.2

M
B

1
3
.7

M
B

9
.1
9
M
B

1
7
.5

M
B

C
o
m
p
re
ss
io
n
ra
ti
o
(%

)
1
7
.8

1
7

1
7

1
.2
7

2
.9

3
0
.9

6
8

S
T
L
fo
rm

at

C
o
m
p
re
ss
ed

fi
le

si
ze

2
.2
3
M
B

4
.1
1
M
B

3
.6
2
M
B

2
9
.2

M
B

1
4
.5

M
B

9
.8
4
M
B

1
5
.4

M
B

C
o
m
p
re
ss
io
n
ra
ti
o
(%

)
6
.6
9

2
3

2
2
.9

N
O
N

N
O
N

2
6

7
2

O
p
en
C
T
M

fo
rm

at

C
o
m
p
re
ss
ed

fi
le

si
ze

1
4
5
K
B

2
2
0
K
B

1
7
6
K
B

1
.9
2
M
B

1
.3
6
M
B

8
0
8
K
B

7
8
9
K
B

C
o
m
p
re
ss
io
n
ra
ti
o
(%

)
9
5

9
5
.9

9
6
.3

9
1
.6

9
0
.3

9
4

9
8
.5

13 Page 16 of 18 3D Res (2016) 7:13

123

surface scanning is to project patterns of light onto the

target surface whose image is recorded by a camera.

The shape of the captured pattern is combined with the

spatial relationship between the light source and the

camera, to determine the 3D position of the surface

along the pattern [14] as shown in Fig. 8a. Second, we

apply the method to general 3D object data (i.e. 3D

object generated by 3Dmax, CAD/CAM, 3D camera

or other devices/software) as shown in Fig. 8b.

Table 1 show our compression algorithm applied

on each 3D object file, and Fig. 9, 10, 11, 12, 13, 14, 15

shows the visual properties of the decompressed 3D

object data for 3D images respectively. Additionally,

RMSE are used to compare between 3D original

object file content (geometric (X, Y, Z) and (u,

v) texture coordinates) and the recovered 3D object

file content. Root Mean Square Error (RMSE) is used

to refer to image quality mathematically [12, 19]; it

can be calculated by computing the differences

between the decompressed 3D object and the original

3D object (as shown in Table 2).

Table 3 shows the comparison between the 3D file

formats VRML, OpenCTM and STL. The file format

referred to as MATLAB format contains geometric,

texture and triangle facesas lossless data, and using

MATLAB language to read/write 3D data. We

investigate this format obtaining compression ratios

of over 50 % for most 3D OBJ files. Our approach

used unique algorithms to compress 3D OBJ files

leading to compression rates of over 98 % in the best

case and 85 % for the worst case; the ratio is

dependent on the triangle face details.

6 Conclusion

This research has presented and demonstrated a new

method for 3D data compression/reconstruction and

compared the quality of compression through 3D

reconstruction, 3D RMSE and the perceived quality of

the 3D visualisation. The method is based on convert-

ing geometric values to a stream of encoded integer

data by the GM-algorithm. Connectivity data are

partitioned into groups where each group is addressed

by arithmetic coding for lossless compression. The

results demonstrate that our approach yields high

quality 3D compression at higher compression ratios

compared with other 3D data formats. Although the

lossy compression controlled by the shift parameter

introduces small reconstruction errors as observed by

RMSE and detailed visualization, the methods provide

high compression ratios with high quality data and it is

appropriate for most applications, including demand-

ing applications such as 3D face recognition. A

disadvantage of the method is the large number of

steps for compression and decompression. The main

bottleneck is related to the Parallel-FMS algorithm

leading to increased execution time through a binary

search method. Methods to speed up execution are

being investigated and will be reported in the near

future.

References

1. Alliez, P. & Gotsman, C. (2003). Recent advances in com-

pression of 3D meshes. Inria Sophia Antipolis Research

Report 4966, Oct 2003 pp. 26

2. DCT (2012). 3D compression technologies (3DCT), www.

3dcompress.com/web/default.asp. Accessed Oct 2012.

3. Deering, M. (1995). Geometry compression. In SIGGRAPH

95 Proceedings of the 22nd Annual Conference on Com-

puter Graphics and Interactive Techniques.

4. Deering, M. (1995). Geometry compression. In Computer

Graphics (SIGGRAPH’95 Proceedings), pp. 13–20.

5. Donald, K. (1997). Sorting and searching: section 6.2.1:

searching an ordered table, the art of computer program-

ming. (3rd Ed.), Addison-Wesley. pp. 409–426. ISBN 0-

201-89685-0.

6. Evans, F., Skiena, S.S., & Varshney, A. (1996). Optimizing

triangle strips for fast rendering. In IEEE visualization.

IEEE, October 1996. ISBN 0-89791-864-9.

7. Gurung, T., Luffel, M., Lindstrom, P., & Rossignac, J.

(2013). Zipper: A compact connectivity data structure for

triangle meshes. Journal of Computer –Aided Design, 45(2),

262–269.

8. Hollinger, S.Q., Williams A.B., & Manak, D. (1998). 3D

data compression of hyper spectral imagery using vector

quantization with NDVI-based multiple codebooks, IEEE

International Geosciences and Remote Sensing Symposium

IGARSS’98, Vol. 5, 2680–2684.

9. Murdock, K. L. (2008). 3DS max 2008 Bible (1st ed.).

Indianapolis, Indiana: Wiley Publishing, Inc. ISBN

9780470417584.

10. Neider, J., Davis, T., & Woo M. (1997). OpenGL pro-

gramming guide—The official guide to learning openGL,

Version 1.1. Addison-Wesley, Reading, MA, USA.

11. Peng, J., Kim, C. S., & Kuo, C. C. (2005). Technologies for

3D mesh compression: A survey. Journal of Visual Com-

munication and Image Representation, 16(6), 688–733.

12. Richardson, I. E. G. (2002). Video codec design. USA:

Wiley.

13. Rodrigues, M., Kormann, M., Schuhler, C., & Tomek, P.

(2013b) Robot trajectory planning using OLP and structured

light 3Dmachine vision. Lecture notes in Computer Science

Part II. LCNS Springer, Heidelberg, Vol. 8034, pp.244–253

3D Res (2016) 7:13 Page 17 of 18 13

123

http://www.3dcompress.com/web/default.asp
http://www.3dcompress.com/web/default.asp

14. Rodrigues, M., Kormann, M., Schuhler C., & Tomek, P.

(2013c). Structured light techniques for 3D surface recon-

struction in robotic tasks.In Proceedings of the 8th Inter-

national Conference on Computer Recognition Systems

CORES 2013, Springer, pp. 805–814.

15. Rodrigues, M., Kormann, M., Schuhler C., & Tomek, P.

(2013d). An intelligent real time 3D vision system for

robotic welding tasks. In: Mechatronics and its applica-

tions. IEEE Xplore, pp. 1–6.

16. Rodrigues, M., Osman, A., & Robinson, A. (2011). Efficient

3D data compression through parameterization of free-form

surface patches. In: Signal Process and Multimedia Appli-

cations (SIGMAP), Proceedings of the (2010) International

Conference on. IEEE, 130–135.

17. Rodrigues, M., Osman, A., & Robinson, A. (2013). Partial

differential equations for 3D data compression and recon-

struction. Journal Advances in Dynamical Systems and

Applications, 8(2), 303–315.

18. Rossignac, J. (2003). 3D mesh compression. College of

Computing and GVUCenter Georgia institute of Technology

Report, June 2003 Chapter Five-Visualization HandBook.

19. Sayood, K. (2000). Introduction to Data Compression (2nd

ed.). USA: Academic Press, Morgan Kaufman Publishers.

20. Shikhare, D., Babji, S.V., & Mudur, S.P. (2002). Compres-

sion techniques for distributed use of 3D data: an emerging

media type on the internet. In 15th International Conference

on Computer Communication, India, pp. 676–696.

21. Siddeq, M. M., & Rodrigues, M. E. (2014). A novel image

compression algorithm for high resolution 3D reconstruc-

tion, 3D Research. Springer,5 (2). Doi:10.1007/s13319-

014-0007-6.

22. Szymczak, A., King, D., & Rossignac, J. (2000). An edge-

breaker-based efficient compression scheme for regular

meshes. In 12th Canadian Conference on Computational

Geometry, pp. 257–265.

23. Taubin, G., Horn, W., Lazarus, F., Rossignac, J. (1998).

Geometry coding and VRML, Proceedings of The IEEE,

86(6).

24. Taubin, G., & Rossignac, J. (1996). Geometric compression

through topological surgery. Technical report, Yorktown

Heights, NY 10598, Jan 1996. IBM Research Report RC

20340.

25. Taubin, G., & Rossignac, J. (1998). Geometric compression

through topological surgery. ACM Transactions on

Graphics, 17(2), 84–115.

13 Page 18 of 18 3D Res (2016) 7:13

123

http://dx.doi.org/10.1007/s13319-014-0007-6
http://dx.doi.org/10.1007/s13319-014-0007-6

	Novel 3D Compression Methods for Geometry, Connectivity and Texture
	Abstract
	Graphical Abstract
	Introduction
	Compression for Fast Rendering
	Maximum Mesh Compression

	Vertex Compression
	Texture Mapping Encoding (UV) and Mesh Connectivity Encoding
	Decompression Algorithm by Parallel Threads on Blocks of Data
	Experimental Results
	Conclusion
	References

